24.9 CanonicalAgWord

CanonicalAgWord( U, g )

Let U be an ag group with parent group G, let g be an element of G. Let (u_1, ..., u_m) be an induced generating system of U and (g_1, ..., g_n) be a canonical generating system of G. Then CanonicalAgWord returns a word x = <g> * u = g_{i_1}^{e_1} * ... * g_{i_k}^{e_k} such that u in <U> and no i_j is equal to the depth of any generator u_l.

    gap> v4 := MergedCgs( s4, [ a*b^2, c*d ] );
    Subgroup( s4, [ a*b^2, c*d ] )
    gap> CanonicalAgWord( v4, a*c );
    b^2*d
    gap> CanonicalAgWord( v4, a*b*c*d );
    b
    gap> (a*b*c*d) * (a*b^2);
    b*c*d
    gap> last * (c*d);
    b 

Previous Up Top Next
Index

GAP 3.4.4
April 1997