LinearOperation( U, V, varphi )
Let U be an ag group with an induced generating system u_1, ..., u_m
and V a vector space with base (o_1, ..., o_n). U must act linearly
on V. Let v be an element of V, u be an element of U. The
action of U on V should be given as follows. If v^u = a_1*o_1+ ...
+a_n*o_n, then the function <varphi>( v, u ) must return (a_1, ...,
a_n) as list of finite field elements. If these condition are
fulfilled, LinearOperation
returns a matrix group M describing this
action.
Note that M.images
is bound to a list of matrices m_i, such that
m_i describes the action of u_i.
gap> v4 := AgSubgroup( s4, [ c, d ], true ); Subgroup( s4, [ c, d ] ) gap> v4.field := GF( 2 ); GF(2) gap> V := rec( base := [ c, d ], isDomain := true ); rec( base := [ c, d ], isDomain := true ) gap> phi := function( v, g ) > return Exponents( v4, v^g, v4.field ); > end; function ( v, g ) ... end gap> LinearOperation( s4, V, phi ); Group( [ [ Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0 ] ], [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] )
GAP 3.4.4