CrystalDecompositionMatrix(H, n [,Ordering])
CrystalDecompositionMatrix(H, filename [,Ordering])
This function is similar to DecompositionMatrix, except that it
returns a crystallized decomposition matrix. The columns of
decomposition matrices correspond to projective indecomposables; the
columns of crystallized decomposition matrices correspond to the
canonical basis elements of the Fock space (see
Specht). Consequently, the entries in these matrices are polynomials
(in v), and by specializing (ie. setting v equal to 1; see
Specialized), the decomposition matrices of H are obtained (see
Specht).
Crystallized decomposition matrices are defined only for Hecke algebras over a base field of characteristic zero. Unlike ``normal'' decomposition matrices, crystallized decomposition matrices cannot be induced.
gap> CrystalDecompositionMatrix(Specht(3), 6); 6
|1 5,1
|v 1 4,2
|. . 1 4,1^2
|. v . 1 3^2
|. v . . 1 3,2,1
|v v^2 . v v 1 3,1^3
|. . . v^2 . v 2^3
|v^2 . . . . v 2^2,1^2
|. . . . . . 1 2,1^4
|. . . . v v^2 . 1^6
|. . . . v^2 . . gap> Specialized(last); # set 'v' equal to $1$. 6
|1 5,1
|1 1 4,2
|. . 1 4,1^2
|. 1 . 1 3^2
|. 1 . . 1 3,2,1
|1 1 . 1 1 1 3,1^3
|. . . 1 . 1 2^3
|1 . . . . 1 2^2,1^2
|. . . . . . 1 2,1^4
|. . . . 1 1 . 1^6
| . . . . 1 . .
See also Specht Specht, Schur Schur, DecompositionMatrix
DecompositionMatrix, and Specialized Specialized. This function
requires the package ``specht'' (see RequirePackage).
GAP 3.4.4