InertiaSubgroup( G, chi )
For a class function chi of a normal subgroup N of the group G,
InertiaSubgroup( G, chi ) returns the inertia subgroup I_G(<chi>),
that is, the subgroup of all those elements g in <G> that satisfy
<chi> ^ g = <chi>.
gap> V4:= Subgroup( S4, S4.generators{ [ 3, 4 ] } );
Subgroup( S4, [ c, d ] )
gap> irrsub:= Irr( V4 );
#W Warning: Group has no name
[ Character( Subgroup( S4, [ c, d ] ), [ 1, 1, 1, 1 ] ),
Character( Subgroup( S4, [ c, d ] ), [ 1, 1, -1, -1 ] ),
Character( Subgroup( S4, [ c, d ] ), [ 1, -1, 1, -1 ] ),
Character( Subgroup( S4, [ c, d ] ), [ 1, -1, -1, 1 ] ) ]
gap> List( irrsub, x -> InertiaSubgroup( S4, x ) );
[ Subgroup( S4, [ a, b, c, d ] ), Subgroup( S4, [ a*b^2, c, d ] ),
Subgroup( S4, [ a*b, c, d ] ), Subgroup( S4, [ a, c, d ] ) ]
GAP 3.4.4