Extremal Lattices

Gabriele Nebe

RWTH Aachen University
Summerschool Quadratic Forms, June 2, 2023
RWTHAACHEN

Lattices, modular forms and sphere packings

$$
\theta=1+6 q^{2}+6 q^{6}+6 q^{8}+12 q^{14}+6 q^{18}+\ldots
$$

Lattices $\mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R}) / O_{n}(\mathbb{R})$

$\rightarrow n \in \mathbb{N},\left(\mathbb{R}^{n}, \cdot\right)$ Euclidean space

- $B=\left(b_{1}, \ldots, b_{n}\right)$ basis
- $L(B)=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}, 1 \leq i \leq n\right\}$ lattice $\mathrm{GL}_{n}(\mathbb{Z})$
- $G(B)=B^{t r} B$ Gram matrix
$O_{n}(\mathbb{R})$
- $L \cong M$ isometric \Leftrightarrow there is $f \in O_{n}(\mathbb{R})$ such that $f(L)=M$
\Leftrightarrow there are lattice basis B_{L} and B_{M} such that $G\left(B_{L}\right)=G\left(B_{M}\right)$.
$>L \sim M$ similar $\Leftrightarrow \exists B_{L}, B_{M}, a>0$ such that $G\left(B_{L}\right)=a G\left(B_{M}\right)$.

Density of associated lattice sphere packing

- measured by Hermite function γ.
- invariant under similarity

Voronoi around 1900

- Finitely many local extrema of density function
- local maxima: convexity condition
- used to find all densest lattices (up to dimension 8).

The density of a lattice

- Squared covolume of $L: \operatorname{det}\left(B_{L}\right)^{2}=: \operatorname{det}(L)$ determinant squared volumne of space needed for one sphere
- $\min (L):=\min \{\ell \cdot \ell \mid 0 \neq \ell \in L\}$ minimum
squared diameter of one sphere
- $\gamma(L):=\frac{\min (L)}{\operatorname{det}(L)^{1 / n}}$ Hermite function measures density
- $\gamma_{n}:=\max \left\{\gamma(L): L\right.$ lattice in $\left.\mathbb{R}^{n}\right\}$ Hermite constant

The densest lattices.

n	1	2	3	4	5	6	7	8	24
γ_{n}	1	1.15	1.26	1.41	1.52	1.67	1.81	2	4
L	\mathbb{A}_{1}	\mathbb{A}_{2}	\mathbb{A}_{3}	\mathbb{D}_{4}	\mathbb{D}_{5}	\mathbb{E}_{6}	\mathbb{E}_{7}	\mathbb{E}_{8}	Λ_{24}
loc. max.	1	1	1	2	3	6	30	2408	

The \mathbb{E}_{8}-lattice

n	1	2	3	4	5	6	7	8	24
L	\mathbb{A}_{1}	\mathbb{A}_{2}	\mathbb{A}_{3}	\mathbb{D}_{4}	\mathbb{D}_{5}	\mathbb{E}_{6}	\mathbb{E}_{7}	\mathbb{E}_{8}	Λ_{24}

In dimension $1, \ldots, 8$ all densest lattices are root lattices.

$$
G(B)=\left(\begin{array}{cccccccc}
2-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \\
& \operatorname{det}\left(\mathbb{E}_{8}\right)=1 \\
& \min \left(\mathbb{E}_{8}\right)=2 \\
& \gamma\left(\mathbb{E}_{8}\right)=2
\end{aligned}
$$

The \mathbb{E}_{8}-lattice

- $\mathbb{D}_{8}=\left\{\mathbf{x} \in \mathbb{Z}^{8} \mid \sum_{i=1}^{8} x_{i}\right.$ even $\}$
- $\mathbb{E}_{8}=\mathbb{D}_{8} \cup\left\{\left.\frac{1}{2}^{8}+\mathbf{x} \right\rvert\, \mathbf{x} \in \mathbb{D}_{8}\right\}$

Even unimodular lattices

\mathbb{E}_{8} and Λ_{24} are even unimodular lattices

Definition

- $L=L(B)$ lattice.
- $L^{\#}=L\left(B^{*}\right)=\left\{x \in \mathbb{R}^{n} \mid x \cdot \ell \in \mathbb{Z}\right.$ for all $\left.\ell \in L\right\}$ dual lattice.
- $\operatorname{det}(L) \operatorname{det}\left(L^{\#}\right)=1, G(B) G\left(B^{*}\right)=1$.
- L unimodular if $L=L^{\#}$.
- L even if $\ell \cdot \ell \in 2 \mathbb{Z}$ for all $\ell \in L$.
L unimodular $\Rightarrow \operatorname{det}(L)=1$ and $\gamma(L)=\min (L)$.
- Densest known lattices in dim. 8, 24, 48, 72: even unimodular
- Even unimodular lattices are regular integral quadratic forms.

Modular forms and theta series

Let L be an even unimodular lattice of dimension n

- $n \in 8 \mathbb{Z}$.
- The theta series of L

$$
\theta_{L}=\sum_{\ell \in L} q^{\ell \cdot \ell}=1+\sum_{k=\min (L)}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid \ell \cdot \ell=k\}|$.

- $q:=\exp (\pi i z)$ yields holomorphic function on the upper half plane
- θ_{L} is a modular form of weight $\frac{n}{2}$

$$
\theta_{L} \in \mathcal{M}_{\frac{n}{2}}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\mathbb{C}\left[E_{4}, \Delta\right]_{\frac{n}{2}}
$$

where $E_{4}=\theta_{\mathbb{E}_{8}}=1+240 q^{2}+\ldots$. Eisenstein series of weight 4

$$
\Delta=q^{2}-24 q^{4}+\ldots \text { cusp form of weight } 12
$$

Lattices and modular forms

lattices
$\bigcup_{n} \mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R}) / O_{n}(\mathbb{R})$
union of homogenous spaces
dimension n
arithmetic properties $\quad \Rightarrow$ upper bounds on density
modular forms

$$
\mathbb{C}\left[E_{4}, \Delta\right]
$$

finitely generated graded ring weight $n / 2$
invariance properties
triagonal basis

Extremal Lattices

Extremal modular form

Basis of $\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$:

$$
\left.\begin{array}{lcrl}
E_{4}^{k}= & 1+ & 240 k q^{2}+ & * q^{4}+ \\
q_{4}^{2-3} \Delta= & \ldots \\
E_{4}^{k-6} \Delta^{2}= & & & q^{4}+ \\
\vdots & & \ldots
\end{array}\right] \begin{aligned}
& \\
& E_{4}^{k-3 m_{k}} \Delta^{m_{k}}= \\
& \ldots
\end{aligned}
$$

where $m_{k}=\left\lfloor\frac{k}{3}\right\rfloor$.
$\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ contains a unique
$f^{(k)}:=1+0 q^{2}+0 q^{4}+\ldots+0 q^{2 m_{k}}+a\left(f^{(k)}\right) q^{2 m_{k}+2}+b\left(f^{(k)}\right) q^{2 m_{k}+4}+\ldots$
the extremal modular form of weight $4 k$.

$$
\begin{aligned}
& f^{(1)}=1+240 q^{2}+\ldots=\theta_{\mathbb{E}_{8}}, f^{(2)}=1+480 q^{2}+\ldots=\theta_{\mathbb{E}_{8}}^{2} \\
& f^{(3)}=1+196,560 q^{4}+\ldots=\theta_{\Lambda_{24}}, f^{(6)}=1+52,416,000 q^{6}+\ldots=\theta_{P_{48}} \\
& f^{(9)}=1+6,218,175,600 q^{8}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Extremal even unimodular lattices

$$
f^{(k)}:=1+0 q^{2}+0 q^{4}+\ldots+0 q^{2 m_{k}}+a\left(f^{(k)}\right) q^{2 m_{k}+2}+b\left(f^{(k)}\right) q^{2 m_{k}+4}+\ldots
$$

Theorem (Siegel, 1969)

$a\left(f^{(k)}\right)>0$ for all k and $b\left(f^{(k)}\right)<0$ for $k \geq 21000$.

Corollary

L even unimodular of dimension $n=8 k$ then

$$
\min (L) \leq 2+2\left\lfloor\frac{n}{24}\right\rfloor=2+2 m_{k}
$$

Lattices achieving equality are called extremal.
extremal even unimodular lattices

n	8	16	24	32	40	48	72	80
$\min (\mathrm{~L})$	2	2	4	4	4	6	8	8
number	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 4	≥ 1	≥ 4

Extremal lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{4}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{6}+\ldots=\theta_{P_{48}} . \\
& f^{(9)}=1+6,218,175,600 q^{8}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

$$
\operatorname{dim}(L)=24 k, \min (L)=2 k+2
$$

- Layers $\{\ell \in L \mid \ell \cdot \ell=$ const. $\}$ form spherical 11-designs.
- L is a local maximum of the density function γ.
- $k=1$: unique extremal lattice: Leech lattice Λ_{24}.
- Λ_{24} densest lattice of dimension 24 (Cohn, Kumar (2004)).
- Λ_{24} densest sphere packing (Viazowska et al (2016)).
- P_{48} and Γ are densest known lattices.
- \mathbb{E}_{8} densest lattice (Blichfeldt (1935))
- \mathbb{E}_{8} densest sphere packing (Viazowska (2016))

Turyn's construction

- Let L be an even unimodular lattice of dimension n .
- $Q(\ell):=\frac{1}{2} \ell \cdot \ell$ regular quadratic form.
- $M, N \leq L$ such that $M+N=L, M \cap N=2 L$,
- and $\left(M, \frac{1}{2} Q\right),\left(N, \frac{1}{2} Q\right)$ even unimodular.
- Such a pair (M, N) is called a polarisation of L.

$$
\mathcal{L}(M, N)=\{(m+a, m+b, m+c) \mid m \in M, a, b, c \in N, a+b+c \in 2 L\}
$$

- Define $\tilde{Q}: \mathcal{L}(M, N) \rightarrow \mathbb{Z}$,

$$
\tilde{Q}\left(y_{1}, y_{2}, y_{3}\right):=\frac{1}{2}\left(Q\left(y_{1}\right)+Q\left(y_{2}\right)+Q\left(y_{3}\right)\right) .
$$

- $(\mathcal{L}(M, N), \tilde{Q})$ is an even unimodular lattice of dimension $3 n$.
$(m+a, m+b, m+c)$ in $\quad \begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N) & a, b, c \text { in } N \\ \cdot 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$
Let $2 d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)$
Then $2\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N)) \leq 4 d$.
Proof:
- $v=(a, 0,0) a=2 \ell \in 2 L$ with $\frac{1}{2} Q(2 \ell)=2 Q(\ell) \geq 2 d \Rightarrow v \cdot v \geq 4 d$.
- $v=(a, b, 0) a, b \in N$ with $\frac{1}{2} Q(a)+\frac{1}{2} Q(b) \geq 2 d \Rightarrow v \cdot v \geq 4 d$.
- $v=(a, b, c)$ then $\frac{1}{2}(Q(a)+Q(b)+Q(c)) \geq \frac{3}{2} d \Rightarrow v \cdot v \geq 2\left\lceil\frac{3 d}{2}\right\rceil$.
$(a, b, c) \in \mathcal{L}(M, N)$ with $\tilde{Q}((a, b, c))<4 d \Rightarrow a, b, c \neq 0$.
$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$
$2 d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)$
Then $2\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N)) \leq 4 d$.

Theorem (Lepowsky, Meurman; Elkies, Gross)
Let $(L, Q) \cong \mathbb{E}_{8}$ (so $d=1$). Then for any polarisation $\min (\mathcal{L}(M, N)) \geq 4$, so $\mathcal{L}(M, N) \cong \Lambda_{24}$ is the Leech lattice.

72-dimensional lattices from Leech (Griess, 2010)
If $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$ then $6 \leq \min (\mathcal{L}(M, N)) \leq 8$.
Enumerate $A_{6}:=\{\ell \in \mathcal{L}(M, N) \mid \ell \cdot \ell=6\}$: computation in Λ_{24}.

How to find polarisations

Hermitian polarisations

- Take $\alpha \in \operatorname{End}(L)$ such that $\alpha^{2}-\alpha+2=0$
- so $\mathbb{Z}[\alpha]=$ ring of integers in $\mathbb{Q}[\sqrt{-7}]$
- and $\alpha \bar{\alpha}=2$.
- Then $M:=\alpha L, N:=\bar{\alpha} L$ defines a polarisation of L such that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right)$.

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine $\mathbb{Z}[\alpha]$-structures P_{i} of the Leech lattice Λ_{24}.

i	$\mathrm{Aut}_{\mathbb{Z}[\alpha]}\left(P_{i}\right)$	$\left\|A_{6}\right\|$
1	$\mathrm{SL}_{2}(25)$	0
2	$2 . A_{6} \times D_{8}$	$2 \cdot 20,160$
3	$\mathrm{SL}_{2}(13) .2$	$2 \cdot 52,416$
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
6	$2^{9} 3^{3}$	$2 \cdot 177,408$
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2 \cdot 306,432$
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2 \cdot 504,000$
9	$2 . J_{2} \cdot 2$	$2 \cdot 1,209,600$

Theorem (N. 2010) $\Gamma:=\mathcal{L}\left(\alpha P_{1}, \bar{\alpha} P_{1}\right)$ is extremal.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 6$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $v \cdot v=8$.

Proof: L is an even unimodular lattice of minimum ≥ 6, so its theta series is

$$
\begin{aligned}
& \theta_{L}=1+a_{6} q^{6}+a_{8} q^{8}+\ldots=f^{(9)}+a_{6} \Delta^{3} . \\
& f^{(9)}=1+\frac{6}{6}, 218,175,600 q^{8}+\ldots \\
& \Delta^{3}=1 q^{6} \quad-72 q^{8}+\ldots
\end{aligned}
$$

So $a_{8}=6,218,175,600-72 a_{6} \geq 6,218,175,600$ if and only if $a_{6}=0$.

How to obtain all polarisations

A rough estimate shows that there are about 10^{10} orbits of $\operatorname{Aut}\left(\Lambda_{24}\right)$ on the set of polarisations (M, N) such that $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$.

Theorem (Richard Parker, N.) (2014)

Unique orbit of polarisations (M, N) for which $\mathcal{L}(M, N)$ is extremal.

The extremal 72-dimensional lattice Γ

- Γ is an extremal even unimodular lattice of dimension 72.
- Have at least 3 independent proofs of extremality: Using Turyn's construction (N.), enumerating all norm 8 vectors (Stehlé, Watkins), using the Hermitian tensor product (Coulangeon, N.).
- Γ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Γ is the only extremal lattice obtained from the Leech lattice using Turyn's construction. (Parker, N.)

