InclusionMorphism( H, G )
This gives the inclusion map of a subgroup H of a group G. In the
case that H=G the IdentityMapping(G)
is returned, with fields
.generators
and .genimages
added.
gap> s4 := Group( (1,2,3,4), (1,2) );; s4.name:="s4";; gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) ] );; a4.name:="a4";; gap> InclusionMorphism( a4, s4 ); GroupHomomorphismByImages( a4, s4, [ (1,2,3), (2,3,4) ], [ (1,2,3), (2,3,4) ] )
GAP 3.4.4