OneCoboundaries( G, M )
Let M be a normal p-elementary abelian subgroup of G. Then
OneCoboundaries computes the vector space {cal V} = beta( B^1(
<G>/<M>, <M> ) ), which is isomorphic to the group of one coboundaries
B^1( G, M ) as described in One Cohomology Group. The functions
returns a record C with the following components.
oneCoboundaries:
generators:
cocycleToList:
listToCocycles:cocycleToList.
OneCoboundaries( G, alpha, M )
In that form OneCoboundaries computes the one coboundaries in the
semidirect product of G and M where G acts on M using alpha
(see SemidirectProduct).
gap> s4xc2 := DirectProduct( s4, CyclicGroup( AgWords, 2 ) );
Group( a1, a2, a3, a4, b )
gap> m := CompositionSubgroup( s4xc2, 3 );
Subgroup( Group( a1, a2, a3, a4, b ), [ a3, a4, b ] )
gap> oc := OneCoboundaries( s4xc2, m );
rec(
oneCoboundaries := RowSpace( GF(2),
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ),
generators := [ a1, a2 ],
cocycleToList := function ( c ) ... end,
listToCocycle := function ( L ) ... end )
gap> v := Base( oc.oneCoboundaries );
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> oc.cocycleToList( v[1] );
[ a4, a4 ]
gap> oc.cocycleToList( v[2] );
[ IdAgWord, a3 ]
gap> oc.cocycleToList( v[1]+v[2] );
[ a4, a3*a4 ]
GAP 3.4.4