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K will usually denote a principal ideal domain, quite often a field. When it simplifies
the proofs we assume that 2 ∈ K× is a unit. V is a finite dimensional free module over
K. For more general Dedekind domains, “free” needs to be replaced by “projective”,
and some numbers, like the determinant, should be understood as ideals.

1 Symmetric bilinear forms

Definition 1.1. A map B : V × V → K is called symmetric bilinear form, if

B(x, y) = B(y, x) and B(ax+ y, z) = aB(x, z) +B(y, z) for all x, y, z ∈ V, a ∈ K.

V ⊥ := {x ∈ V | B(x, y) = 0 for all y ∈ V } is the radical of B, and B is non-
degenerate if V ⊥ = {0}.

Let e := (e1, . . . , en) be a basis of V . Then the Gram matrix of B with respect
to e is defined as eBe := (B(ei, ej)) ∈ Kn×n. If e′ is a second basis of E, then e′i =∑n

j=1 Tijej with T := (Tij) ∈ GLn(K) and e′Be′ = T (eBe)T
tr. In particular det(e′Be′) =

det(T )2 det(eBe).

Definition 1.2. det(V,B) := det(eBe)(K
×)2 ∈ K/(K×)2 is called the determinant

of B. We call (V,B) regular if det(V,B) ∈ K×.

In general regular bilinear forms are non-degenerate and for fields K these notions
do coincide. Clearly B is regular if and only if eBe ∈ GLn(K) if and only if det(V,B) ∈
K×/(K×)2.

Remark 1.3. For non-degenerate bilinear forms over a field we have dim(U)+dim(U⊥) =
dim(V ) and V = U ⊕ U⊥ if B|U is non-degenerate. In general, if (U,B) is a regular
submodule of (V,B) then V = U ⊥ U⊥.

Proof. To see this note that regular implies primitive, i.e. a basis of U can be com-

pleted to a basis of V . Then the Gram matrix is

(
A X
X tr C

)
where A ∈ GLm(K)

is a Gram matrix of B|U . Gaussian column elimination hence can achieve X = 0
where the transposed row operations achieve X tr = 0 and hence an orthogonal split-

ting

(
A 0
0 C −X trA−1X

)
. 2

1
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2 Quadratic forms

Definition 2.1. (a) Q : V → K is called a quadratic form if
(i) Q(ax) = a2Q(x) for all x ∈ V, a ∈ K and
(ii) BQ : V ×V → K,BQ(x, y) := Q(x+y)−Q(x)−Q(y) is a symmetric bilinear
form.
We then call (V,Q) a quadratic space.

(b) ϕ : (V,Q)→ (V ′, Q′) is called an isometry if ϕ is injective, linear and Q′(ϕ(x)) =
Q(x) for all x ∈ V .
Two quadratic forms are called isometric, if there is some bijective isometry.

(c) (V,Q) is called regular, if (V,BQ) is regular.

(d) O(V,Q) := {g ∈ GL(V ) | Q(g(x)) = Q(x) for all x ∈ V } is the orthogonal
group of Q.

Remark 2.2. If (V,B) is some bilinear form, then

QB : V → K,QB(x) := B(x, x)

is a quadratic form on V with BQB
= 2B.

If (V,Q) is a quadratic space, then (V,BQ) is a bilinear space and QBQ
= 2Q.

If 2 ∈ K× then the notions of quadratic forms and symmetric bilinear forms are equiv-
alent.

If e = (e1, . . . , en) is a basis of V then

Q(
n∑
i=1

aiei) =
n∑
i=1

a2iQ(ei) +
∑
i<j

aiajBQ(ei, ej) = (a1, . . . , an)eQe(a1, . . . , an)tr

where

eQe =

 Q(e1) BQ(ei, ej)

0
. . .

0 0 Q(en)

 ∈ Kn×n.

We have eQe + (eQe)
tr = eBe. If BQ(ei, ej) = 0 for all i 6= j (i.e. e is an orthogonal

basis) then we write
Q = [Q(e1), . . . , Q(en)].

Remark 2.3. eQe can also be seen as the Gram matrix of a (non-symmetric) bilinear
form A. Then Q(x) = A(x, x) for this bilinear form.

Lemma 2.4. Let n be odd and

B :=


2a1 b12 . . . b1n
b12 2a2 . . . b2n
... . . .

. . .
...

b1n b2n . . . 2an

 ∈ Kn×n

be a symmetric matrix. Then there is a polynomial Pn ∈ Z[xi, yij | 1 ≤ i < j ≤ n] such
that det(B) = 2Pn(ai, bij).

Definition 2.5. Let (V,Q) be a quadratic space of odd dimension n. Then we put
det′(V,Q) := Pn(Q(ei), BQ(ei, ej)) for Pn as in Lemma 2.4 and call (V,Q) semi-
regular, if det′(V,Q) ∈ K×. det′(V,Q) is called the half-determinant of (V,Q).
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2.1 Hyperbolic modules.

Definition 2.6. Let V be some free module over K and V ∗ = Hom(V,K) be the dual
space. Then

H(V ) := (V ⊕ V ∗, QV ), with QV (x+ x∗) := x∗(x) for all x ∈ V, x∗ ∈ V ∗

is called the hyperbolic module attached to V .

Clear. BQV
(x+ x∗, y + y∗) = x∗(y) + y∗(x).

If e = (e1, . . . , en) is a basis of V and (e∗1, . . . , e
∗
n) is the dual basis of V ∗, then the

Gram matrix of H(V ) with respect to the basis (e1, . . . , en, e
∗
1, . . . , e

∗
n) is

(
0 In
In 0

)
.

In particular det(H(V )) = (−1)n.

Corollary 2.7. Let (V,Q) be a regular quadratic space and assume that there is 0 6=
v ∈ V such that Q(v) = 0. Then there is u ∈ V with Q(u) = 0 and BQ(v, u) = 1, so
〈u, v〉 ∼= H(K). In particular (V,Q) ∼= H(K)©⊥ (W,Q) for some regular quadratic space
(W,Q).

Proof. Without loss of generality we can assume that v is primitive in V , i.e. a−1v ∈ V
with 0 6= a ∈ K implies that a ∈ K×. As BQ : V → V ∗, x 7→ BQ(x, ·) is an isomor-
phism, there is u ∈ V such that BQ(v, u) = 1. Now Q(u+ av) = Q(u) + aBQ(v, u) and
hence we may replace u by u+ av so that Q(u) = 0. 2

Definition 2.8. A quadratic space (V,Q) is called anisotropic, if Q(v) 6= 0 for all
0 6= v ∈ V .

3 Quadratic forms over finite fields.

In this section we classify the quadratic forms over finite fields. So let K = Fpf be a
finite field of characteristic p and (V,Q) be some quadratic space over K. Then the
multiplicative group K× = K \ {0} is cyclic of order pf − 1, in particular

Remark 3.1. If p 6= 2 then K = {0}
.
∪ (K×)2

.
∪ ε(K×)2 and for p = 2 we have

K× = (K×)2 as the Frobenius automorphism is surjective. The quadratic forms V1 = [1]
and Vε = [ε] (for p 6= 2) represent the isometry classes of one-dimensional semi-regular
quadratic spaces.

Remark 3.2. Let (V,Q) be some regular quadratic K-module of dimension 2. If there
is some 0 6= x ∈ V such that Q(x) = 0 then (V,Q) ∼= H(〈x〉) ∼= H is isometric to a
hyperbolic plane. If (V,Q) is anisotropic (i.e. Q(x) = 0 ⇒ x = 0), then Q(V ) = K
(such quadratic K-modules are called universal).

Proof. The first statement is clear. Assume that (V,Q) is anisotropic. Since K2 = K
for p = 2, we may assume that p is odd. Then V has an orthogonal basis (e1, e2) such
that Q(a1e1 + a2e2) = a21t1 + a22t2 with Q(e1) = t1 6= 0 and Q(e2) = t2 6= 0. Choose
a ∈ K and put

M1 := {a21t1 | a1 ∈ K}, M2 := {a− a22t2 | a2 ∈ K}.
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Then |M1| = |M2| = (|K| + 1)/2 and so |M1| + |M2| = |K| + 1 > |K|. Therefore
M1∩M2 6= ∅ i.e. there are a1, a2 ∈ K such that a21t1 = a−a22t2 and a = Q(a1e1 +a2e2).
2

Example Let V := Fp2f = K[α] = K · 1⊕K ·α and Q : V → K be the norm form,

i.e. Q(x) = xxp
f
. This is a quadratic form with QQ(x, y) = xyp

f
+ xp

f
y =trace(xyp

f
).

Moreover (V,Q) is anisotropic. We compute

Q(V \ {0}) = {x1+pf | x ∈ V \ {0}} = 〈a1+pf 〉 = K× ∼= Cpf−1

for any generator a of the multiplicative group of V . In particular this also shows that
(V,Q) is universal. Notation: (V,Q) = N(K).

Remark 3.3. Let (V,Q) be some regular quadratic space of dimension 2. Then either
(V,Q) ∼= H or (V,Q) ∼= N(K) so there are exactly two isometry classes of 2-dimensional
regular quadratic spaces over every finite field.

Proof. We only need to show that any anisotropic quadratic space (V,Q) of dimen-
sion 2 is isometric to N(K). Choose any basis (e1, e2) of V such that Q(e1) = 1.

Then (V,Q) =

[
1 c

a

]
and Q(a1e1 + a2e2) = a21 + ca1a2 + aa22. The polynomial

X2 + cX + a ∈ K[X] is irreducible (has no zero, since Q is anisotropic) it hence defines
the unique extension of degree 2 of K. Conclude that (V,Q) ∼= N(K) as an exercise. 2

Theorem 3.4. Let (V,Q) be a regular quadratic space of dimension 2m. Then

(V,Q) ∼=


Q+

2m(K) :=©⊥m
i=1H =©⊥m

i=1

[
0 1

0

]
or

Q−2m(K) := N(K)©⊥ ©⊥m−1
i=1 H =

[
1 a

b

]
©⊥ ©⊥m−1

i=1

[
0 1

0

]
where X2 + aX + b ∈ K[x] irreducible. These two quadratic modules are not isometric
(as we will see later).

Corollary 3.5. Let (V,Q) be a semi-regular quadratic space of dimension 2m+1. Then

(V,Q) ∼=


[1]©⊥ ©⊥m

i=1H = [1]©⊥ ©⊥m
i=1

[
0 1

0

]
or

[ε]©⊥ ©⊥m
i=1H = [ε]©⊥ ©⊥m

i=1

[
0 1

0

]
where the latter case only occurs if char(K) 6= 2 (and then ε ∈ K× \ (K×)2). For p 6= 2
these two quadratic modules are not isometric because their determinants ∈ K×/(K×)2

are different.

Theorem 3.6. Two regular quadratic forms over a finite field K are isometric, if and
only if they have the same dimension and determinant. If char(K) = 2 then there are
no regular quadratic forms of odd dimension and the determinant has to be replaced by
the discriminant algebra (see Definition 5.15).
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3.1 An exercise: doubly-even self-dual codes.

Let K = F2, (V,B) := (Fn2 , B(c, d) :=
∑n

i=1 cidi) the n-dimensional F2-vector space with
standard inner product. We also define the weight, wt : Fn2 → Z,wt(c) := |{i | ci 6= 0}|.
Let 1 := (1, . . . , 1) be the all ones vector, the unique element of V of weight n.

A code is a subspace C ≤ Fn2 . C is called self-dual, if C = C⊥. C is called
self-orthogonal, if C ⊆ C⊥. C is called doubly-even, if wt(C) ⊆ 4Z.

• (V,B) is non-degenerate.

• If C ⊆ C⊥ then wt(c) is even for all c ∈ C and hence C ⊆ 1⊥ = {c ∈ C |
wt(c) even }.

• If C is doubly-even, then C is self-orthogonal.

• If (V,B) contains a doubly-even self-dual code, then n ∈ 4Z.

• Define a quadratic form Q : E := 1⊥ → F2, Q(c) = wt(c)
2

+ 2Z. Then BQ is the
restriction of B to 1⊥ =: E.

• If n is even then E⊥ = 〈1〉 and (E,Q) is semiregular, if n 6∈ 4Z.

• If n is odd then (E,Q) is regular and (V,B) = E©⊥〈1〉.

• Write n = 8m + a with m ∈ N0, a ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Then (E,Q) ∼=
H(F2)

4m©⊥ A with

A ∼=



{0} a = 1
[1] a = 2
N(F2) a = 3
N(F2)©⊥ [0] a = 4
H(F2)©⊥ N(F2) a = 5
H(F2)

2©⊥ [1] a = 6
H(F2)

2©⊥ N(F2) a = 7
H(F2)

3©⊥ [0] a = 8

• Doubly-even self-dual codes exist if and only if n ∈ 8Z.

To see the second last point, consider the cases n ≤ 9 first and find explicit isome-
tries. To get the periodicity distinguish the cases n even and n odd. Denote (E,Q)
by En to indicate the length n of the codes. If n = ` + 8 is odd, then E` is regular,
E` → En, v 7→ (v, 08) is an isometry and En = E` ⊥ H(F2)

4. If n = `+ 8 is even, then
E` has a radical, embed

E` → En, v 7→
{

(v, 08) if v` = 0
v 7→ (v, 18) if v` = 1.

Show that with this embedding En = E` ⊥ E9 and that E9
∼= H(F2)

4.
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4 Orthogonal groups and Witt’s theorem

Example 4.1. (Reflections) Let v ∈ V be such that Q(v) ∈ K×. Then the reflection
along v is

sv : x 7→ x− BQ(x, v)

Q(v)
v ∈ O(V,Q).

Theorem 4.2. (Witt’s extension theorem)
Let K be a field and let (V,Q) be a quadratic space and U ≤ V . Let ϕ : U → V be
an isometric embedding. Assume that either U or V is regular. Then there is some
g ∈ O(V,Q) such that g|U = ϕ.

Corollary 4.3. (Witt’s cancellation theorem)
Let K be a field, F,G1, G2 quadratic spaces such that F is regular. Then F ©⊥ G1

∼=
F ©⊥ G2 ⇔ G1

∼= G2.

Proof. Let ψ : F ©⊥ G1 → F ©⊥ G2 =: E be a bijective isometry and put F1 := ψ(F ).
Then F ≤ E and ϕ : F → F1 ≤ E, f 7→ ψ(f) is an isometry. By Theorem 4.2 there is
some orthogonal transformation g ∈ O(E) such that g|F = ϕ.
Claim: (g−1 ◦ ψ)|G1 : G1 → G2 is a bijective isometry.
To prove the claim it is enough to see that (g−1(ψ(G1)) = G2. Since F and hence ϕ(F )
are regular subspaces of E, we have that

G2 = F⊥ and ψ(G1) = ψ(F )⊥ = F⊥1 = ϕ(F )⊥.

So g(G2) = g(F⊥) = g(F )⊥ = ϕ(F )⊥ = ψ(G1). 2

Corollary 4.4. The two quadratic modules ©⊥m−1H©⊥ N(K) and ©⊥mH of Theorem
3.4 are not isometric. Otherwise N(K) ∼= H but N(K) is anisotropic.

Definition 4.5. A subspace U ≤ V is called totally isotropic if Q(U) = {0}. Theo-
rem 4.2 implies that the maximal dimension of a totally isotropic subspace of a regular
quadratic space (V,Q) is well defined. This dimension is called the Witt index of
(V,Q).

The Witt index of the hyperbolic module H(V ) = (V ⊕ V ∗, Q(x + x∗) = x∗(x))
equals the dimension of V .

In view of the Corollary 2.7 and Witt’s cancellation theorem to classify regular
quadratic spaces over fields it is enough to classify anisotropic spaces.

4.1 An exercise: The orthogonal groups over finite fields

Let K = F`, ` = pf , (V,Q) regular or semi-regular quadratic space over K. By Section
3 we have two possibilities for even dimension dim(V ) = 2m:

Q+
2m
∼=©⊥m

i=1 H =©⊥m
i=1

[
0 1

0

]
or

Q−2m
∼= N(K)©⊥ ©⊥m−1

i=1 H =

[
1 a

b

]
©⊥ ©⊥m−1

i=1

[
0 1

0

]
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If dim(V ) = 2m+ 1 then there are 2 modules for p 6= 2 and one for p = 2:

Q+
2m+1 := [1]©⊥ ©⊥m

i=1 H = [1]©⊥ ©⊥m
i=1

[
0 1

0

]
or

Q−2m+1 := [ε]©⊥ ©⊥m
i=1H = [ε]©⊥ ©⊥m

i=1

[
0 1

0

]
where ε ∈ K∗ \ (K∗)2.

Since Q+
2m+1

∼= εQ−2m+1 these two quadratic modules have isomorphic orthogonal
groups.

Theorem 4.6. Let O2m+1(F`) := O(Q2m+1), O+
2m(F`) := O(Q+

2m) and O−2m(F`) :=
O(Q−2m). Then

(a) |O+
2m(F`)| = 2`m(m−1)(`m − 1)

∏m−1
i=1 (`2i − 1)

(b) |O−2m(F`)| = 2`m(m−1)(`m + 1)
∏m−1

i=1 (`2i − 1)

(c) |O2m+1(F`)| = z`m
2∏m

i=1(`
2i − 1)

where z = 1 if ` is even and z = 2 if ` is odd.

4.2 An exercise: Witt cancellation is not true over rings

Remark 4.7. Witt’s cancellation theorem does not hold for regular quadratic Z-modules.

Proof. The lattice D̃16 is a positive definite even unimodular orthogonally idecompos-
able lattice of dimension 16. Also E8©⊥ E8 is a positive definite even unimodular 16-
dimensional lattice, so (E,Q) := (D̃16, Q(x) := 1

2
B(x, x)) and (F,Q) := (E8, Q(x) :=

1
2
B(x, x))2 are regular (positive definite) quadratic Z-modules of rank 16. One of them

is orthogonally decomposable, the other one isn’t so these modules are not isometric,
but

(E,Q)©⊥ H(Z) ∼= (F,Q)©⊥ H(Z).

To construct this isometry write D̃16 = 〈D16, v = 1
2

∑16
i=1 ei〉 and H(Z) = 〈e, f〉 with

Q(ae + bf) = ab. The obvious sublattice D8 together with v + e − f generates a sub-
lattice L isometric to E8 in D̃16©⊥ H(Z). Find a hyperbolic plane X in L⊥ (generated
by a vector of length 0 and some other vector having inner product 1 with this vector).
Then identify (X©⊥ L)⊥ with the second copy of E8. 2

5 The Clifford algebra of a quadratic space

Given a vector space V of dimension n over a field K one may associate to V the

• Tensor algebra T (V ) :=
⊕∞

i=0⊗iV

• Symmetric algebra K[x1, . . . , xn]

• Grassmann algebra Λ(V ) :=
⊕n

i=0 Λi(V )

All these algebras can be defined using their universal property. Only the Grassmann
algebra has finite dimension, 2n; this is the Clifford algebra of the quadratic form Q = 0
on V .
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Definition 5.1. Let (V,Q) be a quadratic space of dimension n. Then the Clifford
algebra of (V,Q) is

C(V,Q) := T (V )/I(V,Q)

where I(V,Q) is the ideal in T (V )

I(V,Q) = 〈v2 −Q(v)1 | v ∈ V 〉.

Note that in C(V,Q) we have

vw + wv = (v + w)2 − v2 − w2 = Q(v + w)−Q(v)−Q(w) = BQ(v, w).

In particular vw = −wv whenever BQ(v, w) = 0, so C(V, 0) = Λ(V ) is the Grassmann
algebra.

Note also that the definition is a bit sloppy, as we should have shown that the map
from V to C(V,Q) is indeed injective and allows one to identify V with a subspace of
C(V,Q).

Remark 5.2. Inherited from the tensor algebra, the Clifford algebra has the following
universal property:
Given a K-algebra A and a K-linear map f : V → A satisfying f(v)2 = Q(v)1 for
all v ∈ V then there is a unique K-algebra homomorphism C(V,Q)→ A mapping v to
f(v).

Theorem 5.3. For any quadratic space (V,Q), the Clifford algebra is unique up to
K-algebra isomorphism.
Given a basis e = (e1, . . . , en) of V , then the Clifford algebra has K-basis(

r∏
i=1

eji | r ∈ N0, j1 < . . . < jr

)
.

In particular dim(C(V,Q)) = 2n.

The proof of the first part is the usual manipulation of universal properties. For the
proof of the second part, I refer to the lecture notes of my course on quadratic forms.

As the relations v2 = Q(v) are between tensors of degree 2 and 0, and hence even,
the Clifford algebra has a natural Z/2Z-grading:

Definition 5.4. The even Clifford algebra is

C0(V,Q) := 〈
2r∏
i=1

eji | r ∈ N0, j1 < . . . < j2r〉

and a 2n−1-dimensional subalgebra of the Clifford algebra. We have C(V,Q) = C0(V,Q)⊕
C1(V,Q) with C1(V,Q) = e1C0(V,Q) is spanned by the products of odd length.

Lemma 5.5. Scaling of the quadratic form does not change the isomorphism type of
the even Clifford algebra: Given a ∈ K× the linear map

C0(V,Q)→ C0(V, aQ),
2r∏
i=1

eji 7→ a−r
2r∏
i=1

eji

is a K-algebra isomorphism.
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From the universal property we get that orthogonal mappings of (V,Q) extend to
K-algebra automorphisms of C(V,Q) preserving the grading:

Theorem 5.6. For any g ∈ O(V,Q) there is a unique K-algebra automorphism c(g) ∈
Aut(C(V,Q)) with c(g)(v) = g(v) for all v ∈ V .

Example 5.7. Let v ∈ V be such that Q(v) ∈ K×. Then the reflection along v is

sv : x 7→ x− BQ(x, v)

Q(v)
v ∈ O(V,Q).

In the Clifford algebra we get for all x ∈ V :

vxv−1 =
1

Q(v)
vxv =

1

Q(v)
(−vvx+BQ(v, x)v) = −sv(x).

So c(sv) = c(−idV )κv where κv ∈ Aut(C) denotes the conjugation with v.

Remark 5.8. Let (V,Q) be a regular quadratic space. Then there is a unique group
homomorphism

SNQ : O(V,Q)→ K×/(K×)2, sv 7→ Q(v)(K×)2

called the Spinor norm.
The restriction of SNQ to the special orthogonal group (which is generated by all products
of an even number of reflections) is independent of scaling of the quadratic form.
For char(K) 6= 2 choose an orthogonal basis (e1, . . . , en) so that (V,Q) = [a1, . . . , an].
Then −idV = se1 · · · sen has Spinor norm

SNQ(−idV ) = Q(e1) · · ·Q(en) = a1 · · · an = det′(Q)

the half-determinant of (V,Q).

Also C(V,Q) is an algebra with a (canonical) involution:

Theorem 5.9. There is a unique K-algebra anti automorphism ι : C(V,Q)→ C(V,Q)
such that ι(v) = v for all v ∈ V . We compute ι(ei1 · · · eir) = eir · · · ei1 and ι2 = id.

Example 5.10. • V = Ke, q(e) = a ∈ K. Then C(V,Q) ∼= K[X]/(X2 − a).

• If (V,Q) = [a, b] is of rank 2 with orthogonal basis (e1, e2), Q(e1) = a, Q(e2) = b,
then

C(V,Q) = 〈1, e1, e2, e1e2〉

with e1e2 = −e2e1. The mapping C(V,Q)→ K4×4, defined by

e1 7→


0 1 0 0
a 0 0 0
0 0 0 −1
0 0 −a 0

 , e2 7→


0 0 1 0
0 0 0 1
b 0 0 0
0 b 0 0


is a K-algebra monomorphism, whose image is a free K-module of rank 4.

Definition 5.11. C([a, b]) =:
(
a,b
K

)
is called the quaternion algebra with parameters

a, b over K.
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Example 5.12. Let H := 〈e, f〉 with Q(ae+ bf) = ab be the hyperbolic plane. Then

C(H) = 〈I2, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

(
1 0
0 0

)
= ef〉 = K2×2

and C0(H) ∼= K ⊕K.

Theorem 5.13. Assume that char(K) 6= 2 and write the regular quadratic space
(V,Q) := [a1, . . . , an] =©⊥ n

i=1Kei. Put z := e1 . . . en ∈ C(E, q) =: C. Then

(0) eiz = (−1)n−1zei for all i = 1, . . . , n.

(a) z2 = (−1)(
n
2)a1 · · · an =: d.

(b) The centraliser of C0 in C is CC0 = 〈1, z〉 ∼= K[X]/(X2 − d).

(c) If n is even, then Z(C) = K and Z(C0) = 〈1, z〉.

(d) If n is odd, then Z(C) = 〈1, z〉 and Z(C0) = K.

Proof. (a) We compute z2 = e1 · · · ene1 · · · en = (−1)n−1e2 · · · ene21e2 · · · en = a1(−1)n−1(e2 · · · en)2 =

a1 · · · an(−1)
∑n−1

j=1 j.
(b) C has a K-basis (1, e1, . . . , en, e1e2, . . . , e1e2 · · · en) = (ei1 · · · eir | 0 ≤ r ≤ n, 1 ≤
i1 < . . . < ir ≤ n). Define eJ := ei1 · · · eir if J = {i1, . . . , ir} with 1 ≤ i1 < . . . < ir ≤ n.
Then C0 is generated as a K-algebra by eiej (1 ≤ i < j ≤ n). For x :=

∑
J⊆{1,...,n} xJeJ

we have
xeiej =

∑
J

xJeJeiej =
∑
J

(−1)|J∩{i,j}|xJeiejeJ = eiejx

if and only if xJ = 0 if |J ∩ {i, j}| = 1. So xeiej = eiejx for all i, j if and only if
x ∈ 〈e∅, e{1,...,n}〉 = 〈1, z〉.
The other statements follow by using the fact that eiz = (−1)n−1zei for all i. 2

Theorem 5.14. Assume that (V,Q) is a regular or semi-regular quadratic space over
a field K of arbitrary characteristic.
(a) If dim(V ) is even, then c(V,Q) := C(V,Q) is a tensor product of quaternion algebras,
Z(C(V,Q)) = K and Z(C0(V,Q)) = CC0 ∼= Z. C0 ∼= B⊗Z, where B is a tensor product
of quaternion algebras.
(b) If dim(V ) is odd, then c(V,Q) := C0(V,Q) is a tensor product of quaternion algebras,
Z(C0(V,Q)) = K and C(V,Q)) = Z ⊗ C0(V,Q) where Z = CC0 = Z(C(V,Q)).

Definition 5.15. The algebra Z := C(V,Q)C0(V,Q) is called the discriminant al-
gebra of the regular of semi-regular quadratic space (V,Q). If char(K) 6= 2 then
Z ∼= K[X]/(X2 − d) where

d :=

{
(−1)(

n
2) det′(BQ) dim(V ) odd

(−1)(
n
2) det(BQ) dim(V ) even

so that d(K×)2 =: disc(V,Q) is the discriminant of the quadratic space (V,Q). Note
that BQ = diag(2a1, . . . , 2an), so if n is odd we need to take the half-determinant of BQ.
The class of the central simple Clifford algebra

c(V,Q) :=

{
C0(V,Q) n odd
C(V,Q) n even

in the Brauer group of K is called the Clifford invariant of (V,Q).
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Remark 5.16. Let (V,Q) be a regular quadratic space. Then we have the following
invariants of the isometry class of (V,Q):

(a) The dimension dim(V ) ∈ N0.

(b) The discriminant algebra Z(V,Q), which is an etale quadratic K-algebra with
involution.

(c) The Clifford invariant c(V,Q) = [c(V,Q)], which is in Br2(K).

If K = R then we also have the signature of (V,Q) where sign([1a, (−1)b]) = (a, b) ∈
N0 × N0.

6 Quadratic forms over complete local fields

Now let R be a complete discrete valuation ring with finite residue field k := R/πR
and quotient field K := Quot(R). As an example you should think of the ring of p-adic
integers

R = Zp, k = Fp, K = Qp.

6.1 Lifting isometries

Theorem 6.1. Let (V,Q) and (V ′, Q′) be two regular quadratic spaces over R. Then
(V,Q) and (V ′, Q′) are isometric over R if and only if (V/πV,Q) and (V ′/πV ′, Q′) are
isometric over k = R/πR.

Proof. Let ϕ : V → V ′ be an isomorphism of R-modules such that Q′(ϕ(v)) ≡ Q(v)
(mod π) for all v ∈ V . We want to replace ϕ by ϕ+ πψ such that

Q′(ϕ(v) + πψ(v)) = Q′(ϕ(v)) + π2Q′(ψ(v)) + πBQ′(ϕ(v), ψ(v)) ≡ Q(v) (mod π2)

i.e.

BQ′(ϕ(v), ψ(v)) ≡ 1

π
(Q(v)−Q′(ϕ(v))) =: Q̃(v) for all v ∈ V.

By Remark 2.3 there is some (not necessary symmetric) bilinear form A : V × V → R
such that A(v, v) = Q̃(v) for all v ∈ V . Let (x1, . . . , xn) be some R-basis of V . As BQ′

is regular there are v1, . . . , vn ∈ V ′ such that

BQ′(ϕ(xi), vj) ≡ A(xi, xj) (mod π) for all 1 ≤ i, j ≤ n.

Define the R-linear map ψ : V → V ′ by ψ(xi) := vi. Then for x =
∑n

i=1 aixi ∈ V

BQ′(ϕ(x), ψ(x)) =
∑
i,j

aiajBQ′(ϕ(xi), vj) ≡π
∑
i,j

aiajA(xi, xj) = A(x, x) = Q̃(x).

2
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Corollary 6.2. (a) If (V,Q) is a regular quadratic R-module of rank ≥ 2 and t ∈ R∗,
then there is some x ∈ V with Q(x) = t.
(b) If (V,Q) is regular or semi-regular of rank ≥ 3, then

(V,Q) =

[
0 1

0

]
©⊥ (V1, Q1)

for some regular resp. semi-regular (V1, Q1).
(c) There are exactly two regular 2-dimensional quadratic R-modules: H(R) and N(R),
with N(R) = N(k). N(R) is the norm form on the unique quadratic unramified exten-
sion of R.
(d) If char(k) is odd then either (V,Q) ∼= ©⊥ n

i=1 [1] or (V,Q) ∼= ©⊥ n−1
i=1 [1]©⊥ [ε] for fixed

ε ∈ R∗ \ (R∗)2.
(e) If char(k) is even then the regular and semi-regular quadratic spaces are

(V,Q) ∼=



[u]©⊥m
i=1

[
0 1

0

]
if n = 2m+ 1( some u ∈ R∗)

©⊥m
i=1

[
0 1

0

]
if n = 2m

©⊥m−1
i=1

[
0 1

0

]
©⊥ N(R) if n = 2m

6.2 Anisotropic quadratic spaces over complete fields

Theorem 6.3. Let (V,Q) be an anisotropic quadratic space over K. For i ∈ Z put

Ei := {x ∈ V | Q(x) ∈ πiR}.

Then Ei is an R-submodule of V of full rank (an R-lattice).

Proof. The crucial point is that Ei is a subgroup of V . So let x, y ∈ Ei. Then
Q(x + y) = Q(x) + Q(y) + BQ(x, y) and x + y ∈ Ei if BQ(x, y) ∈ πiR. Otherwise
BQ(x, y)R = πjR for j < i. Replacing Q by π−jQ we obtain a subspace 〈x, y〉 of Ei
which reduces modulo π to a hyperbolic plane. This is a contradiction to (V,Q) being
anisotropic. 2

Lemma 6.4. Let L be the unramified quadratic extension of K. Then the norm form
N : L→ K is an anisotropic quadratic form N(K) with E0(N(K)) ∼= N(R). We have
Q(N(R)) = ∪∞i=0π

2iR∗ ∪ {0}

Corollary 6.5. (U,Q0) := N(K)©⊥ πN(K) is a universal anisotropic quadratic space
of dimension 4 over K.

Theorem 6.6. Let (V,Q) be an anisotropic quadratic space over K. Then dim(V ) ≤ 4
and if dim(V ) = 4, then (V,Q) ∼= (U,Q0).

Proof. Let Ei := {x ∈ V | Q(x) ∈ πiR} be the maximal lattice from Theorem 6.3.
Then E0 ⊇ E1 ⊇ E2 = πE0 and

dim(V ) = dimR(E0/πE0) = dimR(E0/E1) + dimR(E1/πE0).
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The quadratic space (E0/E1, Q) is an anisotropic R space, so dim(E0/E1) ≤ 2, and if
equality holds, then (E0/E1, Q) ∼= N(k). Similarly (E1/πE0, π−1Q) is anisotropic. So
dim(V ) ≤ 4.
Assume that dim(V ) = 4 and let (e1, e2, e3, e4) be an R-basis of E0 so that e3, e4 ∈
E1. Then 〈e1, e2〉 is a regular submodule of (E0, Q) whose reduction modulo π is
N(k), so 〈e1, e2〉 ∼= N(R) from above and (E0, Q) ∼= N(R)©⊥ (G′, πQ′) such that
(E1/πE0, π−1Q) ∼= N(k). This implies that (G′, Q′) ∼= N(R) and (V,Q) ∼= (U,Q0).
2

Then Br2(K) = {[K], [Q(K)]} where Q(K) is the unique central division algebra
over K of dimension 4. We also assume that the characteristic of K is not 2, so
that we can replace the discriminant algebra Z(V,Q) of (V,Q) by the discriminant
disc(V,Q) ∈ K×/(K×)2.

The following theorem gives the classification of anisotropic quadratic spaces over
K.

Theorem 6.7. (i) For each d(K×)2 ∈ K×/(K×)2 there is a unique quadratic space
of dimension 1, (V,Q) = [d].

(ii) For each non-trivial d(K×)2 ∈ K×/(K×)2 there are two anisotropic quadratic
spaces of dimension 2 and discriminant d that are distinguished by their Clifford
invariant ∈ Br2(K) = {[K], [Q(K)]}. Note that the Clifford invariant of (V,Q)
is [K] if and only if there is v ∈ V with Q(V ) = 1.

(iii) For each d(K×)2 ∈ K×/(K×)2 there is a unique anisotropic quadratic space of
dimension 3 with disc(V,Q) = d(K×)2. We have c(V,Q) = Q.

(iv) There is a unique anisotropic quadratic space of dimension 4. This space is uni-
versal, i.e. Q(V ) = K has discriminant 1 and non-trivial Clifford invariant.

(v) There are no anisotropic quadratic spaces of dimension ≥ 5 over K.

Corollary 6.8. Two regular quadratic spaces over K are isometric, if and only if they
have the same dimension, discriminant and Clifford invariant.

7 Quadratic forms over number fields

In this last section we assume that K is a number field i.e. a finite extension of the
rationals Q.

Definition 7.1. A property P is called local, if P holds over K if and only if it holds
over all completions of K.
So a property P is a local property for Q means that P holds for Q if and only if it
holds for all Qp (p a prime) and for R =: Q∞.

The Theorem of Hasse and Minkowski says that isometry of quadratic spaces is a
local property:

Theorem 7.2. (Weak theorem of Hasse and Minkowski) Two regular quadratic spaces
(V,Q) and (V ′, Q′) over a number field K are isometric, if and only if they are isometric
over all completions of K.
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As a conclusion we get a precise set of invariants of the isometry class of a quadratic
space over a number field.

Corollary 7.3. Over a number field K the isometry class of a regular quadratic space
is uniquely determined by its dimension, its determinant, its Clifford invariant and its
signature at all real places of K.

Proof. By the theorem of Hasse and Minkowski it is enough to consider all completions.
For the infinite places these are either C or R. As C is algebraically closed two regular
quadratic spaces are isometric if and only if they have the same dimension. Over the
real numbers, the theorem by Sylvester tells us that signature and dimension classifies
quadratic spaces.

For the finite places the completion is a finite extension of Qp, and Corollary 6.8
allows to conclude the statement from the theorem of Hasse and Minkowski. 2

The strong theorem of Hasse and Minkowski states that representing zero non-
trivially is also a local property, i.e. there is 0 6= v ∈ V with Q(v) = 0 if and only if
such vectors are contained in every completion of V . It allows to conclude, for instance,
the theorem that indefinite rational quadratic spaces of dimension ≥ 5 are isotropic
and indefinite rational quadratic spaces of dimension ≥ 4 are universal.

8 An application to orthogonal groups

In this section we assume that (V,Q) is a regular quadratic space over a field K.
As O(V,Q) = O(V, aQ) for all a ∈ K× we can only expect to be able to read

off those invariants of Q from O(V,Q) that are independent of scaling. Besides the
dimension and real signature (up to sign) these are the ones determined by the even
Clifford algebra C0(V,Q). So one may expect to read off the discriminant algebra if
dim(V ) is even and the Clifford invariant if dim(V ) is odd.

8.1 The adjoint involution

Remark 8.1. Any regular symmetric bilinear form B defines an involution on End(V ),
the adjoint involution, with B(α(x), y) = B(x, αad(y)) for all x, y ∈ V, α ∈ End(V ).
Choosing matrices with respect to some basis e and writing B := eBe we obtain Aad =
BAtrB−1 and

O(V,B) = {g ∈ GLn(K) | gBgtr = B} = {g ∈ GLn(K) | gad = g−1}.

As A and Atr have the same Jordan canonical form, they are always conjugate and
so are A and Aad.

Corollary 8.2. If g ∈ O(V,B) then g is conjugate (in GLn(K)) to its inverse g−1 = gad.

Note that AadB = (AB)tr. In particular if Aad = −A if and only if AB is a
skew-symmetric matrix.

Theorem 8.3. There is X = −Xad ∈ GLn(K) if and only if n = dim(V ) is even.
Then det(X)(K×)2 = det(B).
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Proof. It is well known that there is a skew-symmetric matrix Y = −Y tr of non-zero
determinant if and only if n is even. Then the determinant of Y is a square, as there is
T ∈ GLn(K) such that

TY T tr = diag(

(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)
)

Now X = −Xad implies that (XB) = −(XB)tr and hence det(X) det(B) = det(XB) ∈
(K×)2. 2

Theorem 8.4. [1] Assume that there is g ∈ O(V,B) such that P (1)P (−1) 6= 0, where
P is the characteristic polynomial of g. Then det(g) = 1, n = dim(V ) is even, and
det(B) = P (1)P (−1)(K×)2.

Proof. Write P =
∏n

i=1(X− ξi) over an algebraic closure of K. As g is conjugate to g−1

the eigenvalue ξ−1i of g has the same multiplicity as ξi. As ξi 6= ξ−1i for all i we have
det(g) =

∏n
j=1 ξj = 1 and n is even. Moreover

P (1)P (−1) =
n∏
j=1

(ξ2j − 1) = (
n∏
j=1

ξj)
n∏
j=1

(ξj − ξ−1j ) = det(g) det(g − g−1) = det(g − g−1)

so P (1)P (−1) = det(g − g−1) = det(B) up to squares. 2

Corollary 8.5. If g ∈ O(V,B) is such that g2 = −idV , then dim(V ) is even and
det(B) = 1.

Proof. Here P = (X2 + 1)n/2, so n is even and P (1)P (−1) = 2n is a square. 2

8.2 The Spinor norm

As we have seen in Remark 5.8 the quadratic form Q defines a group homomorphism

SNQ : O(V,Q)→ K×/(K×)2, SN(sv) = Q(v)

the Spinor norm. If char(K) 6= 2 then the Spinor norm of the orthogonal mapping
−idV is the half-determinant of V .

Corollary 8.6. If −idV ∈ O(V,Q)′. Then dim(V ) is even and det(Q) ∈ (K×)2.

8.3 The action on the Clifford algebra

Any orthogonal map g ∈ O(V,Q) defines an K-algebra automorphism c(g) on the
Clifford algebra C(V,Q) that respects the grading (see Theorem 5.6). In particular c(g)
is an algebra automorphism of the central simple Clifford algebra c(V,Q) (see Definition
5.15). The Theorem of Skolem and Noether tells us that such automorphisms are inner,
and hence we obtain a projective representation

c : O(V,Q)→ c(V,Q)×/K×

that turns the simple c(V,Q)-module S into a projective KO(V,Q)-module. Clearly
c(V,Q) ∼= S ⊗ S∗.
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Remark 8.7. Let χ be the character of the KO(V,Q)-module S. Then χ2 =
∑n

i=0 Λi(χV )
where χV is the character of V .

This observations sometimes allows one to read off the discriminant of Q just from
the character table of a subgroup G of O(V,Q):
1) Let G ∼= 2.O+

8 (2). Then G is perfect and its universal covering group is G̃ ∼=
22.O+

8 (2). Let V be the 8-dimensional faithful QG-module with character χ and Q a
non zero G-invariant quadratic form on V . Then dim(c(V,Q)) = 28 and χ̃ = χW ⊗ χW
for a 16-dimensional G̃-module W . One calculates that χW = χ8 + χ′8 is the sum
of the two irreducible characters χ8, χ

′
8 6= χ which belong to absolutely irreducible

rational modules of degree 8 of G̃. Therefore the discriminant of (V,Q) = 1 and also
[c(V,Q)] = [Q].
2) Let G ∼= M cL and (V, q) a 22-dimensional orthogonal QG-module with character χ.
The universal covering group of G is 3.G. Therefore c : G → c(V,Q)× can be chosen
to be linear. There is a unique character χW of G satisfying χW ⊗ χW = χ̃. In the
notation of ATLAS one has χW = 2(χ1 + χ2 + χ3) + χ5 + χ6. Now the character field
Q[χ5] = Q[χ6] = Q[

√
−15] from which we get that the discriminant of (V,Q) is −15.

For more examples see [2].
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