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QFs in number theory { what can we study?

General question: Given a quadratic form Q over a ring R,
determine which elements of R it represents.

▶ Very hard even for R = Z.
▶ For Q (and number �elds in general) solved by the

Hasse{Minkowski theorem = local{global principle.

Lagrange, 1770: Every nonnegative element of Z can be

written as a sum of four squares.

Two types of generalisations:

▶ Replacing x2 + y2 + z2 + w2 by another quadratic form →
universal forms.

▶ If we replace Z by R, what should replace \nonnegative
element" and \four"? → this talk.
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Maa�, 1941: Every totally nonnegative element of Z[1+
√
5

2 ]
can be written as a sum of three squares.

Can 1+
√
5

2 be written as a sum of squares?

Suppose that
∑

(ai + bi
√
5)2 = 1+

√
5

2 for ai , bi ∈ Q.

Then
∑

(ai − bi
√
5)2 = 1−

√
5

2 < 0.

We call a+ b
√
5 ∈ Q

(√
5
)
totally nonnegative if a+ b

√
5 ≥ 0

and a− b
√
5 ≥ 0.

But: 1+
√
5

2 =
(
1+

√
5

2

)2
+ i

2 is a sum of squares in Q(1+
√
5

2 , i).
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Number �elds

A number �eld is a �eld K with [K : Q] is �nite. (We can

always write K = Q(α) for an algebraic number α.)

We call K totally real if all embeddings K ↪→ C actually map
K ↪→ R. (Q(α) is totally real if all conjugates of α are real.)

▶ Examples: Q, Q
(√

3
)
; non-examples: Q(i), Q( 3

√
2)

If in all embeddings σ : K ↪→ R we have σ(α) > 0, then α is
totally positive, denoted by α ≻ 0.

▶ Sums of squares are totally positive.
▶ The set K+ of tot. positive elements is closed under addition

and multiplication.

The ring of integers of K is

OK = {α ∈ K | α is a root of a monic Z-polynomial}.
An order is any subring O ⊆ OK with fraction �eld K . Every

order has an integral basis { it is a free Z-module of rank

[K : Q].

J. Krásenský Sums of integral squares in number �elds



In Z = OQ, every (totally) positive integer is a sum of four

squares.

In Z[1+
√
5

2 ] = OQ(
√
5), every totally positive integer is a sum

of three squares.

Siegel, 1945: For a totally real number �eld K ̸= Q,Q
(√

5
)
,

not all totally positive integers are sums of integral squares.

▶ Hence, universal forms and sums of squares are distinct topics.
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De�nitions

For a ring R, we put
∑

R2 =
{∑N

i=1 α
2
i | N ∈ N, αi ∈ R

}
.

The length of an element:

ℓ(α) = \smallest N such that α =
∑N

i=1 α
2
i ".

▶ ℓ(7) = 4 in Z,
▶ ℓ(−1) = ∞ in Z,
▶ ℓ(−1) = 1 in Z[i].

The Pythagoras number: P(R) = sup
α∈

∑
R2

ℓ(α).

P(Z) = 4,P(Z[1+
√
5

2 ]) = 3.

P(C) = 1,P(R) = 1,P(Q) = 4.

P(Z[x ]) = ∞.
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Local conditions

To determine whether a quadratic form (over a number �eld
or an order) represents a given element, we can use certain
necessary conditions called \local conditions". Examples:

▶ Over Q, x2 + y2 is always positive. (A \real condition".)
▶ Over Q, v3(x

2 + y2) is always even. (Condition \modulo p".)

For Q, they are expressed in terms of the embedding Q ↪→ R
and the embeddings Q ↪→ Qp for all primes p.

For a number �eld K , the local conditions use all completions

of K , i.e. all embeddings K ↪→ C and all completions Kp,

where p is a prime ideal.

They may seem scary, but in fact the local work is quite easy.

A quadratic form \satis�es the local{global principle" if these

local conditions are su�cient.

For example, over Z, this holds for the forms x2 + y2

(two-squares theorem), x2 + y2 + z2 (three-squares theorem)

and x2 + y2 + z2 + w2 (four-squares theorem).
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The simple cases

Hasse{Minkowski theorem: Over a number �eld, the

local{global principle holds for every quadratic form.

Corollary: P(K ) ≤ 4 (and explicit values are known).

▶ This is just because the same is true for every local �eld:
Kp,R,C.

Theory of spinor genera: If K is not tot. real, then local{global

principle holds for forms over OK in at least four variables.

Corollary: P(OK ) ≤ 4 unless K is totally real.

Similarly: P(O) ≤ 5 unless K is totally real.

But what about P(OK ) for totally real K?

Also, the local{global principle provides a simple description of∑
K 2 resp.

∑
O2. What can be said about it if local{global

principle fails?
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Two partial converses:

Theorem (Hsia{Kitaoka{Kneser, 1978)

Let Q be a quadratic form over OK in at least �ve variables.

There is a bound c(Q,K ) such that the local{global principle

holds for representations of all α with N(α) > c(Q,K ).

Corollary: P(OK ) is �nite even when K totally real.

Corollary: In every OK there is a universal quadratic form.

Unfortunately, the bound is very impractical.
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Two partial converses:

Theorem

Let Q be a quadratic form over OK . If h(Q) = 1 (the class

number), then the local{global principle holds for Q.

The computation of h(Q) can be done in Magma, OSCAR, . . .

This lies behind the 2-, 3- and 4-square theorems over Z and

behind P(OQ(
√
5)) = 3.

Dzewas(?): h(I3) = h(x2 + y2 + z2) = 1 over OK = Z[
√
2].

Thus P(OK ) = 3 and
∑

O2
K is described by local conditions.

(Why is 2+
√
2 not a sum of squares?)

Unfortunately, h(I3) = 1 only for six totally real �elds.

Theorem (K., 2022)

Let K = Q(ζ7 + ζ−1
7 ). Then:

P(OK ) = 4.∑
O2

K = {α ∈ OK | α ≽ 0,N(α) ̸= 7}.
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Theorem (K., 2022)

Let K = Q(ζ7 + ζ−1
7 ). Then:

P(OK ) = 4.∑
O2

K = {α ∈ OK | α ≽ 0,N(α) ̸= 7}.

Steps of the proof:

h(I3) = 1. Check local conditions for representations as sums
of three squares.

▶ These are total positivity and a condition in (OK )(2).

If α =
∑N

i=1 α
2
i , show that either α or α− α2

i satis�es these

conditions for some i .

Hence this α− α2
i is a sum of three squares.

The second claim exploits the characterisation of additively

indecomposable integers in simplest cubic �elds by Magda

Tinková and Ví»a Kala.
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About the set
∑

O2

In any ring R, a sum of squares is a square modulo 2R.

▶ Thus 2+
√
2 /∈

∑
O2

Q(
√
2)
.

The only local conditions for α ∈ O to be a sum of squares

are α ≽ 0 and α = □ (mod 2O).

Under these conditions, α is locally a sum of four squares.

Conjecture (R. Scharlau, 1979): There are only �nitely many
tot. real orders where

∑
O2 contains all such numbers.

▶ Only six such orders are known:
OK for K = Q;Q(

√
n) for n = 2, 3, 5; Q(

√
2,
√
5); Q(ζ20+ζ−1

20
).

▶ Local{global principle fails spectacularly. (Not even tons of
variables rescue the situation!)

▶ On the other hand, there are only �nitely many exceptions up
to multiplication by units. (You have already heard the core of
the argument.)
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Theorem (Peters; Cohn and Pall; Dzewas; Kneser; Maa�)

Let O be an order in a real quadratic number �eld. Then

P(O) =


3 for O = Z[

√
2], Z[

√
3] and Z

[
1+

√
5

2

]
,

4 for O = Z[
√
6], Z[

√
7] and nonmaximal order Z[

√
5],

5 otherwise.

The maximal length is attained for example by:

Length 3: 1+
√
2
2
+(1+

√
2)2, 2+(2+

√
3)2, 2+

(
1+

√
5

2

)2
;

Length 4: 3+ (1+
√
6)2, 3+ (1+

√
7)2, 3+ (1+

√
5)2;

Length 5: 3+
(
1+

√
13

2

)2
+
(
1+ 1+

√
13

2

)2
in Z

[
1+

√
13

2

]
; in all

the remaining cases 7+ (1+ f
√
n)2 or 7+

(
f 1+

√
n

2

)2
.

Together with P(O) ≤ 5 for not-totally-real orders, this lead

Peters to conjecture P(O) ≤ 5 for all number �eld orders.

J. Krásenský Sums of integral squares in number �elds



Theorem (R. Scharlau, 1980)

There are totally real number �elds with arbitrarily large P(OK ).

The proof uses multiquadratic �elds Q(
√
n1,

√
n2, . . . ,

√
nk) for

pairwise coprime square-free nj .

Theorem (Kala{Yatsyna, 2021)

There exists a function g(d) such that for every �eld K with

d = [K : Q] and every order O ⊆ OK one has

P(O) ≤ g(d).

In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7

for quartic orders.

It seems that typically, this upper bound is the correct value:

▶ For real quadratic orders, there are only six exceptions.
▶ And there is the next slide.
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Let ρa be a root of x3 − ax2 − (a+ 3)x − 1 for an integer a ≥ −1.

Then K (ρa) is called a simplest cubic �eld.

Theorem (Tinková, 2023+)

Let K = Q(ρa) for a ≥ 2. Then P(Z[ρa]) = 6.

Theorem (K.{Ra¹ka{Sgallová, 2022)

There are in�nitely many biquadratic �elds K with P(OK ) = 7:

In particular, it holds for every K = Q(
√
p,
√
q) where p, q > 7 are

coprime square-free integers, p ≡ 2, q ≡ 3 (mod 4).

Theorem (K., 2023+)

Every real biquadratic �eld K contains in�nitely many orders O
with P(O) = 7.
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Lower bounds

P(O) ≥ P(K ) = 4 for any order O in number �eld K of odd

degree. (By Springer's theorem, 7 ̸= □+□+□ in K .)

For a given totally real order O, one can just pick any

α ∈
∑

O2; ℓ(α) is a lower bound on P(O).
E.g. P(Z) ≥ ℓ(7) = 4.

Computing the length of a given α is straightforward.

For real biquadratic �elds K , Ra¹ka implemented a systematic

search for elements of large length in OK :

https://github.com/raskama/number-theory/tree/

main/biquadratic

The mentioned results on quadratic, cubic and biquadratic

�elds depend on �nding a suitable α in every such order.
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Theorem (K.{Ra¹ka{Sgallová, 2022)

Let K be a real biquadratic �eld. Then P(OK ) ≥ 5 unless K
is one of at most seven exceptions.

Fix a square-free positive n > 7. Then P(OK ) ≥ 6 for all but

�nitely many real biquadratic �elds K ∋
√
n.

But: Let K be a biquadratic �eld containing
√
5. Then

P(OK ) ≤ 5.

Conjecture

Let K be a real biquadratic �eld.

1 If K contains
√
2 or

√
5, then P(OK ) ≤ 5.

(Proof completed by He and Hu, 2022+.)

2 If K contains none of
√
2 and

√
5, then P(OK ) ≥ 6 holds

with �nitely many exceptions.

3 \There are indeed exceptions.": Among the real biq. �elds,

there are three with P(OK ) = 3 and four with P(OK ) = 4.
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Theorem (K.{Scharlau, 2023+)

Let K = Q(
√
2,
√
5) and L = Q(ζ20 + ζ−1

20 ) = Q
(√

5+
√
5

2

)
. Then

P(OK ) = P(OL) = 3.

The proof is based on examining the other forms in the genus of

I3, see next slide.

Conjecture

There are precisely three other totally real quartic �elds K with

P(OK ) = 3, namely Q(
√
2,
√
3), Q(

√
3,
√
5) and Q(ζ16 + ζ−1

16 ).
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Sketch of the proof

The genus of I3 over K = Q(
√
2,
√
5) consists of two equivalence

classes, with representatives I3 and Q3, where

Q3(x , y , z) = 2x2 + 2y2 + 3z2 + 2φxy − 2
√
2xz + 2

√
2φyz

(φ = 1+
√
5

2 and φ = 1−
√
5

2 ). Thus:

Proposition

If α ∈ OK is locally a sum of squares, then it is represented either

by I3 or by Q3.

It remains to show the following:

Lemma

If α ∈ OK is represented by Q3, then it is also represented by I3.
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Sketch of the proof

Proof.

Q3(a, b, c) =

=
(
1√
2
a
)2
+
( φ√

2
a+ φc

)2
+
( φ√

2
a+

√
2b + φc

)2
=

(
1√
2
b + c

)2
+

( φ√
2
b + c

)2
+
(√

2a+ φ√
2
b − c

)2
=

(
1√
2
(a+ b)− φc

)2
+

( φ√
2
(a− b)− φc

)2
+
( φ√

2
(a+ b)

)2
=

(
1√
2
(a− φb)− φc

)2
+
(
1√
2
(−φa+ φb)

)2
+
(
1√
2
(φa+ b)− φc

)2
=

(
1√
2
(a+ φb)− c

)2
+
(
1√
2
(φa− b)− c

)2
+
(
1√
2
(φa− φb)− c

)2
.

The squares in the �rst equality are integral i� a ≡ 0 (all the

congruences are modulo
√
2), in the second i� b ≡ 0, in the third

i� a ≡ b, in the fourth i� a ≡ φb and in the �fth i� a ≡ φb.

The proof for the other �eld Q(ζ20 + ζ−1
20 ) is similar.
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A proper list of references can be found in the following two papers:

J. Krásenský, M. Ra¹ka and E. Sgallová, Pythagoras numbers

of orders in biquadratic �elds, Expo. Math. 40, 1181{1228

(2022). Available at arXiv:2105.08860.

J. Krásenský and P. Yatsyna, On quadratic Waring's problem

in totally real number �elds, Proc. Amer. Math. Soc. 151,

1471{1485 (2023). Available at arXiv:2112.15243.

If you're interested, I encourage you to read the introductions.

Or contact me at krasensky(at)seznam(dot)cz.
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Thank you for your attention (and for all your questions)!
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Representation of QFs by QFs { informally

A quadratic form φ is represented by a quadratic form Q over

the same ring if we obtain φ from Q by plugging in suitable

linear forms.

Example: φ(x , y) = 3x2 + 4xy + 4y2 is represented by the

sum-of-three-squares form I3: x
2 + x2 + (x + 2y)2.

Most de�nitions and some theorems from previous slides (for

repr. of numbers by forms) can be adapted to this setting.

Mordell, 1930s: Every binary QF over Z which is a sum of

squares of linear forms (i.e. represented by some IN) is already
a sum of 5 squares.

New Waring's problem studies precisely these g -invariants:

De�nition

Let R be a ring. Denote by Σk
R the set of all k-ary quadratic forms

which are represented by IN for some (possibly large) N. We put

gR(k) = min{n ∈ N | Every form in Σk
R is represented by In}.
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THE upper bound: For O ⊂ K with d = [K : Q] we have

P(O) ≤ gZ(d).

P(R) = gR(1).

The values are known for R number �eld and (almost) for R
not-totally-real order.

Otherwise only:

▶ gZ(k) = k + 3 for k = 1, . . . , 5 (Mordell, Ko, 1930s) but
gZ(6) = 10 (Kim, Oh 1997).

▶ gOQ(
√

5)
(2) = 5 (Sasaki, 1993), gOQ(

√
2)
= 5 (He, Hu, 2022+).

▶ GOK
(2) = 7 for all other real quadratic �elds K other than

Q
(√

3
)
(K., Yatsyna, 2022).

(Here GR is the \correctly de�ned" gR . It matches gR if R is a
UFD.)

P(OK ) ≤ GOF
(d) for [K : F ] = d (K., Yatsyna, 2022).
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Application for construction of universal forms

1) Via indecomposables

There are only �nitely many indecomposable elements up to

multiplication by squares. Let's say that every indecomposable

element of OK is γ□, where γ ∈ {γ1, . . . , γn}.

Proposition

There exists a universal quadratic form over K with nP(OK )
elements.

Proof.

Every totally positive element can be written as a �nite sum

γ1□+ γ1□ · · ·+ γ1□+ γ2□+ · · · ,

so it can be represented by the form

γ1IP(OK ) ⊥ . . . ⊥ γnIP(OK ).
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2) Via geometry of numbers

Theorem (Kala{Yatsyna)

Let K be a totally real number �eld with discriminant ∆. If

α ∈ OK is totally positive element N(α) > ∆, then there exists

β ∈ OK such that α− β2 is totally positive. (In particular, α is not

indecomposable.)

This leads to a simple construction of a universal form:

Proposition

Let Q be a quadratic form which represents all totally positive

elements of norm at most ∆. Then Q ⊥ IP(OK ) is universal.
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