NormalizedUnitsGroupRing( P )
NormalizedUnitsGroupRing( P, n )
When called with a polycyclicly presented p-group P, the group of normalized units of the group ring FP of P over the field F with p elements is returned.
If a second argument n is given, the group of normalized units of FP / I^n is returned, where I denotes the augmentation ideal of FP.
The returned group is represented as polycyclicly presented group.
gap> g:= SolvableGroup( "D8" );;
gap> NormalizedUnitsGroupRing( g, 1 );
#D use multiplication table
Group( IdAgWord )
gap> NormalizedUnitsGroupRing( g, 2 );
#D use multiplication table
Group( g1, g2 )
gap> NormalizedUnitsGroupRing( g, 3 );
#D use multiplication table
Group( g1, g2, g3, g4 )
gap> NormalizedUnitsGroupRing( g );
#D use multiplication table
Group( g1, g2, g3, g4, g5, g6, g7 )
GAP 3.4.4