SourceXModXPModMorphism( mor )
When crossed modules X,Y have a common range P and mor
is a
morphism from X to Y whose range homomorphism is the identity
homomorphism, then mor.sourceHom : X.source -> Y.source)
is a
crossed module.
gap> c2 := Subgroup( q8, [ genq8[1]^2 ] ); Subgroup( sl(2,3), [ (1,3)(2,4)(5,7)(6,8) ] ) gap> c2.name := "c2";; gap> sub2 := SubXMod( subSX, c2, q8 ); Crossed module [c2->q8] gap >inc2 := InclusionMorphism( sub2, subSX ); Morphism of crossed modules <[c2->q8] >-> [c4->q8]> gap> PX := SourceXModXPModMorphism( inc2 ); Crossed module [c2->c4] gap > IsConjugation( PX ); true
GAP 3.4.4