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QFs in number theory — what can we study?

@ General question: Given a quadratic form @ over a ring R,
determine which elements of R it represents.

» Very hard even for R = Z.
» For @ (and number fields in general) solved by the
Hasse—Minkowski theorem = local-global principle.
o Lagrange, 1770: Every nonnegative element of Z can be
written as a sum of four squares.
@ Two types of generalisations:
» Replacing x? + y? + z% + w? by another quadratic form —
universal forms.
» If we replace Z by R, what should replace “nonnegative
element” and “four”? — this talk.
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MaaB, 1941: Every totally nonnegative element of Z[#]

can be written as a sum of three squares.

Can 12—‘/5 be written as a sum of squares?

Suppose that > (a; 4+ bj\/5)? = % for a;, b € Q.

Then > (a; — bj/5)? = % <0.

We call a+ bV/5 € Q(\/g) totally nonnegative if a + bv5 >0
and a — by/5 > 0.

But: % = (1+2—‘/‘F’)2 +i2 is a sum of squares in Q(%,i).

(]
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Number fields

o A number field is a field K with [K : Q] is finite. (We can
always write K = Q(«) for an algebraic number «.)
o We call K totally real if all embeddings K — C actually map
K — R. (Q(«) is totally real if all conjugates of « are real.)
» Examples: Q, Q(v/3); non-examples: Q(i), Q(v/2)
e If in all embeddings 0 : K < R we have o(«) > 0, then « is
totally positive, denoted by a > 0.
» Sums of squares are totally positive.
» The set K* of tot. positive elements is closed under addition
and multiplication.
@ The ring of integers of K is
Ok = {a € K| ais a root of a monic Z-polynomial}.
@ An order is any subring O C Ok with fraction field K. Every
order has an integral basis — it is a free Z-module of rank

(K : Q.

J. Krésensky Sums of integral squares in number fields



o In Z = O, every (totally) positive integer is a sum of four
squares.

@ In Z[1+2\/§] = OQ(\/E)' every totally positive integer is a sum

of three squares.

o Siegel, 1945: For a totally real number field K # Q,Q(\/g),
not all totally positive integers are sums of integral squares.

» Hence, universal forms and sums of squares are distinct topics.
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e For aring R, we put Y. R? = {Z, 102 | NeN,aj € R}.

@ The length of an element:
{(a) = “smallest N such that « = SN 2.
» U7)=4inZ,
> ((~1) =00 in Z,
» ((—1) =1in Z[i].
e The Pythagoras number.  P(R) = sup /{(«).
aEd R?
o P(Z) = 4, P(Z[*5%)) =
e P(C)=1,P(R)=1,P(Q

P(zlx]) =

3.
)=
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Local conditions

To determine whether a quadratic form (over a number field
or an order) represents a given element, we can use certain
necessary conditions called “local conditions”. Examples:

» Over Q, x? + y? is always positive. (A “real condition” )

» Over Q, v3(x? + y?) is always even. (Condition “modulo p".)
For QQ, they are expressed in terms of the embedding Q — R
and the embeddings Q — Q,, for all primes p.

For a number field K, the local conditions use all completions
of K, i.e. all embeddings K < C and all completions K,
where p is a prime ideal.

They may seem scary, but in fact the local work is quite easy.

A quadratic form “satisfies the local-global principle” if these
local conditions are sufficient.

For example, over Z, this holds for the forms x2 + y2
(two-squares theorem), x? 4 y? + z? (three-squares theorem)
and x? 4 y? 4 z% + w? (four-squares theorem).
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The simple cases

Hasse—Minkowski theorem: Over a number field, the
local—global principle holds for every quadratic form.
Corollary: P(K) < 4 (and explicit values are known).

» This is just because the same is true for every local field:

Ky, R, C.

Theory of spinor genera: If K is not tot. real, then local-global
principle holds for forms over Ok in at least four variables.
Corollary: P(Ok) < 4 unless K is totally real.
Similarly: P(O) <5 unless K is totally real.
But what about P(Ok) for totally real K?
Also, the local—global principle provides a simple description of
> K? resp. Y 02, What can be said about it if local-global
principle fails?
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Two partial converses:

Theorem (Hsia—Kitaoka—Kneser, 1978)

Let Q be a quadratic form over Ok in at least five variables.
There is a bound c(Q, K) such that the local-global principle
holds for representations of all o with N(«) > ¢(Q, K).

e Corollary: P(Ok) is finite even when K totally real.
o Corollary: In every Ok there is a universal quadratic form.

@ Unfortunately, the bound is very impractical.
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Two partial converses:

Let Q be a quadratic form over Ok. If h(Q) =1 (the class
number), then the local-global principle holds for Q.

@ The computation of h(Q) can be done in Magma, OSCAR, ...

@ This lies behind the 2-, 3- and 4-square theorems over Z and
behind P((’)Q(\/g)) = 3.

o Dzewas(?): h(l3) = h(x® + y? + 2z2) = 1 over Ok = Z[V2].
Thus P(Ok) = 3 and > 0% is described by local conditions.
(Why is 2 + /2 not a sum of squares?)

e Unfortunately, h(/3) = 1 only for six totally real fields.

Theorem (K., 2022)

Let K= Q(¢7 + (1), Then:
e P(Ok) =4
o > 0% ={a€Ok|ax0,N(a)#T}.
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Theorem (K., 2022)

Let K= Q(¢7 + (1), Then:
e P(Ok) =4
0 Y 0% ={a€Ok|ax=0,Na)#T}.

Steps of the proof:
@ h(h) = 1. Check local conditions for representations as sums
of three squares.
» These are total positivity and a condition in (Ok)(2).

o If = Z,N:1 a2, show that either a or o — o satisfies these

conditions for some i.
2

i
@ The second claim exploits the characterisation of additively
indecomposable integers in simplest cubic fields by Magda

Tinkova and Vita Kala.
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About the set Y O?

@ In any ring R, a sum of squares is a square modulo 2R.
> Thus2+\f¢ZOQ(\f

@ The only local conditions for & € O to be a sum of squares
are o = 0 and a = (mod 20).

@ Under these conditions, « is locally a sum of four squares.

@ Conjecture (R. Scharlau, 1979): There are only finitely many
tot. real orders where Y~ 02 contains all such numbers.

» Only six such orders are known:
Ok for K = Q; Q(y/n) for n =2,3,5; Q(v2,v/5); Q(Cao+Ca0t)-

» Local—global principle fails spectacularly. (Not even tons of
variables rescue the situation!)

» On the other hand, there are only finitely many exceptions up
to multiplication by units. (You have already heard the core of
the argument.)
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Theorem (Peters; Cohn and Pall; Dzewas; Kneser; MaaB)

Let O be an order in a real quadratic number field. Then

3 for O = Z[v2|, Z[V3] and Z[1£/3],
P(O) =<4 for O =7Z[\V6], Z[\VT] and nonmaximal order Z[\/5],
5 otherwise.

The maximal length is attained for example by:

o Length3: 142 +(1+v2)2, 2+ (2+V3)?, 2+ (255)%
o Length 4: 3+ (1+6)?, 34+ (14+v7)% 3+ (1++5)%
o Length 5: 3+ (L5/13)2 4 (14 Ly18)2 j 7[1V13] .y o

14++/n\2
the remaining cases 7+ (1 + f1/n)? or 7+ (f=5")".

Together with P(Q) < 5 for not-totally-real orders, this lead
Peters to conjecture P(O) < 5 for all number field orders.
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Theorem (R. Scharlau, 1980)
There are totally real number fields with arbitrarily large P(Ok).

The proof uses multiquadratic fields Q(,/n1, /2, ..., /nk) for

pairwise coprime square-free n;.

Theorem (Kala—Yatsyna, 2021)

There exists a function g(d) such that for every field K with
d = [K : Q] and every order O C Ok one has

P(0) < g(d).

@ In particular, P(O) <5 for quadratic, < 6 for cubic and <7
for quartic orders.

@ It seems that typically, this upper bound is the correct value:

» For real quadratic orders, there are only six exceptions.
» And there is the next slide.
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Let p, be a root of x3 — ax? — (a+3)x — 1 for an integer 2 > —1.
Then K(pa,) is called a simplest cubic field.

Theorem (Tinkovd, 2023+)

Let K = Q(p,) for a> 2. Then P(Z[p,]) = 6.

Theorem (K.—Raska—Sgallovd, 2022)

There are infinitely many biquadratic fields K with P(Ok) = T7:
In particular, it holds for every K = Q(\/p, \/q) where p,q > 7 are
coprime square-free integers, p =2,q9 = 3 (mod 4).

Theorem (K., 2023+)

Every real biquadratic field K contains infinitely many orders O
with P(O) =T.
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P(O) > P(K) = 4 for any order O in number field K of odd
degree. (By Springer’s theorem, 7 A0+ 0+ O in K.)

e For a given totally real order O, one can just pick any
a € > 0?% ((a) is a lower bound on P(O).
E.g. P(Z) > ¢(7) = 4.

o Computing the length of a given « is straightforward.

@ For real biquadratic fields K, Raska implemented a systematic
search for elements of large length in Ok:
https://github.com/raskama/number-theory/tree/
main/biquadratic

@ The mentioned results on quadratic, cubic and biquadratic
fields depend on finding a suitable « in every such order.
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Theorem (K.—Raska—Sgallovd, 2022)

o Let K be a real biquadratic field. Then P(Ok) > 5 unless K
is one of at most seven exceptions.

e Fix a square-free positive n > 7. Then P(Ok) > 6 for all but
finitely many real biquadratic fields K > /n.

@ But: Let K be a biquadratic field containing V5. Then
P(Ok) < 5.

Let K be a real biquadratic field.

@ If K contains v/2 or v/5, then P(Ok) < 5.
(Proof completed by He and Hu, 2022+.)

@ If K contains none of /2 and /5, then P(Ok) > 6 holds
with finitely many exceptions.

© “There are indeed exceptions.”: Among the real biq. fields,
there are three with P(Ok) = 3 and four with P(Ok) = 4.
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Theorem (K.-Scharlau, 2023+)

Let K = Q(v2,V/5) and L = Q(Goo + (') = Q(y/ %38 ). Then

P(Ok) =P(O) =3.

The proof is based on examining the other forms in the genus of
I3, see next slide.

There are precisely three other totally real quartic fields K with

P(Ok) = 3, namely Q(v2,v3), Q(v/3,v5) and Q(Ci6 + (6')-
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Sketch of the proof

The genus of /3 over K = Q(v/2,1/5) consists of two equivalence
classes, with representatives I3 and Q3, where

Q(x,y,z) = 2x° + 2y? + 32% + 25xy — 2V2xz + 2V 2¢pyz

Proposition

If & € Ok is locally a sum of squares, then it is represented either
by /5 or by Qs.

It remains to show the following:

If a € Ok is represented by Qs, then it is also represented by Is.
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Sketch of the proof

Q3(37 b7 C) =

= (553) + (Ha+Pc) + (Fa+ V2b+ pc)

= (Lb+cf + (Sb+c)f + (V2a+ Zb—cf

_\2
= (J3(a+b) — )" + (F(a— b) — pc ) (G2 + )
2
= (Z5(a — ¢b) — pc) +(Z5(—pa+ Bb))*+(Z5(@a + b) — pc)’
_ 2 2 2

= (%(a +@b) —¢) +(ﬁ(gpa —b)—c¢) +(%(<pa — ¢b) —c)’.
The squares in the first equality are integral iff a =0 (all the
congruences are modulo v/2), in the second iff b = 0, in the third
iff a = b, in the fourth iff a = @b and in the fifth iff a = pb. Ol

The proof for the other field Q(Cao + Cyg') is similar.



A proper list of references can be found in the following two papers:

[§ J. Krdsensky, M. Raéka and E. Sgallovd, Pythagoras numbers
of orders in biquadratic fields, Expo. Math. 40, 1181-1228
(2022). Available at arXiv:2105.08860.

[§ J. Krédsensky and P. Yatsyna, On quadratic Waring's problem
in totally real number fields, Proc. Amer. Math. Soc. 151,
1471-1485 (2023). Available at arXiv:2112.15243.

If you're interested, | encourage you to read the introductions.
Or contact me at krasensky(at)seznam(dot)cz.
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Thank you for your attention (and for all your questions)!
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Representation of QFs by QFs — informally

o A quadratic form ¢ is represented by a quadratic form Q over
the same ring if we obtain ¢ from Q by plugging in suitable
linear forms.

e Example: o(x,y) = 3x% + 4xy + 4y? is represented by the
sum-of-three-squares form f5: x? + x? + (x + 2y)2.

@ Most definitions and some theorems from previous slides (for
repr. of numbers by forms) can be adapted to this setting.

o Mordell, 1930s: Every binary QF over Z which is a sum of
squares of linear forms (i.e. represented by some ly) is already
a sum of 5 squares.

o New Waring's problem studies precisely these g-invariants:

Definition

Let R be a ring. Denote by Z’,‘? the set of all k-ary quadratic forms
which are represented by Iy for some (possibly large) N. We put

gr(k) = min{n € N | Every form in X} is represented by /,}.




e THE upper bound: For O C K with d = [K : Q] we have

P(0) < gz(d).
e P(R) = gr(1).
@ The values are known for R number field and (almost) for R
not-totally-real order.
o Otherwise only:
> gz(k)=k+3for k=1,...,5 (Mordell, Ko, 1930s) but
g2(6) = 10 (Kim, Oh 1997).
> 80,5 (2) =5 (Sasaki, 1993), go, , =5 (He, Hu, 2022+).
» Gp,(2) =7 for all other real quadratic fields K other than
Q(V3) (K., Yatsyna, 2022).
(Here Gpg is the “correctly defined” gg. It matches gg if R is a
UFD.)

® P(Ok) < Go,(d) for [K : F] =d (K., Yatsyna, 2022).
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Application for construction of universal forms

1) Via indecomposables

There are only finitely many indecomposable elements up to
multiplication by squares. Let's say that every indecomposable
element of Ok is v, where v € {m1,...,7n}.

Proposition

There exists a universal quadratic form over K with nP(Ok)
elements.

Every totally positive element can be written as a finite sum
nO+xnb---+ynO+x0O+---,
so it can be represented by the form

Nipok) L - L Ynlpog)-
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2) Via geometry of numbers

Theorem (Kala—Yatsyna)

Let K be a totally real number field with discriminant A. If

a € Ok is totally positive element N(«) > A, then there exists

B € Ok such that o — 32 is totally positive. (In particular, o is not
indecomposable.)

This leads to a simple construction of a universal form:

Proposition

Let @ be a quadratic form which represents all totally positive
elements of norm at most A. Then Q L Ip(, is universal.
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