FpPair( G )
When G is a finitely presented group, this function finds a faithful permutation representation P, which may be the regular representation, and sets up a pairing between G and P.
gap> f := FreeGroup( 2 );; gap> rels := [ f.1^3, f.2^3, (f.1*f.2)^2 ];; gap> g := f/rels;; gap> pairg := FpPair( g ); rec( perm := Group( (2,4,3), (1,3,2) ), fp := Group( f.1, f.2 ), f2p := GroupHomomorphismByImages( Group( f.1, f.2 ), Group( (2,4,3), (1,3,2) ), [ f.1, f.2 ], [ (2,4,3), (1,3,2) ] ), p2f := GroupHomomorphismByImages( Group( (2,4,3), (1,3,2) ), Group( f.1, f.2 ), [ (2,4,3), (1,3,2) ], [ f.1, f.2 ] ), isFpPair := true, isMinTransitivePair := true, generators := [ (2,4,3), (1,3,2) ], degree := 4, position := 3 )
When G is a permutation group, the function
PresentationViaCosetTable
is called to find a presentation for G
and hence a finitely presented group F isomorphic to G. When G
has a name, the name <name of G>Fp
is given automatically to F and
<name of G>Pair
to the pair.
gap> h20.generators; [ (1,2,3,4,5), (2,3,5,4) ] gap> pairh := FpPair( h20 ); rec( perm := h20, fp := h20Fp, f2p := GroupHomomorphismByImages( h20Fp, h20, [ f.1, f.2 ], [ (1,2,3,4,5), (2,3,5,4) ] ), p2f := GroupHomomorphismByImages( h20, h20Fp, [ (1,2,3,4,5), (2,3,5,4) ], [ f.1, f.2 ] ), isFpPair := true, degree := 5, presentation := << presentation with 2 gens and 3 rels of total length 14 >>, name := [ 'h', '2', '0', 'P', 'a', 'i', 'r' ] ) gap> pairh.fp.relators; [ f.2^4, f.1^5, f.1*f.2*f.1*f.2^-1*f.1 ]
GAP 3.4.4