CanonicalAgWord( U, g )
Let U be an ag group with parent group G, let g be an element of
G. Let (u_1, ..., u_m) be an induced generating system of U and
(g_1, ..., g_n) be a canonical generating system of G. Then
CanonicalAgWord
returns a word x = <g> * u = g_{i_1}^{e_1} * ... *
g_{i_k}^{e_k} such that u in <U> and no i_j is equal to the depth of
any generator u_l.
gap> v4 := MergedCgs( s4, [ a*b^2, c*d ] ); Subgroup( s4, [ a*b^2, c*d ] ) gap> CanonicalAgWord( v4, a*c ); b^2*d gap> CanonicalAgWord( v4, a*b*c*d ); b gap> (a*b*c*d) * (a*b^2); b*c*d gap> last * (c*d); b
GAP 3.4.4