Group
:
Print
:
SchurElements
:
CharTable
:irreducibles
contains the values of the irreducible
characters of the algebra on certain basis elements T_w where w
runs over the elements in the component classtext
. Thus, the value
are now polynomials in the parameters of the algebra.
gap> G := ComplexReflectionGroup( 4 ); ComplexReflectionGroup(4) gap> v := X( Cyclotomics );; v.name := "v";; gap> CH := Hecke( G, v ); Hecke(ComplexReflectionGroup(4),v) gap> Display( CharTable( CH ) ); H(G4)2 3 3 1 1 2 1 1 3 1 1 1 1 . 1 1
1a 2a 3a 3b 4a 6a 6b 2P 1a 1a 3b 3a 2a 3a 3b 3P 1a 2a 1a 1a 4a 2a 2a
phi_{1,0} 1 v^6 v v^2 v^3 v^2 v^10 phi_{1,4} 1 1 A /A 1 /A A phi_{1,8} 1 1 /A A 1 A /A phi_{2,1} 2 (-2)v^3 v+(E(3)) v^2+(E(3)^2) . (E(3))v (E(3)^2)v^5 phi_{2,3} 2 (-2)v^3 v+(E(3)^2) v^2+(E(3)) . (E(3)^2)v (E(3))v^5 phi_{2,5} 2 -2 -1 -1 . 1 1 phi_{3,2} 3 (3)v^2 v-1 v^2-1 -v . .
A = E(3) = (-1+ER(-3))/2 = b3
This function requires the package "chevie" (see RequirePackage).
Previous Up Top
Index
GAP 3.4.4