InvariantSubnearrings( nr )
A subnear-ring (M,+,cdot) of a near-ring (N,+,cdot) is called an invariant subnear-ring if both, M cdot N subseteq M and N cdot M subseteq M.
The function InvariantSubnearrings
computes all invariant
subnear-rings of the near-ring nr.
The function returns a list of near-rings representing the according
invariant subnear-rings.
In case that nr is a transformation near-ring, FindGroup
is used
to determine the additive group of nr as a permutation group.
gap> InvariantSubnearrings( LibraryNearring( "V4", 22 ) ); [ Nearring( Subgroup( V4, [ (1,2) ] ), function ( x, y ) return elms[tfle.(f[Position( elms, y )])[Position( elms, x )] ]; end ), Nearring( V4, function ( x, y ) return elms[tfle.(f[Position( elms, y )])[Position( elms, x )] ]; end ) ]
GAP 3.4.4