25.46 ModulesSQ

ModulesSQ( S, F )
ModulesSQ( S, F, d )

Let S be an SQ record describing a finite solvable quotient Q of a finitely presented group G. ModulesSQ computes all irreducible representations of Q over the prime field F of dimension at most d. If d is zero or missing no restriction on the dimension is enforced.

    gap> f := FreeGroup( "a", "b", "c", "d" );;
    gap> f4 := f / [ f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
    >       f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
    >       f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
    >       f.2^-1*f.4^-1*f.2*f.4 ];;
    gap> s := InitSQ(f4);
    << solvable quotient of size 2^2 >>
    gap> ModulesSQ( s, GF(2) );; 

Previous Up Top Next
Index

GAP 3.4.4
April 1997