48.18 CharTableWreathSymmetric

CharTableWreathSymmetric( tbl, n )

returns the character table of the wreath product of an arbitrary group G with the full symmetric group S_n, where tbl is the character table of G.

    gap> c3:= CharTable("Cyclic", 3);;
    gap> wr:= CharTableWreathSymmetric(c3, 2);;
    gap> PrintCharTable( wr );
    rec( size := 18, identifier := "C3wrS2", centralizers :=
    [ 18, 9, 9, 18, 9, 18, 6, 6, 6 ], classes :=
    [ 1, 2, 2, 1, 2, 1, 3, 3, 3 ], orders := [ 1, 3, 3, 3, 3, 3, 2, 6, 6
     ], irredinfo := [ rec(
          charparam := [ [ 1, 1 ], [  ], [  ] ] ), rec(
          charparam := [ [ 1 ], [ 1 ], [  ] ] ), rec(
          charparam := [ [ 1 ], [  ], [ 1 ] ] ), rec(
          charparam := [ [  ], [ 1, 1 ], [  ] ] ), rec(
          charparam := [ [  ], [ 1 ], [ 1 ] ] ), rec(
          charparam := [ [  ], [  ], [ 1, 1 ] ] ), rec(
          charparam := [ [ 2 ], [  ], [  ] ] ), rec(
          charparam := [ [  ], [ 2 ], [  ] ] ), rec(
          charparam := [ [  ], [  ], [ 2 ] ] )
     ], name := "C3wrS2", order := 18, classparam :=
    [ [ [ 1, 1 ], [  ], [  ] ], [ [ 1 ], [ 1 ], [  ] ],
      [ [ 1 ], [  ], [ 1 ] ], [ [  ], [ 1, 1 ], [  ] ],
      [ [  ], [ 1 ], [ 1 ] ], [ [  ], [  ], [ 1, 1 ] ],
      [ [ 2 ], [  ], [  ] ], [ [  ], [ 2 ], [  ] ], [ [  ], [  ], [ 2 ] ]
     ], powermap := [ , [ 1, 3, 2, 6, 5, 4, 1, 4, 6 ],
      [ 1, 1, 1, 1, 1, 1, 7, 7, 7 ] ], irreducibles :=
    [ [ 1, 1, 1, 1, 1, 1, -1, -1, -1 ],
      [ 2, -E(3)^2, -E(3), 2*E(3), -1, 2*E(3)^2, 0, 0, 0 ],
      [ 2, -E(3), -E(3)^2, 2*E(3)^2, -1, 2*E(3), 0, 0, 0 ],
      [ 1, E(3), E(3)^2, E(3)^2, 1, E(3), -1, -E(3), -E(3)^2 ],
      [ 2, -1, -1, 2, -1, 2, 0, 0, 0 ],
      [ 1, E(3)^2, E(3), E(3), 1, E(3)^2, -1, -E(3)^2, -E(3) ],
      [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
      [ 1, E(3), E(3)^2, E(3)^2, 1, E(3), 1, E(3), E(3)^2 ],
      [ 1, E(3)^2, E(3), E(3), 1, E(3)^2, 1, E(3)^2, E(3) ]
     ], operations := CharTableOps )

medskip

    gap> DisplayCharTable( wr );
    C3wrS2

2 1 . . 1 . 1 1 1 1 3 2 2 2 2 2 2 1 1 1

1a 3a 3b 3c 3d 3e 2a 6a 6b 2P 1a 3b 3a 3e 3d 3c 1a 3c 3e 3P 1a 1a 1a 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1 -1 -1 -1 X.2 2 A /A B -1 /B . . . X.3 2 /A A /B -1 B . . . X.4 1 -/A -A -A 1 -/A -1 /A A X.5 2 -1 -1 2 -1 2 . . . X.6 1 -A -/A -/A 1 -A -1 A /A X.7 1 1 1 1 1 1 1 1 1 X.8 1 -/A -A -A 1 -/A 1 -/A -A X.9 1 -A -/A -/A 1 -A 1 -A -/A

A = -E(3)^2 = (1+ER(-3))/2 = 1+b3 B = 2*E(3) = -1+ER(-3) = 2b3

medskip

The record component classparam contains the sequences of partitions that parametrize the classes as well as the characters of the wreath product. Note that this parametrization prevents the principal character from being the first one in the list irreducibles.

medskip

Previous Up Top Next
Index

GAP 3.4.4
April 1997