AutomorphismGroup( C )
AutomorphismGroup
returns the automorphism group of a binary code
C. This is the largest permutation group of degree n such that each
permutation applied to the columns of C again yields C. GUAVA uses
the external program desauto
from J.S. Leon to compute the
automorphism group. The function PermutedCode
permutes the columns of a
code (see PermutedCode).
gap> R := RepetitionCode(7,GF(2)); a cyclic [7,1,7]3 repetition code over GF(2) gap> AutomorphismGroup(R); Group( (1,7), (2,7), (3,7), (4,7), (5,7), (6,7) ) # every permutation keeps R identical gap> C := CordaroWagnerCode(7); a linear [7,2,4]3 Cordaro-Wagner code over GF(2) gap> Elements(C); [ [ 0 0 0 0 0 0 0 ], [ 1 1 1 1 1 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ] ] gap> AutomorphismGroup(C); Group( (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) ) gap> C2 := PermutedCode(C, (1,6)(2,7)); a linear [7,2,4]3 permuted code gap> Elements(C2); [ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 1 1 1 0 0 ], [ 1 1 0 0 0 1 1 ] ] gap> C2 = C; true
GAP 3.4.4