FpPair( G )
When G is a finitely presented group, this function finds a faithful permutation representation P, which may be the regular representation, and sets up a pairing between G and P.
gap> f := FreeGroup( 2 );;
gap> rels := [ f.1^3, f.2^3, (f.1*f.2)^2 ];;
gap> g := f/rels;;
gap> pairg := FpPair( g );
rec(
perm := Group( (2,4,3), (1,3,2) ),
fp := Group( f.1, f.2 ),
f2p := GroupHomomorphismByImages( Group( f.1, f.2 ),
Group( (2,4,3), (1,3,2) ), [ f.1, f.2 ], [ (2,4,3), (1,3,2) ] ),
p2f := GroupHomomorphismByImages( Group( (2,4,3), (1,3,2) ),
Group( f.1, f.2 ), [ (2,4,3), (1,3,2) ], [ f.1, f.2 ] ),
isFpPair := true,
isMinTransitivePair := true,
generators := [ (2,4,3), (1,3,2) ],
degree := 4,
position := 3 )
When G is a permutation group, the function
PresentationViaCosetTable is called to find a presentation for G
and hence a finitely presented group F isomorphic to G. When G
has a name, the name <name of G>Fp is given automatically to F and
<name of G>Pair to the pair.
gap> h20.generators;
[ (1,2,3,4,5), (2,3,5,4) ]
gap> pairh := FpPair( h20 );
rec(
perm := h20,
fp := h20Fp,
f2p := GroupHomomorphismByImages( h20Fp, h20, [ f.1, f.2 ],
[ (1,2,3,4,5), (2,3,5,4) ] ),
p2f := GroupHomomorphismByImages( h20, h20Fp,
[ (1,2,3,4,5), (2,3,5,4) ], [ f.1, f.2 ] ),
isFpPair := true,
degree := 5,
presentation := << presentation with 2 gens and 3 rels
of total length 14 >>,
name := [ 'h', '2', '0', 'P', 'a', 'i', 'r' ] )
gap> pairh.fp.relators;
[ f.2^4, f.1^5, f.1*f.2*f.1*f.2^-1*f.1 ]
GAP 3.4.4