IsomorphismPcpStandardPcp( G, S )
Let G be a p-group and let S be the standard presentation
computed for G by StandardPresentation
. IsomorphismPcpStandardPcp
returns the isomorphism from G to S.
We illustrate the function with the following example.
gap> F := FreeGroup (6); Group( f.1, f.2, f.3, f.4, f.5, f.6 ) gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;; gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b, > Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3 ];; gap> q := F / R;; gap> G := Pq (q, "Prime", 3, "ClassBound", 3); Group( G.1, G.2, G.3, G.4, G.5, G.6 ) gap> S := StandardPresentation (q, 3, "ClassBound", 3); Group( G.1, G.2, G.3, G.4, G.5, G.6 ) gap> phi := IsomorphismPcpStandardPcp (G, S); GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.2^2*G.3*G.4^2*G.5^2, G.1*G.2*G.3*G.5, G.3^2, G.4*G.6^2, G.5, G.6 ] )
This function requires the package "anupq" (see RequirePackage).
GAP 3.4.4