ReducedInCoxeterCoset( W , w )
w is an automorphism of the Coxeter group W or of a parent group of
W, given as a permutation of the roots. ReducedInCoxeterCoset
returns
the unique element in the right coset W.w which sends all roots of W
to positive roots.
gap> W := CoxeterGroup("F", 4 );; gap> H := ReflectionSubgroup( W, [ 1, 2, 9, 16 ] );; gap> PrintDynkinDiagram( H ); D4 9 \ 1 - 16 / 2 gap> w := PermCoxeterWord( W, [ 3, 2, 3, 4, 3, 2 ] );; gap> f := ReducedInCoxeterCoset( H, w );; gap> CoxeterWord( W, f ); [ 4, 3 ] gap> H.rootInclusion{[ 1 ..4 ]}; [ 1, 2, 9, 16 ]
The triality automorphism of D_4:
gap> OnTuples( H.rootInclusion{[ 1 .. 4 ]}, f ); [ 1, 9, 16, 2 ]This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4