ChevieClassInfo( W )
returns information about the conjugacy classes of the finite Coxeter
group W. The result is a record with three components: classtext
contains CoxeterConjugacyClass(W)
, classnames
contains
corresponding names for the classes, and classparams
gives
Character tables for Coxeter groups).
gap> W := CoxeterGroup( "D", 4 );; gap> ChevieClassInfo( W ); rec( classtext := [ [ ], [ 1, 2 ], [ 1, 2, 3, 1, 2, 3, 4, 3, 1, 2, 3, 4 ], [ 1 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 4 ], [ 2, 4 ], [ 1, 3, 1, 2, 3, 4 ], [ 1, 3 ], [ 1, 2, 3, 4 ], [ 1, 3, 4 ], [ 2, 3, 4 ] ], classparams := [ [ [ [ 1, 1, 1, 1 ], [ ] ] ], [ [ [ 1, 1 ], [ 1, 1 ] ] ], [ [ [ ], [ 1, 1, 1, 1 ] ] ], [ [ [ 2, 1, 1 ], [ ] ] ], [ [ [ 1 ], [ 2, 1 ] ] ], [ [ [ 2 ], [ 1, 1 ] ] ], [ [ [ 2, 2 ], '+' ] ], [ [ [ 2, 2 ], '-' ] ], [ [ [ ], [ 2, 2 ] ] ], [ [ [ 3, 1 ], [ ] ] ], [ [ [ ], [ 3, 1 ] ] ], [ [ [ 4 ], '+' ] ], [ [ [ 4 ], '-' ] ] ] , classnames := [ "1111.", "11.11", ".1111", "211.", "1.21", "2.11", "22.+", "22.-", ".22", "31.", ".31", "4.+", "4.-" ] )
For a general description of the conjugacy classes in the Weyl groups, see Car72. The relevance of taking representatives of minimal length is explained in GP93.
See also ChevieCharInfo.
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4