73.46 SourceXModXPModMorphism

SourceXModXPModMorphism( mor )

When crossed modules X,Y have a common range P and mor is a morphism from X to Y whose range homomorphism is the identity homomorphism, then mor.sourceHom : X.source -> Y.source) is a crossed module.

    gap> c2 := Subgroup( q8, [ genq8[1]^2 ] );
    Subgroup( sl(2,3), [ (1,3)(2,4)(5,7)(6,8) ] )
    gap> c2.name := "c2";;
    gap> sub2 := SubXMod( subSX, c2, q8 );
    Crossed module [c2->q8]
    gap >inc2 := InclusionMorphism( sub2, subSX );
    Morphism of crossed modules <[c2->q8] >-> [c4->q8]>
    gap> PX := SourceXModXPModMorphism( inc2 );
    Crossed module [c2->c4]
    gap > IsConjugation( PX );
    true   

Previous Up Top Next
Index

GAP 3.4.4
April 1997