IsConsistent( G )
IsConsistent( G, all )
IsConsistent
returns true
if the finite polycyclic presentation of a
parent group G is consistent and false
otherwise.
If all is true
then G.inconsistencies
contains a list for pairs
[ w_1, w_2 ] such that the words w_1 and w_2 are equal in G but
have different normal forms.
Note that IsConsistent
check and sets G.isConsistent
.
gap> InfoAgGroup2 := Print;; gap> x := AbstractGenerator( "x" );; gap> y := AbstractGenerator( "y" );; gap> z := AbstractGenerator( "z" );; gap> G := AgGroupFpGroup( rec( > generators := [ x, y, z ], > relators := [ x^2 / y, y^2 / z, z^2, > Comm( y, x ) / ( y * z ), > Comm( z, x ) / ( y * z )] ) ); Group( x, y, z ) gap> IsConsistent( G ); #I IsConsistent: y * ( y * x ) <> ( y * y ) * x false gap> IsConsistent( G, true ); #I IsConsistent: y * ( y * x ) <> ( y * y ) * x #I IsConsistent: z * ( z * x ) <> ( z * z ) * x #I IsConsistent: y * ( x * x ) <> ( y * x ) * x #I IsConsistent: z * ( x * x ) <> ( z * x ) * x #I IsConsistent: x * ( x * x ) <> ( x * x ) * x false gap> G.inconsistencies; [ [ x, x*y ], [ x*z, x ], [ z, y ], [ y*z, y ], [ x*y, x ] ] gap> InfoAgGroup2 := Ignore;;
GAP 3.4.4