GaloisGroup( L )
returns the Galois group of the field L if L is a normal extension and issues an error if not. The Galois group is a group of extension automorphisms (see ExtensionAutomorphism).
The computation of a Galois group is computationally relatively hard, and can take significant time.
gap> g:=GaloisGroup(f); Group( ExtensionAutomorphism(AlgebraicExtension(GF(2),Z(2)^0*(y^ 2 + y + 1)),RootOf(Z(2)^0*(y^2 + y + 1))+Z(2)^0) ) gap> h:=GaloisGroup(e); Group( ExtensionAutomorphism(e,alpha^3+ 3*alpha), ExtensionAutomorphism(e,-1*alpha), ExtensionAutomorphism(e, -1*alpha^3-3*alpha) ) gap> Size(h); 4 gap> AbelianInvariants(h); [ 2, 2 ]
GAP 3.4.4