ModulesSQ( S, F )
ModulesSQ( S, F, d )
Let S be an SQ record describing a finite solvable quotient Q of a
finitely presented group G. ModulesSQ
computes all irreducible
representations of Q over the prime field F of dimension at most d.
If d is zero or missing no restriction on the dimension is enforced.
gap> f := FreeGroup( "a", "b", "c", "d" );; gap> f4 := f / [ f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2, > f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4, > f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4, > f.2^-1*f.4^-1*f.2*f.4 ];; gap> s := InitSQ(f4); << solvable quotient of size 2^2 >> gap> ModulesSQ( s, GF(2) );;
GAP 3.4.4