SemidirectPair( S )
When S
is a semidirect product, this function finds a faithful
permutation representation P and sets up a pairing between S and
P. The example illustrates c2
|
Xc3
congs3
.
gap> agen := ac3.generators;; pgen := pc3.generators;; gap> a := GroupHomomorphismByImages( pc3, ac3, pgen, agen ); GroupHomomorphismByImages( PermAut(c3), Aut(c3), [ (1,2) ], [ GroupHomomorphismByImages( c3, c3, [ (1,2,3) ], [ (1,3,2) ] ) ] ) gap> G := SemidirectProduct( pc3, a, c3 );; gap> G.name := "G";; PG := SemidirectPair( G ); rec( perm := Perm(G), sdp := G, s2p := OperationHomomorphism( G, Perm(G) ), p2s := GroupHomomorphismByImages( Perm(G), G, [(1,2)(4,5), (3,5,4)], [ SemidirectProductElement( (1,2), GroupHomomorphismByImages ( c3, c3, [ (1,3,2) ], [ (1,2,3) ] ), () ), SemidirectProductElement( (), IdentityMapping(c3), (1,2,3) ) ] ))
GAP 3.4.4