InductionTable( W1, W )
InductionTable computes the decomposition of the induced characters
from the subgroup W1 into irreducible characters of W. The rows
correspond to the characters of the parent group, the columns to those of
the subgroup. What is returned is actually a record with several
fields: scalar contains the induction table proper, and there is a
Display method. The other fields contain labeling information taken
from the character tables of W1 and W when it exists.
gap> W := Group( [ (1,2), (2,3), (3,4) ], () );
Group( (1,2), (2,3), (3,4) )
gap> H:=Subgroup( W, [ (1,2), (3,4) ] );
Subgroup( Group( (1,2), (2,3), (3,4) ), [ (1,2), (3,4) ] )
gap> W.name := "W";; H.name := "H";; # to avoid warnings
gap> Display( InductionTable( H, W ) );
tt | X.1 X.2 X.3 X.4
______________________________
X.1 tt | 1 . . .
X.2 tt | . . . 1
X.3 tt | 1 . . 1
X.4 tt | . 1 1 1
X.5 tt | 1 1 1 .
gap> W := CoxeterGroup( "G", 2 );;
gap> H := ReflectionSubgroup( W, [ 1, 4 ] );
ReflectionSubgroup(CoxeterGroup("G", 2), [ 1, 4 ])
gap> CartanName( H );
"A1x~A1"
gap> t := InductionTable( H, W );
InductionTable( ReflectionSubgroup(CoxeterGroup("G", 2),
[ 1, 4 ]), CoxeterGroup("G", 2))
gap> Display( t );
tt | 11,11 11,2 2,11 2,2
__________________________________________
phi_{1,0} tt | . . . 1
phi_{1,6} tt | 1 . . .
phi_{1,3}' tt | . 1 . .
phi_{1,3}'' tt | . . 1 .
phi_{2,1} tt | . 1 1 .
phi_{2,2} tt | 1 . . 1
If one does not want to see the whole induction table, one can specify
the characters of the subgroup and of the parent group by giving a second
argument to Display. This second argument is a record with optional
components charsGroup and charsSubgroup, to which one has to assign
the lists of rows and columns which should be printed.
gap> Display( t,rec( charsGroup := [5], charsSubgroup := [2,3] ) );
Induction from A1x~A1 into G2
tt | 11,2 2,11
______________________________
phi_{2,1} tt | 1 1
GAP 3.4.4