Complementclasses( U, N )
Let U and N be ag groups such that N is a normal subgroup of U.
Complementclasses
returns a list of representatives for the conjugacy
classes of complements of N in U.
Note that the empty list is returned if U does not split over N.
Complementclasses
descends along an elementary abelian series of U
containing N. See CNW90 for details.
gap> v4 := Subgroup( s4, [ c, d ] ); Subgroup( s4, [ c, d ] ) gap> Complementclasses( s4, v4 ); [ Subgroup( s4, [ a, b ] ) ] gap> z4 := CyclicGroup( AgWords, 4 ); Group( c4_1, c4_2 ) gap> z2 := Subgroup( z4, [ z4.2 ] ); Subgroup( Group( c4_1, c4_2 ), [ c4_2 ] ) gap> Complementclasses( z4, z2 ); [ ] gap> m9 := ElementaryAbelianGroup( AgWords, 9 ); Group( m9_1, m9_2 ) gap> m3 := Subgroup( m9, [ m9.2 ] ); Subgroup( Group( m9_1, m9_2 ), [ m9_2 ] ) gap> Complementclasses( m9, m3 ); [ Subgroup( Group( m9_1, m9_2 ), [ m9_1 ] ), Subgroup( Group( m9_1, m9_2 ), [ m9_1*m9_2 ] ), Subgroup( Group( m9_1, m9_2 ), [ m9_1*m9_2^2 ] ) ]
GAP 3.4.4