OneCoboundaries( G, M )
Let M be a normal p-elementary abelian subgroup of G. Then
OneCoboundaries
computes the vector space {cal V} = beta( B^1(
<G>/<M>, <M> ) ), which is isomorphic to the group of one coboundaries
B^1( G, M ) as described in One Cohomology Group. The functions
returns a record C with the following components.
oneCoboundaries
:
generators
:
cocycleToList
:
listToCocycles
:cocycleToList
.
OneCoboundaries( G, alpha, M )
In that form OneCoboundaries
computes the one coboundaries in the
semidirect product of G and M where G acts on M using alpha
(see SemidirectProduct).
gap> s4xc2 := DirectProduct( s4, CyclicGroup( AgWords, 2 ) ); Group( a1, a2, a3, a4, b ) gap> m := CompositionSubgroup( s4xc2, 3 ); Subgroup( Group( a1, a2, a3, a4, b ), [ a3, a4, b ] ) gap> oc := OneCoboundaries( s4xc2, m ); rec( oneCoboundaries := RowSpace( GF(2), [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ), generators := [ a1, a2 ], cocycleToList := function ( c ) ... end, listToCocycle := function ( L ) ... end ) gap> v := Base( oc.oneCoboundaries ); [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] gap> oc.cocycleToList( v[1] ); [ a4, a4 ] gap> oc.cocycleToList( v[2] ); [ IdAgWord, a3 ] gap> oc.cocycleToList( v[1]+v[2] ); [ a4, a3*a4 ]
GAP 3.4.4