SumFactorizationFunctionAgGroup( U, N )
Let U and N be ag group with a common parent group such that U normalizes N. Then the function returns a record R with the following components.
intersection
:
sum
:
factorization
:r.u
and r.n
, where r.u
is
bound to the ag word u, r.n
to the ag word n.
Note that N must be a normal subgroup of <U> * <N>, it is not sufficient that <U> * <N> = <N> * <U>.
gap> v4 := AgSubgroup( s4, [ a*b, c ], true ); Subgroup( s4, [ a*b, c ] ) gap> a4 := AgSubgroup( s4, [ b, c, d ], true ); Subgroup( s4, [ b, c, d ] ) gap> sd := SumFactorizationFunctionAgGroup; function ( U, N ) ... end gap> sd := SumFactorizationFunctionAgGroup( v4, a4 ); rec( sum := Group( a*b, b, c, d ), intersection := Subgroup( s4, [ c ] ), factorization := function ( un ) ... end ) gap> sd.factorization( a*b*c*d ); rec( u := a*b*c, n := d ) gap> sd.factorization( a*b^2*c*d ); rec( u := a*b*c, n := b*c )
GAP 3.4.4