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Chapter 1

Basic notions and examples.

All rings are associative and have a unit.

A will be some commutative ring. E.g. A a field (Q, R, C, F,,, Q(z)), or a principal ideal domain
(Z, Zpy = {3 € Q| pfb}, Q[z]), but also A =Z/4Z, ZS L, . . ..

E will denote some A-module such that 1z = z for all € E. (Most of the time E will be finitely
generated.)

1 Symmetric bilinear forms
Definition 1.1. (a) A map b: E x E — A is called symmetric bilinear form, if
b(z,y) = b(y,x) and blax + vy, z) = ab(z,2) + b(y, z) for all z,y,z € E,a € A.

We then call (E,b) a bilinear A-module.

(b) If (E,b) and (E',V) are bilinear A-modules then an A-module homomorphism ¢ : E — E' is
called an isometry (sometimes isometric embedding), if ¢ is injective and V' (p(z), p(y))
b(x,y) for all z,y € E. Two bilinear A-modules (E,b) and (E',V') are called isometric, (E,b)
(B, V), if there is some bijective isometry ¢ : E — E'.

[Pl

Clear: The inverse of a bijective isometry is again an isometry and being isometric is an equivalence
relation.

Definition 1.2. Let (E,b) be a bilinear A-module.

(a) z,y € E are called orthogonal if b(x,y) = 0 (notation: x L y). For a subset F' C E we put
Ft:={r e E|b(z,y) =0 for all y € F'} the orthogonal submodule of F.

(b) E is called (inner) orthogonal sum of the submodules F, ..., E,,
E=EDED.. OE, =D E,
i=1

if E=E,®...® E, is an inner direct sum and E; L E; for all i # j.

(¢) We call E* := Homu(E,A) == {p: E — A| ¢ is A — module homomorphism } the dual
module of E.

(d) For a submodule F < E and x € E let bp(x) : F — A, bp(x)(y) := b(x,y) for all y € F.
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Clear: F*+ is an A-submodule of E.

Remark 1.3. Let (E,b) be a bilinear A-module and F' < E. The mapping bp : E — F*, x +— bp(x)
is an A-module homomorphism with kernel F*.

Lemma 1.4. Let (E,b) be a bilinear A-module and F < E. Then E = F @ F* if and only if
FNFt=0 and bp(F) = bp(E).

Proof. = is clear. <: Let bp(E) = bp(F). Let x € E and choose y € I with bp(z) = bp(y). Then
zi=x—y € Ft =ker(bp) and x = y + 2, s0 E = F + F+. That the sum is direct follows from
the assumption F' N F+ = 0. O

Definition 1.5. The bilinear A-module (E,b) is called non-degenerate, if by is injective (i.e.
E+ =ker(bg) = {0}).
(E,b) is called regular, if E is a finitely generated projective A-module and bg is bijective.

Theorem 1.6. Let (E,b) be a bilinear A-module and F' < E. If (F,bpxrp) is regular, then
E=FQF"

Proof. (F,b) regular = (bg)|p : F — F* bijective = bp(F) = bp(E) and ker((bp) ) = FNF+ =0
so by Lemma 1.4 E=FQ F*. O

Remark 1.7. If E = @, | E; then E* = @, | E} via f — (fig,,--., fig,) where the inverse
isomorphism is (f1,..., fa) — f, with f(x) = f(x1,...,20) = >y fil@).

In particular (A™)* = A™ and if P is finitely generated and projective, then also P* is projective.

Corollary 1.8. Assume that the bilinear A-module (E,b) is of the form E = @D}, E; and put
bi == bjg,xg,. Then we have

(a) (E,b) is non degenerate, if and only if (E;, b;) is non degenerate for all i.

(b) (E,b) is regular, if and only if (E;, b;) is reqular for all i.

Proof. The isomorphism from Remark 1.7 maps bg(z) to ((b1)g,(z1),..., (bn)E, (x,)) for z =
> ov ., x; € E. Therefore bg is injective, if and only if all (b;)p, are injective and bg is an isomor-
phism, if and only if all (b;), are isomorphisms. O

1.1 Free modules, Gram matrices and determinants.

Let E = @, Ae; be a free A-module with basis e := (ey,...,e,). Then the Gram matrix of b
with respect to e is defined as b, := (b(e;, e;)) € A" For x = Y " wie; and y = D | y;e; we
have

b(x,y) = (21,...,2,) be(yr, ..., yn)" € A=A

If ¢ is a second basis of E, then €] = 37 | t;;e; with
T :=(t;;) € GL,(A) :={X € A™" | det(X) € A"}

and by = T( be)T™. In particular det( »b.) = det(T)*det( (b.).
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Definition 1.9. Let (E,b) be a free bilinear A-module with basis e. Then det(E,b) := det(.b.)(A*)? €
A/(A*)? is called the determinant of (E, D).

Remark 1.10. The determinant det(FE,b) € A/(A*)? is an invariant of the isometry class of the
free bilinear A-module.

Example: Let A = Q and E = Qe; @ Qey. Define two symmetric bilinear forms b and & on
E by

L , (21
be i=diag(1,3), b, = ( 1 9 ) .

Then det(F,b) = det(E,b') = 3 but (E,b) 2 (E,b'). Otherwise let ¢ : (E,b') — (E,b) be some
isometry and z = aje; + agzes = ¢(e1). Then b(z,x) = a? + 3a3 = U/ (e, e) = 2 which easily leads to
a contradiction by considering divisibility by 2.

If e is a basis of £ and e* the dual basis of E* (so ef(e;) = d;;), then

bi(e;) = brjer, with by = blex, €;) = ( ebe)r
k=1

so the Gram matrix is the matrix of the linear mapping bg : E — E* with respect to the basis e
and e*.

Corollary 1.11. (a) (E,b) reqular < bg : E — E* bijective < b, € GL,(A) < det( .b.) € A*.
(b) (E,b) non degenerate < by : E — E* injective < ker(.b.) = 0 < det( .b.) € A not a zero
divisor.

----------

i=1,...,n. Then E = Q" Ac; with b(c;,¢;) = d; (dy = 1).

di_1

Proof. By induction it is enough to write

By = @fillAei = @leAei D Acpy1 = E D Acka

with b(cge1,Crr1) = detl - Gince d), = det(By) € A* there is some fry1 € ®F  Ae; such that

d,
be, (frr1) = bp, (exi1). Put cpy1 == err1 — fror € Eir. Then (eq, ..., ex, cri1) is a basis of Epyy
and the base change matrix to (eg,...,ery1) has determinant 1. Comparing the determinant of

the Gram matrices we get
dib(Cry1, Crr1) = diga-

Definition 1.13. Let (E,b) be a free regular bilinear A-module with basis (e1, ..., e,). Let e :=
bl (er) € E, so b(ei,e;&) = 6 for alli,j. Then (¢F,... e#) is called the dual basis of E. The
Gram matriz of b is the base change matrix between the basis and its dual basis.

Remark 1.14. Let (E,b) be a bilinear A-module and F < E. Then (F+)t D F.

If E is reqular and F' < E a free submodule with a basis that can be extended to a basis of E, then
(FHt =F.

In particular if A is a field and (E,b) a regular A-vector space then (FX)* = F and dim(F) +
dim(F+) = dim(E) for any subspace F < E.
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Proof. If F = Ae; @ ... @ Ae,, such that E = Ae; @& ... ® Ae,, @ Aeyr © ... O Ae,, then
Ft=Ae? | @...® Aeff and hence (FL)+ = F.

For fields we obtain dim(F') = dim(F*) = dim(bp(F)) = dim(F) — dim(ker(bp)) = dim(E) —
dim(F7). O

Example. Let A=7Z, E = Ae, b(e,e) = 1, F = A(2¢) then F+ = {0} and (FH)t =E # F.

1.2 Free bilinear modules, some examples.

(a) Here A is an arbitrary ring and we take I,,(A) = D, Ae; with b(e;,e;) = 6;;. The Gram
matrix of this basis is the unit matrix, so e;# = ¢;, the module is regular.

(b) From now on we take A = Z and introduce some important lattices. I,, ;== 1,,(Z) is sometimes
called the standard lattice. We define

An,1 = {i x;e; € ]In ‘ ixl = O}
=1 =1

Then (e1—ey, e2—e€s, ..., €,_1—€,) is a Z-basis of A,,_;. Therank of A,,_; isn—1 and det(A,_1) = n.
A, is not regular but non-degenerate.

D, = {> e, € L, | Y @ € 2Z} has basis (e; — ez,e9 — €3,...,65-1 — €n,€n1 + €3),
determinant 4 and rank n. For the Gram matrices we find

2 -1 0 ... ... 0 2 o 00
-1 2 -1 0 0 0

-2 -1 0 0 -1 2 -1 0 0

0o -1 2 -1 0

Q(An) = . , Q(Dn) = : . . . " : :

0 0 -1 3 —1 o ... 0 -1 2 =1 -1

0 0 -1 92 0 0 -1 2 0
0 0 -1 0 2

1.3 Bilinear modules over fields.

Theorem 1.15. Let (E,b) be a finite dimensional bilinear vector space over some field A. Then
E=EQEQ..DE QOF with E; reqular for all i, dim(E;) = 1 or 2 and F = E* (so
b(F,E) =b(F,F) ={0}). If char(A) # 2 all E; can be chosen to be of dimension 1. In this case
(E,b) has an orthogonal basis (which can be computed with a variant of Gram Schmidt)

Proof. Induction over the dimension of E. dim(F) = 0 and dim(EF) = 1 are trivial. So assume
that dim(F) =n > 0.

(a) If (E, E) = {0} then E = B+ =: F and we are done.

(b) So assume that b(E, F) # {0}. Then we have two possibilities:

(i) There is some e € E such that b(e,e) # 0. Then Ae < E is a regular subspace and we may
hence write E = Ae D (Aet) with dim(Aet) = dim(F) — 1 =n — 1 and proceed by induction.
(ii) For all e € F we have b(e,e) = 0. Then there are e, f € E such that b(e, f) # 0 and (e, f) < F
is a regular subspace, so E = (e, f) D (e, f)* with dim({e, f)*) = n — 2 and again we proceed by
induction. Note that case (b) (ii) cannot happen if 2 # 0 € A, as then

ble+ f,e+ f) =ble,e) 4+ 2b(e, f) +b(f, f) =0+ 2b(e, f) + 0 # 0.



8 CHAPTER 1. BASIC NOTIONS AND EXAMPLES.

Example. E = (e, f) with b(f, f) = b(e,e) = 0, b(e, f) = 1, Gram matrix ( (1) (1) > Then

blae+ Bf,ae+ Bf) = 2ap which is 0 for all a, 8 € A if the characteristic of A is 2. If char(A) # 2
then we may write £ = A(e+ f) L A(e — f).

2 Quadratic forms.

As before let E be an A-module.

Definition 2.1. (a) q: E — A is called a quadratic form if
(1) q(ax) = a*q(x) for all x € E,a € A and
(i) by : E X E— A, by(z,y) = q(z+y) —q(z) — q(y) is a symmetric bilinear form.
We then call (E,q) a quadratic A-module.

(b) ¢ :(E,q) — (E',q) is called an isometry between the two quadratic A-modules (E,q) and
(E',q"), if ¢ is an injective A-module homomorphism such that ¢'(p(x)) = q(z) for all x € E.
The two modules are called isometric, if there is some bijective isometry between them:
(B, q) = (E'. ).

(¢) The orthogonal sum of two quadratic A-modules is
(E,q) DL, q) = (E® E',q Lq) with (¢ L ¢)(z,2") == q(z) + ().
Remark 2.2. If (E,b) is some bilinear A-module, then
@ E— A qz) := bz, x)

s a quadratic form on E with by, = 2b.
If (E,q) is a quadratic A-module, then (E,b,) is a bilinear A-module and g, = 2q.
Given some A-module E, there are hence mappings

f: sym. bifo on E — quad. forms on E, b b,
b: quad. forms on E— sym. bifo on E, q— q

such that fog=2id and go f = 2id.

If 2 € A* then the notions of quadratic forms and symmetric bilinear forms are equivalent: Given
some bilinear A-module (E,b) then (E, Q) is a quadratic A-module with Qy(z) := 1b(z,x) such
that b = bg, .

Definition 2.3. (a) A quadratic A-module (E,q) is called regular, if (E,b,) is reqular.
(b) A quadratic A-module (E,q) is called non degenerate, if (E,b,) is non degenerate.
(¢) An element x of the quadratic A-module (E,q) is called singular, is q(z) = 0.

(d) A submodule F' < E of the quadratic A-module (E,q) is called singular, is ¢(F") = {0}.
(e) (E,q) is called anisotropic, if for allx € E: q(x) =0=z = 0.

Attention. If 2 is a zero divisor in A, then the condition q(F) = {0} is stronger than F C F+.
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2.1 Free quadratic modules and Gram matrices.

Let E = @);_, Ae; be a free A-module, ¢ : E — A a quadratic form. Then

Q(Z aiei) = Z G?Q(ez) + Z aiajbq<€i7 e]) = (ala s 7an)Q(a17 s 7an)tr
=1 =1

i<j
where
q(er) by(eis ej)
Q — 0 .. ) E ATLXTL‘
0 0 qlen)
Notation
q(er) by(ei, €5)
(B, q) = ‘
Q(en>

respectively (E,q) = [g(e1), ..., q(en)] if by(ei, e;) = 0 for all i # j.
If 2 is not a zero divisor, we put b;; := by(e;, ¢;) for all 7, j and use the notation

bll bln
(E,q)=< Lo >
bot ... b

For example let £ = Ae; with g(e;) = 1 then (E,q) = [1] = (2). If 2 &€ A* then (E,q) is not
regular.
Let B = Ae; @ Aey with g(ajeq + agey) = ajas. Then

e[ ]2 1)

This quadratic space is called the hyperbolic plane. Since det(£,b,) = —1 the hyperbolic plane
is always regular.

Lemma 2.4. Let (E,q) be a quadratic A-module such that E is a finitely generated projective
A-module. Then there is a bilinear form a : E X E — A such that a(z,z) = q(z).

Proof. If F is a free A-module then we may take the upper triangular matrix ) from above as
the Gram matrix of a. In general we find a projective A-module P such that P @ E is a finitely
generated free A-module and then restrict the bilinear form a on P ® E to E. a

Remark 2.5. Let (E,q) be a quadratic A-module such that E = @;_, Ae; is free, and let (F,q)
be any quadratic A-module. An A-module homomorphism ¢ : E — F is an isometry, if and only

if ¢ 1is injective, q(e;) = ¢'(p(e;)) for all i and by(e;, e;) = by (p(e:), p(e;)).
Lemma 2.6. Let n be odd and

2@1 b12 Ce bln
B.— b12 2&2 .. bgn c Anxn
bln bgn e 2an

be a symmetric matriz with even diagonal entries (i.e. a; € A). Then there is a polynomial
P, € Zlxi,yi; | 1 <1< j < n| such that det(B) = 2P, (a;, b;;).
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Proof. The proof is elementary linear algebra and follows from the Leibniz rule det(B) = Y ¢ sgn(m) [T}, B,

Let
S:={resS,|rm=r"}and
T={reS,|r#r 1} =XU{rt|re X}
mneS=3Jie{l,...,n},n(i) =i because n is odd .
m € X = L) Binw = Iiz1 B, [z Bis1

because B is symmetric. Since sgn(w) = sgn(m ') we have

det(B) =2 Z Sgn(ﬂ') H Bi,w(i) =+ Z sgn(w) H Bi’ﬂ-(i) = 2Pn(ai, bz])
meX i=1 TeS i=1
|
2

Corollary 2.7. Let (E,q) be a free quadratic A-module of odd rank n. If 2 ¢ A* then (E,q) is
not reqular. Then we put det’(E, q) := P,(q(e:), by(es,€;)) for P, as in Lemma 2.6 and call (E,q)
semi-regular, if det'(E,q) € A*.

Clear. 2 € A* then (F,q) is regular if and only if it is semi-regular.
If (F,q) = (F1,q1) D(Fs, q2) with free modules of rank dimy (F,) = 2n, dima(F2) = 2m + 1, then
det'(E,q) = det(E, q1) det’ (Fs, q2).

Example: F = Ze; with g(e;) = 1. Then (FE,q) is semi-regular but no regular.

Theorem 2.8. Let A be a field and (F,q) a finite dimensional quadratic A-vector space. Then
there are subspaces E, ..., E,, Fi,...,F,, G < E such that

o dim(E;) =2, (£, q,) regular for all 1 <i <.

o dim(F;) =1, (Fi, qir,) semi-regular for all 1 <i < s.
* ¢(G) = {0}

e (E,q)=F10O..OEO0RD..QF,DAG.

If char(A) # 2 then one may choose r =0 (and all F; are reqular). Then (E,q) is regular, if and
only if G = 0.

If char(A) = 2 then one may choose s < [A : A?].

(E,q) regular, if and only if s =0 and G = 0.

(E,q) semi-regqular, if and only if s <1 and G = 0.

Note if char(A) = 2 then A% := {a® | a € A} is a subfield of A. If |A] < oo then A% = A and hence
[A: A% = 1, but for A = Fy(x) we have A% = Fy(2?) and [A : A?] = 2.

Proof. The theorem follows from Theorem 1.15 in the case that char(A) # 2. So we will assume
char(A) = 2. By Theorem 1.15 we may write

(Eb) =ED...OEQF

with regular 2-dimensional quadratic subspaces E; and b,(F, F) = {0} (so F = E*).
If remains to decompose F': Since b,(F, F') = 0 the restriction of the quadratic form ¢ : F' — Ais a
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Z-linear map, q(x +vy) = q(z) +q(y) for all z,y € F satisfying q(ax) = a*q(x) for alla € A,x € F.
So
G:={reF|qx)=0} =ker(qr) < F

is a linear subspace (closed under addition and scalar multiplication) of F. The image ¢(F) < A
of ¢ is an A2-subspace of A. Choose f; € F such that (q(f1),...,q(fs)) is an A2-basis of q(F).
Then (fi + G, ..., fs + G) is an A-basis of F/G:

generating set: f € F, q(f) =Y., aiq(f;), then f = > a;fi € G.

linearly independent: > 7 a;f; € G < >0 aZq(fi) =0< af =0for all i & a; = 0 for all i since
a field does not have zero divisors.

So

F=ALDALD..QAfDG
with s = dimyz(q(F)) < [A: A?] and ¢(f;) # 0, so Af; semi-regular. O
Example. Take A = Fy(x), E = A%, q((t1,12,t3)) = t] + ati + 2*t3, so (E,q) = [1,z,2%. Then
det'(E,q) = 42® = 0 so E is not semi-regular. We compute G = ((z,0,1)) and
E=((1,0,0)) D((0,1,0)) DG
with ¢((1,0,0)) =1, ¢((0,1,0)) = x an Fy(x?)-basis of Fy(z).

2.2 Hyperbolic modules.
Definition 2.9. Let G be some A-module. Then

H(G) := (G & G*,qq), with qo(z + z*) := 2*(z) for all z € G, 2" € G* = Homu(G, A)
is called the hyperbolic module attached to G.

Clear. by, (x + 2,y + y*) = 2*(y) + y*(z).
If G = @), Ae; is a free A-module and (e}, ..., e}) is the dual basis of G*, then the Gram matrix

rn

if H(G) with respect to the basis (e, ..., e, €}, ..., ¢€}) is ( ;) % )

Definition 2.10. (a) Let E be an A-module. A submodule F' < E is called primitive if there is
some G < E such that E = F © G.

(b) Let (E,b) be a bilinear A-module. A submodule F' < E is called sharply primitive if F' is a
finitely generated projective submodule such that bp(E) = F*.

Example. F = Ze; @ Zes then Z(ey + e3) is primitive but Z(2e;) is not primitive.

Lemma 2.11. Let S, F < (E,b) be submodules such that F is f.g. projective. bg : S — F* is an
isomorphism. Then bs : F' — S* is an isomorphism.

Proof. There is a natural isomorphism ¢ : F' — (F*)* defined by o(f)(f*) = f*(f) for all f €
F, f* € F*. The isomorphism bg : S — F* yields a natural isomorphism b}. : (F*)* — S* defined
by bi(a)(s) := a(bp(s)) for all a € (F*)*, s € S. We claim that bg = bl 0. For f € F, s € S we
have

br(p())(8) = be(s)(f) = b(s, f) = b(f,s) = br(s).
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Remark 2.12. (i) F' < (E,b) such that (F,bjpxp) is regular, then F is sharply primitive.
(11) F < (E,b) sharply primitive, then F' is primitive.
(111) (E,b) regular, F < E primitive, then F' is sharply primitive.

Proof. (i) bp(F) = F* = bp(E) = F*.
(ii) Since F is projective, also F™* is projective and the exact sequence

0= Fr S EXB P50

splits so there is some submodule S < F such that bp : S — F* is an isomorphism. Put G := S+.
Then G < E, FNG = {0}, and F + G = E. Choose e € E. By Lemma 2.11 there is some f € F
such that bg(e) = bg(f) and so g :=e — f € S*.

(iii) F is finitely generated and projective and F' is a direct summand of E, so also F' is a finitely
generated projective A-module. To see that bp(E) = F* let f € F* be arbitrary. Write £ = F&G
and extend f to a linear form on E by putting f(z +y) = f(z) for all x € F,y € G. Then
[ € E* =bg(F) so there is some e € E such that f = bp(e). O

Theorem 2.13. Let (E,q) be a quadratic A-module and F < E a sharply primitive singular
(q(F) = {0}) submodule. Then there is a direct summand H < E such that F < H and
H = H(F). If F is free with basis (fi,..., fm) then one can extend this basis to some basis

(fi,-- s fm> 91, gm) of H such that by(fi,g;) = 6;; and q({¢1, ..., gm)) = {0}.

Proof. We use Remark 1.7 to see that the dual module of a finitely generated projective module is
again projective. The A-module homomorphism by : E — F* is onto. As F™ is projective, we may
hence find a direct summand G < FE such that b : G — F* is an isomorphism. Since ¢(F') = {0}
we have F' < ker(bp) and hence F NG = {0}. Put H := FF& G. It remains to replace G by a
complement G of F in H to achieve that ¢(G) = {0}.

By Lemma 2.4 there is some bilinear form a : G x G — A such that ¢(z) = a(x,x) for all
x € G. Since bp(G) = F* we also get bg(F) = G*, in particular for any x € G there is a unique
y = a(x) € F such that

a(z,x) = by(z,a(x)) for all z € G.

The map o : G — F is an A-module homomorphism (Exercise ) and {z — a(z) | z € G} =: G
has the desired properties since for all a« € G

q(z — a(z)) = q(2) + qla(z)) = be(z, a(z)) = (x) + 0 — q(z) = 0.
If F' is free then we can give a more precise algorithm. Since F' is sharply primitive there are
(€1,...,em) € E™ such that by(fi,e;) = 0;;. Put g1 :== e —q(e1)f1. Then

q(g1) = qler) — qler)byle, f1) + qler)®q(f1) = qler) — gler) = 0.

For j =2,...,m we put
j—1
9j = € — qu(% e;)fi — ale;) fj-
i=1

Then b,(g;, fi) = by(e;, fi) = 0;j since F C F+. For 1 <k < j we find

j—1
ba(gi: 9r) = ba(ej gi) = Y by(gi, €5)bg(fi g) —ale;) by(f: gi) = 0.
Nl _ =0

:bq (gk 76j)
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Since ¢(F') = 0 we compute

q(g;) = q(e;) — z_: by(9i, €5) by(fi, €5) —ale;)by(f, e5) = 0.

=1 -0

Theorem 2.14. Let (E,q) be a quadratic A-module such that E is a projective A-module. Then
there exists an isometric embedding ¢ : (E,q) — H(E) = (E & E*,qg(x + x*) = z*(x)) such that
o(E)Yt 2 (E,—q). If (E,q) is reqular, then

H(E) = o(E) © ¢(E)* = (E,q) O(E, —q).

Proof. By Lemma 2.4 there is some bilinear form a : £ x E — A such that ¢(z) = a(x,z) for all
x € I, Let

ap: E— E* xzw (y—=aly,x) =ag(x)(y))

ap: E—= B xe (y=alz,y) = ap()(y))
and define ¢ : E — H(F),x — = + ag(x). Then ¢ is an injective A-module homomorphism that
satisfies qr(¢(x)) = ag(z)(z) = a(x,z) = q(z) for all x € E, so ¢ : (F,q) — H(E) is an isometry.
The orthogonal space is

OBy ={r+2* € EQE* | by (2 +ap(z),r+2°) =a(z,z) +2*(z) =0 for all z € E}

so p(B)t ={x—dy(z) | v € E} = (E, —q). since qg(z —dy(1)) = —dz(x) (1) = —a(z,2) = —q(2)
for all z € E. The rest follows, since regular submodules are always orthogonal summands. a

2.3 Quadratic forms over finite fields.

In this section we will apply Theorem 2.8 to classify the quadratic forms over finite fields. So let
A = F,» be a finite field of characteristic p and (£, ¢) be some quadratic A-module. Then the
multiplicative group A* = A\ {0} is cyclic of order p™ — 1, in particular

Remark 2.15. If p # 2 then A = {0} U (A%)2 U €(4%)% and for p = 2 we have A* = (A*)2.
The modules Ey = [0], E1 = [1] and E. = [e] (for p # 2) represent the isometry classes of
one-dimensional quadratic A-modules.

Remark 2.16. Now let (E,q) be some reqular quadratic A-module of dimension 2. If there is
some 0 # x € E such that q(x) = 0 then (F,q) = H((z)) = H is isometric to a hyperbolic plane.
If (E,q) is anisotropic (i.e. q(z) =0 = x =0), then q(E) = A (such quadratic A-modules are
called universal ).

Proof. The first statement is clear. Assume that (FE,q) is anisotropic. Since A? = A for p = 2,
we may assume that p is odd. Then E has an orthogonal basis (eq, e3) such that g(aje; + azes) =
atty + a3ty with g(e;) = t; # 0 and g(ez) =ty # 0. Choose a € A and put

Ml — {a%tl | a, € A}, Mg = {a — a%tz | o € A}

Then |M;| = |M;| = (JA] +1)/2 and so |M;| + |Ms| = |A| + 1 > |A|. Therefore My N My # () i.e.
there are a;,as € A such that a?t; = a — a3ty and a = q(aje; + azes). O
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Example Let £ := Fpn = Ala] = A- 1@ A-a and ¢ : E — A be the norm form, i.e.
q(x) = xa?". This is a quadratic form with b,(z,y) = zy?" + 2"y = trace(xy?"). Moreover (E, q)
is anisotropic. We compute

g(E\{0}) = {7 |z € E\{0}} = (a""") = A" = Cppry

for any generator a of the multiplicative group of E. In particular this also shows that (F,q) is
universal. Notation: (E,q) := N(A).

Remark 2.17. Let (E,q) be some reqular quadratic A-module of dimension 2. Then either
(E,q) = H or (E,q) = N(A) so there are exactly 2 isometry classes of 2-dimensional regular
quadratic A-modules.

Proof. We only need to show that any anisotropic quadratic A-module (F,q) of dimension 2 is
1 ¢
a
and q(aje; + asesy) = a? + cajas + aa3. The polynomial X? + cX + a € A[X] is irreducible (has no
zero, since ¢ is anisotropic) it hence defines the unique extension of degree 2 of A. Conclude that
(E,q) = N(A) as an exercise. O

isometric to N(A). Choose any basis (e, es) of E such that ¢(e;) = 1. Then (F,q) =

Remark 2.18. Let (E,q) be some A-module of dimension > 3. Then there is some 0 # x € E
such that q(z) = 0.

Proof. We use Theorem 2.8 to write E as an orthogonal sum F =V L W with dim(V') = 2 and
dim(W) = 1. Then either V' contains such a vector = or V' is anisotropic, and therefore universal.
Then choose 0 # w € W. Since V' is universal, there is some v € V' such that ¢(v) = —¢(w) and
then ¢(v +w) = 0. O

Theorem 2.19. Let (E,q) be some quadratic A-module over the finite field A. Then
(E,q)=V LW LG

with V' reqular or semi-reqular and anisotropic of dimension < 2, W an orthogonal sum of hyper-

bolic planes and q(G) = {0}.

Proof. Everything follows from Theorem 2.8 and the above considerations. a

Corollary 2.20. Let (E,q) be a regular quadratic A-module of dimension 2m. Then

m m 01
DL, H =D, [ 0 } or

N(A) OO 'H :{1 HQD ;1_11{0 (1)}

where X2 + aX + b € Alx] irreducible. These two quadratic modules are not isometric (as we will
see later).

(E,q) =

Corollary 2.21. Let (E,q) be a semi-reqular quadratic A-module of dimension 2m + 1. Then
m m | 0 1

noons —moon | |«
m m | 01

doomE —4oon | ]

where the latter case only occurs if char(A) # 2 (and then ¢ € A* \ (A*)?). For p # 2 these two
quadratic modules are not isometric because their determinants € A*/(A*)? are different.

(E,q) =
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2.4 An exercise: doubly-even self-dual codes.

Let A =Ty, (V,b) := (Fy,b(c,d) := >, cd;) the n-dimensional Fo-vector space with standard
inner product. We also define the weight, wt : F} — Z, wt(c) := |{i | ¢; # 0}|. Let 1 := (1,...,1)
be the all ones vector, the unique element of V' of weight n.

A code is a subspace C' < F3. C is called self-dual, if C = C*. C is called self-orthogonal,
if C C C*. C is called doubly-even, if wt(C) C 47Z.

e (V,b) is non-degenerate.
e If C C C* then wt(c) is even for all ¢ € C' and hence C' C 1+ = {c € C | wt(c) even }.
e If C is doubly-even, then C' is self-orthogonal.

e If (V,b) contains a doubly-even self-dual code, then n € 47Z.

e Define a quadratic form ¢ : £ := 1+ — Fy, ¢(c) = %(C) + 27. Then b, is the restriction of b
to 1+ =: E.

e If n is even then E+ = (1) and (F, q) is semiregular, if n ¢ 47Z.
e If n is odd then (E,q) is regular and (V,b) = ED(1).

o Write n = 8m + a with m € Ny, a € {1,2,3,4,5,6,7,8}. Then (F,q) = H(F,)*™ D A with

{0} a=1

1] a=2

N(F5) a=3

io) NEJOO =i
H(F) D N(F2) a=5

H(F2)? O [1] a=6

H(F)2 D N(Fy) a=7

| H(F,)* @ [0] a=38

e Doubly-even self-dual codes exist if and only if n € 8Z.

To see the second last point, consider the cases n <9 first and find explicit isometries. To get
the periodicity distinguish the cases n even and n odd. Denote (E, q) by E, to indicate the length
n of the codes. If n = £ + 8 is odd, then E, is regular, £, — E,,v + (v,0%) is an isometry and
E, = E;, L H(FFy)*. If n = £ + 8 is even, then F, has a radical, embed

(v,08) if vy =0
EE%EH’U'_){UI—)(’U,F;) if v, = 1.

Show that with this embedding F, = E, 1 Fy and that Fy = H(Fy)?.

3 Quadratic forms over principal ideal domains.

Let R be a principal ideal domain with field of fractions K.
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Definition 3.1. Let V be a finite dimensional vector space over K, n := dim(V). An R-lattice
E <V is a free R-submodule of V' of rank n, so there is some K-basis (eq,...,e,) of V that is an
R-basis of E, i.e. E=@._, Re;. The basis (e1,...,ey) is called a lattice basis of E.

Let E be some R-lattice in V. An R-submodule M < FE is called primitive in E, if there is some
N < FE such that E = M @© N.

Remark 3.2. (a) If L and M are R-lattices in V then also LN M and L + M.
(b) Let b:V xV — K be a non-degenerate symmetric bilinear form and E <V an R-lattice with
basis (e1,...,e,). Then

E* . ={veV|ble,v) € R foralle € E}
is again a lattice in V with basis (ef ... e#). E# is called the dual lattice of E.

Proof. (a) Exercise.
(b) E#¥ ={v eV |bv, > ae) € Riorall a,...,a, € R} = {v €V | b(v,e;) € R for all i}.
By the definition of dual basis we have for any v € V|

v = Zb(v, e)el
i=1
so B* = <61#, ..., € g is the lattice spanned by the dual basis. O

Theorem 3.3. Let M < E, E an R-lattice in V. Then M is primitive in E, if and only if E/M
has no torsion, if and only if M = KM N E.

Proof. By the main theorem on f.g. modules over principal ideal domains, there is some ba-
sis (e1,...,e,) of E such that M = (dyeq,...,dnen)r with d; € R, m < n. Then E/M =
R/(d) & ... ® R/(d;,) ® R"™™ has no torsion < d; € R* for all i & M = (ey,...,e,) and
E = M & N with N = (epy1,...,€,). The last equivalence follows since KM = {v € V |
there is some 0 # r € R such that rv € M}, so KM N E/M =Tors(E/M). O

Corollary 3.4. If (V,b) is reqular, E <V a lattice, X C E, then X+ := {e € E | b(e,x) =
0 for all z € X} is a primitive submodule of E.

Proof. (a) submodule: Let o, 8 € R,e, f € X+, 2 € X. Then
b(z,ae+ Bf) = ab(xz,e) + pb(z, f) =04+0=0

so also ae + Bf € X+.
(b) primitive: Assume that e € E, 0 # o € R such that ae € X*. Then for all z € X

blae,x) = able,z) =0 = ble,x) =0

because R is an integral domain. So e € X*. O

Theorem 3.5. Let (E,b) be some finitely generated free R-module with non degenerated symmetric
bilinear form b : E x E — R. If F' < E is a primitive submodule then

det(F, byr) det(E, b) = ¢* det(F", bypr)
for some ¢ € R with ¢ | det(E,b).
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Proof. Consider G := (E,b) O (F, —br). Let k := rank(F), then det(G) = det(E, b) det(F, by )(—1)*
and G contains the singular submodule F’ := {(z,z) |z € F} < FEQ F. Let H < E such that
E = H ® F*. Then

G=EFE®F =H&®F-¢F with b(F', F') = {0} = b(F', F)

so we get a Gram matrix of G of the form

* * C
Gram(G) = x B 0
crm 0 0

where B = Gram(F*), C' = (b(hs, f})), (h1, ..., hi) basis of H, (f{,..., fi) basis of F’. Therefore
det(G) = (=1)*c det(F*) with ¢ = det(O)

and det(E) det(F) = ¢ det(F+).
It remains to show that ¢ | det(E). To see this consider the decomposition £ = J® F = H @ F*
where the complements H and J exist since F' and F'* are primitive in £. Consider the “mixed”

Gram matrix . ( z((gé)) Z((?i?) ) _ ( b(%J) b(FS’J) )

Then c | det(A) = det(E)u for some u € R*, so also ¢ | det(E). O

Corollary 3.6. If (E,b) is a regular bilinear R-module, F' < E primitive then det(F) = det(F+)u
for some u € R*.

Example: (E,b) =1, = (1,...,1). f=e+...+e, €L, b(f,f) = n = det((f)), so
A, = (f)* has determinant det(A,_;) = det((f)) = n.

Theorem 3.7. Let (V,b) be a reqular bilinear K-vector space of dimension n, F < E <V two
R-lattices in V.

(a) There are dy,...,d, € R\ {0} such that E/F = R/(d,) ® ... ® R/(d,).

(b) det(F) = d2d3 .. .d>% det(E).

(¢c) For R =7 we have [E : F] =d;---d, and det(F) = [E : F]*det(E).

Proof. By the main theorem on f.g. modules over principal ideal domains there is a basis e of
and elements dy, ...,d, € R such that f := (dyey,...,d,e,) is a basis of F. For the Gram matrix
we hence get by = diag(dy, ..., d,) b diag(d,...,d,) so det(F) = did; ... d2 det(E). O

Corollary 3.8. Let E, F be two Z-lattices in the reqular bilinear Q-vector space (V,b).
If there is some sublattice L such that [E : L] = [F : L] then det(E) = det(F).
If there is some overlattice L such that [L : E] = [L : F| then det(E) = det(F).

Example 3.9. L, > D, :={>""  aje; | a; € Z,> " a; even }. Then[L, : D,] = 2 so det(D,,) = 4.
If n is even, then 2(3 > i, ;) € Dy, so
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contains D, as a sublattice of index 2. Therefore det(D,) = det(I,) = 1.
Ifn=0 (mod 4), then b(D,,D,) C Z.

Ifn =0 (mod 8), then Qy(D,) C Z where Qy(x) := sh(x, ).

Define Eg := Ds, so (Es, Qp) is a reqular quadratic Z-module.

8
Er:={) ae; € Es | a7 = as} = {& € Eg | b(w, e7 — es) = 0}, s0 det(Er) = 2

=1

8
E¢ := {Z aie; € By | ag = a7 = as} = (eg — e7,e7 — es) ", so det(Eg) =3

i=1
4 Orthogonal groups and Witt’s theorem.

4.1 The orthogonal group.

Definition 4.1. Let (F,q) be a quadratic A-module. Then

O(F):=0(E,q) :=={¢: E— E| ¢ is an A-module automorphism, q(¢(x)) = q(x) for all z € E'}
is called the orthogonal group of (E,q).

Clear: g € O(E) = b,(g9(2), 9(y)) = by(z,y) for all x,y € E.

Example 4.2. (reflections as orthogonal transformations): Let (E,q) be a quadratic A-module
and e € E such that q(e) € A*. Then

se: B — E,s.(z) =2 —by(z,e)q(e) e
15 called the reflection along e. We have
(a) s?=1idg
(b) sc(e) = —e, sc(z) =z if by(e,x) = 0.
(c) se € O(E,q), because for x € E

q(se(7)) = q(x — by(w,e)q(e)e) =
q(x) — by(x, by(x,e)q(e)~ e) + by(x, e)?q(e) 2q(e) =
q(x) = by(w,e)*q(e) ™" + by(w, )*q(e) ™" = q(x)

(d) For any g € O(E,q) we compute gs.g™' = Sy(c)-

(gseg™ ") () = g(se(g™ (2))) = 997 () = bg(97" (2), €)a(e) ~'e) = 2 —by(x, g(€))a(g(e)) " g(e)
for all x € E where we used the fact that by,(g~'(x),e) = by,(x, g(e)) applying the orthogonal
transformation g to both vectors.

(e) S(E,q) = (s.| e € E,qle) € A*) QO(E,q) is called the reflection subgroup of O(FE,q).
By (d) this is a normal subgroup of the orthogonal group.

f) If 2 € A* then we may write E = Ae D(Ae)* and s, = —idge L id 4.1 is the reflection at
(Ae)
the hyperplane (Ae)*.
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Example 4.3. S(A,_;) = S, and O(A,_;) = (—id, S(A,_1)) = Cy x S,,.
Recall that A,y = {D> 7 xie; € L, | Y & = 0}. From this we find that {z € A,y | q(z) €
7* = {£1}} = {e; —e; | i # j}. To get the isomorphism S(A,_1) = S, we consider the action of
Sei—e; (fori#j) on (e1,... en):

Se—e; (k) = €x — (dk — Oj)(ei — ;) = ¢ € k= = €ois(k)
€j k=1

where 0,5 = (i,7) € Sy.

4.2 Witt’s theorem for fields of characteristic # 2.

Theorem 4.4. (Witt’s extension theorem,)

Let A be a field of characteristic # 2 and (FE,q) a finite dimensional quadratic A-vector space.
Let FF < FE be some reqular subspace and ¢ : F' — E an isometric embedding. Then there
is some g € O(E,q) such that gp = @. This g can be constructed as a product of at most
2dim(F) reflections. In particular if (E,q) is reqular, then O(E,q) = S(E,q) and any orthogonal
transformation is a product of at most 2dim(E) reflections.

Proof. We use induction on the dimension of F'.
dim(F) = 1: Then F' = Af; with ¢(f1) # 0 (since F' is regular). Let fo := ¢(f1). Then

q(fr = fo) +q(fi + fo) = 2(q(f1) + q(f2)) = 4q(f1) # 0.
(a) If ¢(fi — f2) # 0 then put e := f; — fo. We compute

2q(f1) = by(f1, f2)
q(f1) +q(f2) = by(f1, f2)

(b) If ¢(f1 + f2) # 0 then put e := f; + fo. As before we compute s.(f1) = —f2 80 g :=sp, 08, €
S(E,q) maps fi to f.

dim(F)=n>1:Then F = Af1 D ... D Af, with ¢(f;) # 0 for all i. By assumption there is some
g € O(E, q) such that ¢(f;) = g(f;) for all 1 <i <n —1 and g is a product of at most 2(n — 1)
reflections. Replacing ¢ by ¢1 := ¢! o o we achieve that ¢;(f;) = f; for all 1 <i <n — 1. Then
©1(fn) =: f) satisfies f/ L f; for all 1 <i <mn — 1. As in the case dim(F") = 1 we find that either
q(fn — f,) # 0 and put g1 := sp,—p or q(fn + f,) # 0 and put g1 := sp 0 55,1 p to construct an
orthogonal transformation g; of E' with ¢;(f;) = f; for all 1 <i <n —1 and ¢;(f,) = f,. Then
go g € S(E,q) has the desired properties. O

se(f1) = fr = bg(f1, fr = fa)a(fr — fo) T (fr = fo) = o — (fr = f2) = fo.

Corollary 4.5. (Witt’s cancellation theorem)
Let A be a field of characteristic # 2, F, Gy, Gy quadratic spaces over A, F' reqular. Then F (D G =
F@ G2 <~ G1 = GQ.

Proof. Let ¢ : FO Gy — FO Gy =: E be a bijective isometry and put F; := ¢(F). Then
F<FEand p:F — F <E, f— ¢(f)is an isometry. By Theorem 4.4 there is some orthogonal
transformation g € O(F) such that gp = ¢.

Claim: (g7 o 9)|q, : G1 — G5 is a bijective isometry.

To prove the claim it is enough to see that (g7 (¢(G;)) = Gs. Since F and hence ¢(F) are regular
subspaces of E, we have that

Go = F*+ and ¥(Gy) = (F)* = Fi- = o(F)*.
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So g(Ga) = g(F+) = g(F)* = ¢(F)* = 9(G1). =

Corollary 4.6. For p # 2 the two quadratic modules Q™ "HQ N(A) and Q™ H of Theorem
2.20 are not isometric. Otherwise N(A) = H but N(A) is anisotropic.

Example 4.7. Let A =TFy, E = A3, b(x,y) = 2191 +Toya +x3y3. F1 = ((1,0,0)), Fy := ((1,1,1)).
Then F; = F5 but

10

01

=0 (0))

do not satisfy Fi- = F3- (because b(x,z) = 0 for all x € F-.) So

Fi- =((0,1,0),(0,0,1)) : (

E=FQF - =FQOF F,2F, but F{- % F}

in particular Witt’s cancellation theorem does not hold for bilinear spaces over fields of character-
1stic 2.

Example 4.8. This example shows that it is necessary to assume that F is reqular: Let A be an
arbitrary field, E = Ae; @ Aea D Aes = [1,—1,0] with q(e1) = 1, q(es) = —1, q(e3) = 0. Then
Fy := A(ey +e3) and Fy = Aes are isometric as q(e; +e2) = q(es) =0, but E+ = Fy and Fy € E+,
so the isometry Fy — Fy, (e1 + e3) — e3 cannot be extended to some orthogonal transformation of
E.

4.3 Witt’s theorem for arbitrary fields.

Theorem 4.9. (Witt’s extension theorem)

Let (E,q) be a finite dimensional quadratic A-vector space over some field A. Let Fy, Fy < E be
sharply primitive subspaces and ¢ : Fy — Fy a bijective isometry. Then there is some g € O(FE, q)
such that gjp, = @.

The proof will be given in more generality (for local rings) in Section 4.5. Here we will first
state some consequences:

With the same proof as Corollary 4.5 we conclude from Theorem 4.9 Witt’s cancellation theorem
for arbitrary fields.

Corollary 4.10. (Witt’s cancellation theorem)
Let F,G1, Gy be quadratic spaces over the field A such that F is reqular. Then F O G; = F D) Gs
= G1 = GQ.

Corollary 4.11. Let A be a field and (E,q) a finite dimensional quadratic A-vectorspace.

(a) If Fy, Fy < E are singular and sharply primitive with dim(Fy) = dim(F») then there is some
g € O(E,q) such that g(Fy) = Fy.

(b) Any two mazimal singular sharply primitive subspaces Fi, Fy have the same dimension.

(c) ind(E, q) := the dimension of a mazximal singular sharply primitive subspace is called the
Witt index of (E,q).
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Proof. Singular subspaces satisfy ¢(F1) = q(F3) = {0}, so they are isometric, if and only if they
are isomorphic. To see (a) choose any isomorphism ¢ : F; — F,. As this is an isometry Theorem
4.9 tells us that there is some g € O(E, q) such that gz, = ¢, in particular g(Fy) = F.

For (b) take two maximal singular sharply primitive subspaces and assume that dim(F;) >
dim(F3). Let F] be some subspace of F; such that dim(F]) = dim(F,). Then also F} is sharply
primitive and singular, so by (a) there is some orthogonal transformation g € O(FE, q) such that
g(F]) = Fy. But then g(Fy) > F5 is sharply primitive singular subspace that properly contains Fy
which contradicts the maximality of F5. O

Corollary 4.12. Let A be a finite field and consider the quadratic spaces of Theorem 2.20.
ind(@Q™ 'HQO N(A)) = m — 1 and ind(Q™H) = m, in particular the two quadratic modules
are not isometric.

Corollary 4.13. Let (F,q) be a quadratic vector space over the field A of Witt index n. Then
(E,q) = (F,qr) QH(A™) with ind(F, qr) = 0. If (E,q) is reqular, then (F,qr) is anisotropic and
uniquely determined up to isometry. Then (F,qr) is called the anisotropic kernel of (E,q).
4.4 Orthogonal groups over finite fields.
Let A =TF,, ¢ =p/, (E,q) regular or semi-regular quadratic space over A. By Section 2.3 we have
two possibilities for even dimension dim(E) = 2m:
N m 01
(Ea Q+) = i=1 H = Yi=1 |: 0 or
~ m— 1 a m— 0 1
<E7Q—) :N(A>®®z:11H _|: b:|®®i:11|: O}
If dim(F) = 2m + 1 then there are 2 modules for p # 2 and one for p = 2:

)= NOOLE —oon |’ o«
)= doomE —goor' |’ ]

where € € A%\ (A%)2.
Since (F,q1) = (E, €q.) these two quadratic modules have isomorphic orthogonal groups.

Lemma 4.14. Let s(E,q) := |{z € E | q(z) = 0 and (x) sharply primitive }|. Then

s(E,q.) = (™ — 1)t +1) dim(FE) = 2m
s(E,q-) = (™ + 1)t —1) dim(E) =2m
s(E,q1)=s(E,q)= " —1={"-1){m+1) dim(F)=2m+1

Proof. The formulas are true for m = 0 (in the first and last cases) and m = 1 in the second case,
because s(0) =0, s(N(A)) =0, s([1]) = s([¢]) = 0.
We proceed by induction in the four cases. Write (E,q) = VO H with dim(V) = n and H =

(h, he) = { ! é

q(y) + z122. If x is sharply primitive with ¢(z) = 0 then either
e y=0and 2120 =021+ 20 £ 0: #=2({—1)

} Letzx =y+ze€ Ewithy € V, 2 = 21h1+22hs € H. Then q(z) = q(y)+q(2) =
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e y#0,q(y) =0, and z120 = 0: # =s(V)(2( - 1)
q(y) # 0, and 212 = —q(y): # = (" —s(V) = 1)(¢ - 1)
Sos(VO H) =ts(V)+ (" +1)(¢ — 1) so we obtain the following recursion for a,, := s(V):
Uz — O+ 1 =L(a, — 0"+ 1) = Plapo — "2+ 1) =
In the first case n = 2m and we may continue until ag = 0 to find that
Qom — P 41 =01 =0 = s(E,qy) = agp = " 0" — -1
In the second case n = 2m and we may continue until a; = 0 to find that
Qgm — P 4 1 =01 —0) = s(E,q ) = agy = 2™ — 0™ M — 1

In the third case n = 2m + 1 and a; = 0. Then agys1 — 2™ +1 =0 and so agpyq = ™ —1. O

Theorem 4.15. Let Oy, 1(F¢) := O(E,q1), O, (F,) == O(E,qy) and O,,,(Fy) := O(F,q_).

Then
(a) |04,(Fo)| = 2emtm=Dem — DL - 1)
(b) 105, (Fo)| = 20mm=D(em + 1) [T (6% = 1)
(c) |Oams1(Fp)| = ngQH (52Z 1)

where z =1 if £ is even and z = 2 if { is odd.

Proof. We only prove (a), the other two cases are left as an exercise. Write (E,q) = H DV where

H = <h1,h2> — |: 0 (1] :| . Let U1 = Stabo(E,q)(hl), U2 = StabUl(hg). Then

|O(E, )| = |O(E, @)ha| - [Ur| = [O(E, q)ha| - [Urhal|Us].

By Theorem 4.4 Uy = O(V) = Oy, 5 (F¢) and |O(E,q)hi| = s(E,q). To compute |Uihs| let
u € Uy. Then u(hy) = hy and u(hy) = h with ¢(h) = 0 and by(hy,h) = 1. So h = hy + ahy + v
with a € Fp, v € V, g(h) = a+ q(v) =0, so a = —q(v). Therefore

Uhy = {hy — q(v)hy +v |v € V} and |Uhy| = |V/|

and we find

m

|03, (Fo)| = (™ — 1) (™ + 1) 2105, ,(Fo)| = [[(¢ — 1) (@' + 1)¢%72.

J=1

4.5 Witt’s theorem for local rings*.

Let A be a local ring and I < A be the unique maximal ideal of A. Then A* = A\ I, so an element
of A is either contained in [ or a unit. Examples for local rings are of course fields but also

Ly = {% € Q| p/b}

for any prime p. Any projective module over a local ring is free.
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Theorem 4.16. Let (E,b) be a free finitely generated A module with symmetric bilinear form b.
Then there is a decomposition

E=FEQO..ODF.QF
with reqular submodules E; < E of rank 1 or 2 and a module F with b(F,F) C I. E is reqular if
and only if FF = {0}.

Proof. As an exercise, following the proof of Theorem 1.15. O

Note that we cannot expect something analogous to Theorem 2.8 for arbitrary local rings: Let
a € I. Then free quadratic A-module

(E7Q)=[1 3}

satisfies ¢(E) € I and b,(E, E) C I but (E, q) is not the orthogonal sum of 1-dimensional quadratic
A-modules if a ¢ 2A.

Theorem 4.17. Let (E,q) be regular quadratic A-module over a local ring A. If 2 € A* then
(E,q) has an orthogonal basis.

If2 ¢ A*, then (E,q) is the orthogonal sum of 2-dimensional reqular submodules.

Any semi-reqular quadratic module is the orthogonal sum of a semi-reqular quadratic module of
dimension 1 and a reqular quadratic module.

Proof. As an exercise, following the proof of Theorem 2.8. O

Theorem 4.18. Let (E,q) be a quadratic module over a local ring A, F,G,H < E so that F,G
free of finite rank and
(1) bp(H)=F*",bg(H) = G*

Lett : ' — G be a bijective isometry such that

(2) tx=x (mod H) for allz € F.

Then there is an orthogonal transformation v € O(E, q) such that
up=tur=x (mod H) for all x € F,ur =z for all x € H*.

In the special case = H we obtain Witt’s extension theorem for local rings and hence all its
corollaries from Section 4.3

Corollary 4.19. (Witt’s theorem for local rings) If F,G are sharply primitive free submodules of
the quadratic A-module (E,q) and t : F — G an isometry, then there is u € O(E,q) such that

For the proof of Theorem 4.18 we aim to construct u as a product of reflections s, with h € H
(which is only possible under additional conditions). Then w1 = id is automatically satisfied.
To find enough reflections we need additional assumptions. Put A= A/I, H = H/IH. If C C H
then we put

Ci={r € H|blz,e)=0forall c € C}
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Lemma 4.20. Under the assumptions of Theorem 4.18 suppose that either

(3) A%y and a@f {0y or
(4) AT, and g(H") # {0}

Then there is such an uw € O(E,q) as in Theorem 4.18 that is a product of reflections sy, with
heH.

Proof. We proceed by induction on rank(F') = rank(G) =: r, where the hardest case is the one for
r=1.

r=1: Then F = Af, G =Agwithg=1tf = f+h with h € H and q(g9) = q(f) +q(h) +b,(f, h) =
q(f). If g(h) € A*, then s,(f) = g and hence u = s, is such an extension.

Otherwise

(5) a(h) = =by(f, h) =by(g,h) € I.
We want to find a reflection s, so that s.(f) is transformed into g by one more reflection. Write
g =se(f)+d, so

d =by(f,e)qle)" e+ h and g(d) = b(f, e)b(g,e)q(e) ™" + q(h).

If g(e) and ¢(d) are invertible, then s4(s.(f))) = g and s4 0 s, is the desired extension of . So we
need to find some e € H such that

q(e) € 1,b(f,e) ¢ 1,b(g,¢) & I.

For « € {g, f} let H, := {h € H | b(x,h) € I}. Because of condition (1) both subspaces have
co-dimension 1 in H and we need to show that

q(H\ (H; U Hy)) # {0}.
Put M := H\ (H;UH,). If g(M) = {0} then choose T € H; N H, and § € M. Then for alla € A
we get ax +7y € M so -
q(@x +y) = a’q(z) + ab(z,9) + () = 0
If A contains at least 3 elements, then this implies that
(6) 4(z) = b(@,7) = 9(7) = 0.
Equation (5) shows that we may take T = h and conclude that b(h, M) = 0. As M generates H
we even obtain b(hg—]) = 0. Since g = [+ h we get H; = Hy and any vector of H is either in
M =H\ Hyorin Hy. Then (6) reads as g(H) = 0 contradicting the assumption (3).
If A =TFy then we obtain (6) for all 7,7 € . Clearly il ﬂﬁf — T ﬂﬁg and again any vector
of A is either in H \ H; or in i N H, so again by (6) we obtain Q(FL) = 0 contradicting the
assumption (4).
r > 1: Now assume that » > 1 and let (fi,..., f.) be an A-basis of F. By induction hypothesis we

get some product of reflections s, with h € H mapping f; to t(f;) fori =1,...,r— 1. Multiplying
t by this product we may hence assume that

(1) t(fi) = fifori=1,....,r—1.
By assumption (1) there are hy, ..., h, € H such that b(f;, h;) = J;; and

H:@Ahi@pwhereD:FimH.

=1
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Put H := Ah, + D. Then by (7) we have tx —z € H for all z € F. Since s,(f;) = f; for all
i=1,...,r—1and h € H it is enough to apply the case r = 1 for Af, instead of F and H instead
of H to conclude the proof of the Lemma. So we need to check conditions (1)-(4) for Af, and H.
(1) is true, since h, € H. (2) has been shown above. For a suitable choice of the fi,..., f, we
may achieve (3) resp. (4). By assumption there is some h € H (resp. HL) such that g(h) # 0.
We choose h, € H \ D such that h € Ah, + D and then extend h, to a basis (El, . ,ET) of H/D.
Representatives h; of the h; then form an A-basis of H/D, the dual basis is then a basis of F' for
which H has all necessary properties. O

Proof. (of Theorem 4.18) The idea is to replace E by some space E so that the conditions (3) or
(4) are satisfied and then use Lemma 4.20. Let H(A) = Ae & Af with g(ae 4+ ' f) = aa’ and put

E=EQH(A),F:=FQAe, G:=GCDAe, H=HD Ale+ f),i =t D idy.

Asqle+ f) =1 (and e+ f € T it A= Fy) we may apply Lemma 4.20 to this new situation
to find some @ € O(FE) as a product of reflections along elements of H. As b(H,e — f) = 0 we
compute @(e) = t(e) = e and i(e — f) = e — f, so @ = u D idg4y with u € O(E, q) as requested.
O

4.6 Witt’s theorem for Z-lattices.

Let (V, b) be a non-degenerate bilinear Q-vector space. We call (V,b) positive definite, if b(x, z) >
0forallz € V,z#0,ie. if (V®R,b)is a Euclidean vector space.

Definition 4.21. o A Z-lattice L in (V,b) is called positive definite, if (V,b) is positive
definite.

o A Z-lattice L in (V,b) is called unimodular, if L# = L, so if (L,b) is a reqular bilinear
Z-module.

o L is called even, if b((,0) € 2Z for all { € L. Then q : L — Z,q({) := 1b((, () defines an
integral quadratic form on L with by = b.

e L is called orthogonally indecomposable, if L = Ly D Ly implies that either Ly = {0}
or Ly = {0}.

Clear: Even unimodular lattices are the regular quadratic Z-modules.
H(Z) is an even unimodular lattice. 3
[Eg is also an even unimodular lattice, as well as Dy,

Theorem 4.22. Let (L,b) be a positive definite Z-lattice. Then for any a € Z the set L<, :=={l €
L|b(¢,0) <a} is finite.

Proof. For the proof we give an algorithm to compute L<, using the Gram Schmidt orthogonali-
sation process:

Let (by,...,b,) be a Z-basis of L.
For i =1,...,n compute the projection b; of b; onto (b, ... ,bi_1>6 =, ..., b;_1>6.

i—1
b(b;, V)
b’.::bl-—E b with g, = ———2%
’ et U
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Then B' := (b}, ...,b,) is an orthogonal basis of (V,b) with (by,...,b;)g = (b],...,b})q for all i.
Let £:= 37" aibi € L<,. Then £ =377 a;b) with a; € Q,
Op = Qp, Op—1 = Ap—1 — Unn—10n, - - -

Za (#,0)) <

yields that a2b(b/,, b)) < a. So we only have finitely many possibilities for a,, € Z. In general

a2 (b, b)) Z,u”al (b, b)) < S — Z (1), )

i=j+1 i=j+1

whence one gets only finitely many possibilities for a; € Z, j =n,n—1,...,1. a

Corollary 4.23. (L, q) positive definite Z-lattice =

O(L,q) == {g € GL(L) | q(g(z)) = q(x) for all x € L}
is a finite subgroup of GL(L) = GL,(Z).

Proof. Let (ey,...,e,) be a basis of L and a := max{q(e;) | 1 < i < n}. Then for any
g € O(L,q) we have q(g(e;)) = q(e;) hence the candidates of the images g(e;) lie in the finite set
M :={le L|q)<a}. As g isuniquely determined by g(e1),...,g(e,) we get |O(L,q)| < |M]|™.
|

Theorem 4.24. (Kneser) Every Z-lattice L in the positive definite bilinear Q-space (V,b) can be
written uniquely as an orthogonal sum of indecomposable sublattices.

Proof. We start the algorithm with a small definition: We call a vector x € L indecomposable,
if there are no y,z € L\ {0} for which x =y + z and b(y, z) = 0.

Then any vector 0 # z € L is sum of indecomposable vectors:

This is clear if = is indecomposable. Otherwise © = y + z with b(x,x) = b(y,y) + b(z,2) so
0 <b(y,y) <b(z,z) and 0 < b(z,2) < b(z,z). If one of the summands y or z is not indecompos-
able, then one can write it as sum of vectors of smaller norm. By Theorem 4.22 the set L<y(, ) is
finite, so this method constructs x as a sum of indecomposable vectors after finitely many steps.
In particular, L is generated by indecomposable vectors (but there are usually infinitely many
indecomposable vectors in L). Let Z := {z € L | = is indecomposable }

We introduce an equivalence relation on Z: Two indecomposable vectors z,y € Z are called con-
nected, if there are indecomposable vectors g = y, x1, ...,y = z in Z such that (z;, ;1) # 0 for
all 2. This relation partitions Z into finitely many classes Ky, ..., K.

Let L; := (K;)z.

Then L=L; D ... D Ly is the unique decomposition of L into indecomposable sublattices. a

Examples:

e For I, = @"(1) the orthogonally indecomposable summands are the sublattices Ze;.

e The lattice A,, is indecomposable.
Because A, is an even lattice, so (A,)<2 = {0} and the vectore e;; = e; —e; € (A,,)_o are
indecomposable. As b(eq;,e1r) > 0 for all j, k these ly in one connected component. But
these vectors generate the space (they even generate the lattice A,,), so A,, is indecomposable.
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e The lattice D, is indecomposable if n > 3, Dy = (€1 + e3) D(e; — e3). (Exercise)
e For n € 47 the lattice D, is indecomposable if n > 4. We have D, 2 I,. (Exercise).
e [Es, E;, Eg are indecomposable.
Corollary 4.25. If L, M, N are positive definite Z-lattices with LD M = L O N, then M = N.
So Witt’s theorem holds for positive definite Z-lattices, but
Remark 4.26. Witt’s theorem does not hold for reqular quadratic Z-modules.

Proof. The lattice Dy is a positive definite even unimodular orthogonally idecomposable lattice
of dimension 16. Also Eg (D Eg is a positive definite even unimodular 16-dimensional lattice, so
(E,q) = (Dyg, q(x) := b(z, x)) and (F,q) := (Es,q(x) := 1b(z,z))? are regular (positive definite)
quadratic Z-modules. Using Theorem 4.24 we see that these two modules are not isometric, but

(E,q) O H(Z) = (F, q) O H(Z).

To construct this isometry write Dy = (Dyg, v = %Zil e;) and H(Z) = (e, f) with q(ae+bf) = ab.
The obvious sublattice Dg together with v 4+ e — f generates a sublattice L isometric to Eg in
Dy O H(Z). Find a hyperbolic plane X in L' (generated by a vector of length 0 and some other
vector having inner product 1 with this vector). Then identify (X @ L)* with the second copy of
Es. O

5 The Witt group.

Definition 5.1. Two quadratic A-modules Ey, Fy are called Witt-equivalent, if there are hyper-
bolic A-modules Hy and Hy such that By D Hy = Es D Ho.

W(A) :={[(E,q)] | (E,q) regular quadratic A-module }
18 called the Witt group of A.

Remark 5.2. W(A) is a commutative group with [E] + [F] := [EQD F]. We have [H] = 0 and
—[(E,q)] = [(E, —q)] since [(E,q) D(E, —q)] is hyperbolic by Theorem 2.1}.

Remark 5.3. Assume that A is a principal ideal domain (e.g. a field). Since the rank of any
hyperbolic A-module is even we obtain a well defined group homomorphism

e: W(A) = Z/)2Z,[(E,q)] — rank(E) + 27Z.
Let Wi (A) := ker(e). Then W(A)/Wi(A) 2 Z/2Z if 2 € A* and W(A) = Wi (A) if 2 ¢ A*.

Remark 5.4. Let A be a field or more generally a local ring. Then by Witt’s theorem, any reqular
quadratic A-module (E, q) decomposes uniquely (up to isometry) as E = F O G with G hyperbolic
and F anisotropic (ind(F) = 0). Then [E] = [F] € W(A). So every class in W(A) has a unique
(up to isometry) anisotropic representative.

Example 5.5. If A is an algebraically closed field then W1(A) = 0, so W(A) = Z /27 if char(A) #
2 and W(A) = 0 if char(A) = 2. In particular e : W(C) — Z/2Z is an isomorphism.

(Show as an ezercise that any reqular quadratic space of dimension > 2 over an algebraically closed
field contains a sharply primitive singular vector.)
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Example 5.6. The Witt group of R: Recall Sylvester’s theorem: Any reqular quadratic space
over R is equivalent to Q1] © D[~1]. The signature of this space is defined as a — b. As
1] D[—-1] = H the signature gives a group isomorphism W (R) = Z.

Definition 5.7. Let (E,q) be a free quadratic A-module with basis (ey, ..., e,) where n = 2m or
n=2m+ 1. Then
d(E) := (—1)" det(E, q)(A")*

1s called the discriminant of E.
Remark 5.8. d(H) = 1 and d(E, D E») = d(Ey)d(Es) if e(E;) = 0, so d : Wi(A) — A*/(A*)?

is a group homomorphism if A is a principal ideal domain (i.e. all f.g. projective A-modules are

free).

Example 5.9. The Witt group of a finite field. Let { := p’ be some prime power and A = F,.
If p # 2, then the unique anisotropic quadratic spaces are [1], [¢], N(A) = (Fp,N), so

W () = {0, [1], [, [N (A)]}

is a group of order 4. It is cyclic, if and only if [1] D[1] is anisotropic, so if and only if { = —1
(mod 4).

If p =2, then all reqular quadratic spaces have even dimension and N(A) is the unique anisotropic
reqular quadratic space. So we have

([1]) = C4 if ¢ =—1 (mod 4)
W(F,) =< ([1]) x ([e]) 2 Cy x Cy  if £ =1 (mod 4)
([IN(Fy)]) = Cq if £ is even

Note that for p # 2 the discriminant is a group isomorphism d : W1(F,) — F;/(F;)* = Cy. So
rank mod 2 and discriminant describe the elements in the Witt group. For p = 2 none of the
mappings (e, d) is useful, to distinguish N(IFy) and H(F;) we need to interpret the discriminant
not in A*/(A*)? but as a polynomial X?* —d € A[X] defining a separable quadratic extension of
A. This will turn up naturally as a certain subalgebra of the Clifford algebra of (E,q), that we will
define later.

5.1 The Witt group of finite abelian groups.

Definition 5.10. Let A be a finite abelian group. A symmetric bilinear form b: Ax A — Q/Z
is a biadditve map such that b(z,y) = b(y,x) for all z,y € A. We then also call (A,b) a bilinear
group. The form b is called regular, if

ba: A— A" :=Hom(A,Q/Z),a — (x> b(a,x))

18 an isomorphism.

A quadratic form is a map q : A — Q/Z such that q(na) = nq(a) for alln € Z and b, : (x,y) —
q(z+y)—q(z) —q(y) is a symmetric bilinear form. (A, q) is called a quadratic group. The form
q is called regular if b, is reqular.

Example: Every finite dimensional F,-linear space is a finite abelian group. If (V,q) is a
quadratic F,-module (for some prime p) then the identification F, = %Z/Z makes (V,q) to a
quadratic abelian group.
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Example 5.11. (discriminantgroup) Let L be an integral Z-lattice in a regular Q-space (V,b).
The b defines a reqular symmetric bilinear form

b: L*/Lx L¥/L — Q/Z,b(x + L,y + L) := b(x,y) + Z

on the discriminant group (L#/L,B). If L is even, then we obtain a reqular quadratic form
1
q: L*/L — Q/Z,x+ L §b(:c,x) +Z

with by = b.

Lemma 5.12. Any reqular finite bilinear group (A,b) is the orthogonal sum of its Sylow p-
subgroups, (A,b) =1, (A, b). A similar result holds for quadratic abelian groups.

Proof. It is enough to show that A, L A, for distinct prime p # ¢. So let x € A, and y € A, and
choose k,t € N such that p*z = ¢*y = 0 and ¢, d € Z with c¢p* + d¢* = 1. Then

b(w,y) = cp*b(w,y) + dl'b(x,y) = cb(p*x,y) + db(z,l'y) = 0+ 0 = 0.

Definition 5.13. Let (A,b) be a reqular bilinear group. If N < A is a subgroup then also
N+t :={aec A|bla,n) =0 for alln € N}.

(A, b) is called weakly metabolic, if there is a subgroup N < A with N = N*.

A regular quadratic group (A, q) is called weakly metabolic, if there is a subgroup N < A with
N1 =N and q¢(N) = {0}.

The Witt group W of bilinear groups (resp. WQ of quadratic groups) is the Grothendieckgroup
of the set of all isometry classes of reqular bilinear groups (resp. regular quadratic groups) modulo
the weakly metabolic groups.

For a prime p the Witt group of regular bilinear p-groups (resp. regular quadratic p-groups) is
denoted by W (p) (resp. WQ(p)).

Clearly (A4,b) L (A, —b) is weakly metabolic for any regular bilinear group (A, b), as N := {(a,a) |
a€ A} = Nt So —[(A4,b)] = [(A,—=b)] in W.

Remark 5.14. W = [[ W(p) and WQ = [, WQ(p).

Remark 5.15. If (A,b) is reqular and N < A any subgroup then (N+)* = N.

Proof. The main point here is that Q/Z is an injective Z-module, so every group homomorphism
¢ : N — Q/Z can be extended to some element in A*.

We always have N C (N+)t. Now Nt < A and N+ = ker(by : A — N*). As by is an isomor-
phism, also by is surjective and |A| = |[N*||[N*| = |[N||N*|. Similarly |A| = [NL||[(N1)*] so we
obtain equality. O

Lemma 5.16. Let (A,b) be a regular bilinear group and N < (A,b) with N C N+, Then b defines
a regular symmetric bilinear form b on N+ /N defined by

b(z + N,y + N) := b(x,y) for all z,y € N+

Then (A,b) L (N*/N,—b) is weakly metabolic. A similar statement holds for quadratic forms if
one additionally assumes that ¢(N) = {0}.
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Proof. b is well defined and regular since (N+)* = N. The subgroup U := {(2,7) | z € N*}
of (A,b) L (N+/N,—b) satisfies U ¢ U+, But |U| = |[N*| = & = |UL] since |[A x NLY/N| =

N

Al 1 2
[Almm =101 H

Theorem 5.17. Every element of W (resp. W Q) has a unique anisotropic representative.

Proof. Choose (A, b) in [(A, b)] of minimal cardinality. Assume that there is some x € A with x # 0
and b(z,z) = 0. Then N := (x) < A satisfies N C N*. By Lemma 5.16 [(A4,b)] = [(N+/N,b)]
contradicts the minimality of |A|.

To see the uniqueness (up to isometry) let (A,b) and (A’,V) be two anisotropic representatives
of the same class in W. Then (A @ A’, (b, —b')) is weakly metabolic, so there is some subgroup
N < A® A’ such that N = N+. As A is anisotropic all n’ € A’ with (0,n’) € N satisfy n’ = 0 and
similarly the kernel of the first projection is 0. As |[N| = |[N*| = /|A||A’| we find that |A] = |A|
and the map ¢ : A — A, ¢(a) := ' if and only if (a,a’) € N is a well defined isometry between
(A,b) and (A, V).

For quadratic forms similar proofs are left as exercise. ad

Remark 5.18. FEvery anisotropic reqular bilinear group has square free exponent.

Proof. Let (A,b) be anisotropic. Let # € A, n € N, n > 1 with n?z = 0. Then b(nz,nx) =
b(n?z,z) = b(0,z) = 0 and hence nx = 0, because (A, b) is anisotropic. O

Corollary 5.19. W(p) = WQ(p) = W(F,) if p # 2. W(2) = Cs.

Proof. For p # 2 quadratic forms and symmetric bilinear forms are equivalent concepts.
1
W(F,) - WQ(p),(¢:V —=F,) — (]—)q V= Q/7)

is a group homomorphism of which we now construct the inverse. Let (A, q) be an anisotropic
representative of [(A4,¢)] € WQ(p). Then by Remark 5.18 A is elementary abelian and hence a
vector space over F), ¢: A — %Z/Z, so (A,pq) € W(F,).

To see that W(2) = Cy we show that every regular bilinear Fy-space (V,b) of dimension > 1 is
isotropic. If (V,b) is anisotropic, then for = # y € V' \ {0} we get b(x,z) = b(y,y) = 1 and hence
b(x +y,z+y) =0 a contradiction. O

Theorem 5.20. WQ(2) = Cg x Cs.
To determine WQ(2) we need Gauss sums on finite quadratic groups.

Definition 5.21. Let e(t) := exp(2wit). Then e : Q/Z — C* is a group homomorphism.
For a finite quadratic group (A, q) put

['(A,q) =

1
\/Ea; ;WA q) = i ; e(q(a))

Lemma 5.22. I'(A,q) = [[,7%(A, ).

I((A1, @) L (A2, 92)) =T(A1,q1) - T'(A2,¢2)).

If (A, q) is weakly metabolic then v,(A,q) =1 for all primes p.
In particular we get a group homomorphism v, : W — C*.
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Proof. The first two statements are clear. Now assume that (A, q) is weakly metabolic. Then
(Ap, q) weakly metabolic for all primes p, because the Sylow p-subgroup N, of the metaboliser
N = Nt < (A,q), ¢(N) = {0} also satisfies N, = N\ < (A,,q) and ¢(N,) = {0} Sowlog A=A,

and N < A, N =N+ ¢(N)={0}. Write A :Ule a; + N with a; = 0. Then

Ze(q(a)) = ZZ q(a; +n)) ZZ q(a;) + by(ai,n Ze Z (bg(a;,m)).

acA i=1 neN i=1 neN i=1 nenN

If a; ¢ N = N+, then n — b,(a;,n) is a non-trivial group homomorphism from N to Q/Z. So
there is ng € N with b,(a;, no) # 0. Then

> elby(ain) = elbylas,n+ng)) = e(by(ai,no)) Y elby(ai, ).

neN neN neN

This implies that for 7 # 1 the sum )\ e(by(a;,n)) = 0. Fori = 1 we get b,(a1,n) = by(0,n) =0
for all n € N, hence )\ e(by(a;,n)) = |[N| = /|Al O

Definition 5.23. For k=1,3 and ¢ = 1,3,5,7 define
_ k , 14
¢r = (Z)2Z,q), with q(1) = 1 +Z, and vy := (Z/AZ,q), with q(1) = 3 + Z.

Put

= (/2L ® Z)2Z,q) = (M%N) B { v %3 }

with g(z) = § for all x # 0.
Remark 5.24. ¢, and ¢, are reqular quadratic groups. We compute

142

1 1
Bldn) = (el = = =G

Yo(th1) = (1+C8+C8 + @) = (s

Lemma 5.25. In WQ(2) we have

(1) 8[¢1] =0

(2) 2[¢n] = 2[3n].

(3) k[t1] = [k (moa s)] for k odd.
(4) 4[] = [x].

(5) [¢1] + [¢3] = 0.
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Proof. (1) Let (ay,...,ag) be a basis of 1® ¢; and
N :={a1 + ay + a3 + a4, az + a4 + as + ag, as + ag + ar + ag, a1 + a3 + as + az).

Then N < Nt ¢(N) = {0} and |N| =2 so N = N+ and 18 ¢, is weakly metabolic.

(2) Let (a1, az) be a basis of ¢; L 41 and e := 2a;+2ay. Then g(e) = 0 and (e)* = (2ay, 2a,, a;+as).
Hence (a; + ag, a; + 3ay) is a basis of {€)*/{e) = ¢1 L ¢.

(3)-(5) As an exercise. Note that [¢1] + [¢7] is weakly metabolic, and so [1)7] = —[¢1] = T[¢)1] by
(1) and (2). O

Proof. (of Theorem 5.20) We show that

WQ(2) = ([¢1]) ® ([p1] — [Un] = [01] + [v7]) = Cs x Ch.

We know that [¢;] has order 8 and 4[¢1] # [¢1] + [¢7]. Since the order of the abelian group of
[p1] + [¢7] (which is Z/2Z & Z /A7) is not a square, the quadratic group [¢1] + [¢)7] cannot be weakly
metabolic. So [¢1] + [17] has order 2. It remains to show that

WQ?2) = ([¢r], [e], [x] | k=1,3,=1,3,5,7) =: X.

Let (A, q) be an anisotropic quadratic 2-group. Show that [(4, ¢)] € X by induction on |A|.
We first note that the exponent of A divides 4. Otherwise A contains an element = € A of order
8 and

q(4x) = 16¢(x) = 8by(x, ) = by(8x,x) =0

so 4z isotropic, a contradiction to (A, q) being anisotropic.

If a € A is an element of order 4 then g(a) = £ + Z for k € {1,3,5,7} since by(4a,a) = 8¢(a) =0
and ¢(2a) = 4q(a) # 0. But then A = (a) L (a)* and {(a) = ;.

So we may assume that exp(A) = 2. If there is some a € A with ¢(a) = £ for some odd F,
then the regular form ¢y splits as orthogonal summand. It hence remains to treat the case that
q(A\{0}) = {5 +Z}. But then (A,2¢ (mod 2Z)) is an anisotropic quadratic space over Fy, hence
isometric to N(Fs) whence A = . O

Corollary 5.26. The exponent of W(Q is 8. In particular the image of vy, is contained in the
subgroup (Gs) < C,
[':WQ — (G) <C.

More precisely we have

—~
&
—_~—
[\

W(WQ) C (Gs) NQLyP, Gop)” =

—~
|
~

3
TR
e
>~
w

5.2 Maximal lattices.

We return to our example where R is a principal ideal domain, K its field of fractions. Let (V,q)
be a finite dimensional quadratic space over K. We want to study full R-lattices in (V,q).

Definition 5.27. Let d € R, (V,q) a quadratic K-vector space. An R-lattice E <V is called
d-maximal (or just « maximal lattice if d € R*), if

(a) ¢(E) € dR and

(b) E is mazimal with (a), i.e. for all lattices L <V with E < L and q(L) C dR we have L = E.
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Theorem 5.28. Let (V,q) be reqular or semi-reqular. Then any R-lattice E <V with q(E) C R
15 contained in a mazximal R-lattice.

Proof. Write E = (ey,...,e,)r. Let § denote the determinant if (V,q) is regular and the semi-
determinant, if this space is semi-regular. If F is not maximal then there is some lattice F' =
(fi,.-., fu)r such that E C F, q(F) C R. We compute 6(F) = [F : E]*)(F) so §(F) is a proper
divisor of §(F) # 0. Since R is Noetherian (as a principal ideal domain) R has no infinite extending
divisor chains so this process finishes after finitely many steps. a

Example: It is necessary to assume that (V,q) is regular or semi-regular. Taking ¢ = 0 we
will never obtain a maximal lattice.

Theorem 5.29. Let (V,q) be a quadratic K-vector space such that ind(V,q) > 0. Let L <V be a

mazimal lattice. Then L = L' O H with H = H(R) = { 0 (1) } .

Proof. If ind(V, ¢) # 0 then there is some 0 # e € V such that ¢(e) = 0 and b(V,e) = K = Kb(L,e).
As R is a principal ideal domain, there is some ¢ € R such that Ke N L = R(ce). Replacing e by
ce we may assume that e € L is a primitive vector. We have b(e, L) < R so b(e, L) = dR for some
d. Put E := (L, %e). Then

a(B) € a(L) + by(L, ) +q(-e)RC R

so d € R* because of the maximality of L. So b(L,e) = R and hence Re is a singular sharply
primitive submodule of (L, ¢). The result follows by Theorem 2.13. O

Corollary 5.30. If (V,q) = (V',¢)© O;*, H(K) then any maximal lattice L in (V,q) is of the
form L=L O O", H(R).

5.3 Milgram-Braun formula

Lemma 5.31. Let (V,q) be a reqular quadratic space over Q and L <V an even Z-lattice in (V,q)
(i.e. q(L) CZ). Then q defines a reqular quadratic form q : L* /L — Q/Z. The map

0 W(Q) = WQ;[(V,q)] = [(L*/L, qr)]
is a well defined group homomorphism with kernel isomorphic to W (Z).

Proof. ¢§ is well defined:

We first show that the class of (L# /L, qr) in WQ does not depend on the choice of the even lattice
LinV:

If Ly < L is a sublattice, then L/Ly < L /Ly is a subgroup with dual group (L/Lo)* = L# /L,
and qr,(L/Lo) = {0}. So by Lemma 5.16 [L¥ /Lo, q1,] = [L#/L,q1] € WQ.

In general, if Ly, L, are two even lattices in V', then Ly := Ly N Ly is also an even lattice and

[L?&/le qu] - [L#/Lm qLo] = [L#/L% QLz]‘

Clearly hyperbolic modules map to zero and the map is compatible with orthogonal sums, so ¢ is
a well defined group homomorphism.
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The kernel of § consists of those quadratic spaces (V,¢q) that admit an even unimodular lattice
(L,q), so (V.q) = «(L,q) = (QL, q), where

v W(Z) — W(Q), (L, q)] = [(QL, g)].

¢ is injective by Theorem 5.29: Because ¢ is a well-defined group homomorphism injectivity follows
from computing the kernel of ¢. If ¢([(L,q)]) = 0, then (QL,q) = H(Q)™ for some m. But then
(L, q) is a maximal lattice in H(Q)™, so by Theorem 5.29 (L, q) = H(Z)™. O

Theorem 5.32. (Milgram-Braun formula) Let L < (V,q) be an even lattice in the rational
quadratic space (V,q) of signature o € Z. Then T'(L*# /L, q1) = e(c/8).

Proof. (following Huseméller-Milnor) By Lemma 5.31 we know that I'(L) := I'(L¥ /L, q1,) does not
depend on the choice of an even lattice L in (V,q). We also know that I'(L; @ Ls) = I'(L1)I'(Ls)
(see Lemma 5.22). So it is enough to show the formula for 1-dimensional lattices L = Ze with
q(e) = m. Wlog we assume that m > 0. Then L# = Z:-e, |[L¥/L| = 2m and

Then f(0) = f(1) = v2mI'(L) and f is l-periodic, continuous and piecewise smooth, so its
Fourier-series converges to f everywhere,

o0

ft) = Z a, exp(—2mint), where a, = /1 f(t) exp(2mint)dt.
0

n=—oo

Then v2mI(L) = f(0) = > 07 _ ay,. To evaluate

o= S [ (o (S )

we check that ¢ k+t +nt = (k+t+2mn)?/(4m) (mod Z) and substitute s = k + ¢ + 2mn to find

2m=1  k4omn+1 2 2m(n+1) 52
Dl B S
k=0
. 0o L2 .
and hence v2mI'(L) = > a, = [~ exp(mi%m)ds. We now substitute u = o
I'(L) = [ exp(miu®)du is independent of m. So T'(L) = v2(¢1) = (s = e(3). O

Corollary 5.33. (Even lattices of odd determinant.) Let (L, q) be an even lattice of odd determi-
nant in the reqular quadratic Q-vector space (V,q) of signature o. Then o € 2Z. If o € 2+ 47
then there is some prime p =4 —1 that divides det(L) to some odd power.

Even unimodular lattices (L, q) ezist, if and only if o € 8Z.
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Proof. We already know that the dimension of L is even, so is its signature. If the signature is in
2 4 4Z, then I'(L) € {£i}. As i & Q[\/p, () for primes p =4 1, we need that some prime p =4 —1
divides det(L) = |L# /L.

o € 87 is necessary for the existence of an even unimodular lattice by Milgram’s formula. We
need to show that for any signature o € 8Z there is some even unimodular lattice of signature o.
If o = 8a > 0 then we may take L = E¢. If 0 = —8a < 0 then take (Eg, —¢)®. To obtain a lattice
of a given dimension and signature +8a add a suitable sum of hyperbolic planes H(Z). a

5.4 The Witt group of Q.

Let (V,q) be a regular quadratic space over Q. Then (V,q) has an orthogonal basis (V,q) =
(ay,...,a,) with a; € Z square free. In particular

W(Q) = ({(a) | a € Z, square free )
Theorem 5.34. W(Q)=W([R)o W =Z o P, W(p).

Proof. Since Q C R, the signature defines a canonical epimorphism S : W(Q) — W(R) = Z. We
now want to construct a canonical epimorphism 6, : W(Q) — W. Let (V,b) be a regular bilinear
Q@-space and L <V an integral Z-lattice in V. Then b defines a regular symmetric bilinear form

Br: L¥/L x L¥ /L — Q/Z.
and as in Lemma 5.31 we obtain a well defined group homomorphism
Gy : W(Q) — W, [(V,b)] = [(L* /L, Br)].

Note that the finite abelian group (L# /L, 81) is the orthogonal sum of its Sylow p-subgroups. For
a prime p denote by ¢, the composition of §, with the projection onto the Sylow p-subgroup,

6, W(Q) — W(p).
To show that W(Q) = W (R) & W (via the isomorphism (.S, d,)) consider the subgroup
Ur = ((a) | a € Z, all prime factors of a are < k) < W(Q)

Then the signature S is an isomorphism S : U; = Z = W(R) and U; < ker(d,). The subgroup
Uy = ((1), (=1, 2)) is isomorphic to W (R) x W (2) = Z x Cy. This follows because (—1,2) < ker(S)
has order 2 in W(Q), as (—1,2, —1,2) contains the self-orthogonal subspace ((1,1,1,0),(0,1,2,1)).
By induction on k we want to show that Uy = W(R) P, -, W(p).

For k =1 and k = 2 we have already seen this and it is clear that U, = Uy_; if k£ is not a prime.
If k = pis a prime, then it is enough to show that U,/U,_1 = W (F,).

Lemma 5.35. Let p be an odd prime. Define 6, : W(Q) — W (F,), on the generators {{a) | a €
Z square free } by

5,((0)) = (@ aeZ,pfa

b((pa)) = (@ a € Zpfo.

Then §, gives an isomorphism U,/U,_1 — W(F,).
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Proof. Clearly 9, is surjective and U,_; C ker(d,). Need to show that U,_; = ker((d,)v, ).
Let ay,...,a, € Z such that |a;| <p—1and a € Z, 0 < |a| < p so that a; ---a, =, a. Then

(ap) = (ay---a,p) (mod U,_y).

We show this by induction on r. If » = 1 then nothing is to show.
For r = 2 let ajas = a + kp with k € Z. If k = 0, then nothing is to show. If £ # 0, then
0 < |k| <pand

(a,kp) = (a + kp, (a + kp)akp) = (ajas, ayazakp)

because (a, kp) represents a + kp and both forms have the same determinant. Multiplying by p we
obtain
(ap, k) = (a1azp, a1azak)

so (ap) = (a1asp) (mod U,_y). If r is arbitrary, then this consideration yield the induction step.
So we have shown that U, = (U,_1, (ap) | 1 < |a| < p).

To show the lemma, we show that the forms (ap) modulo U,_; satisfy the same relations as the
(@) in W(F,). If @ = be?, then (a) = (b) € W(F,), which yields (ap) = (bc?p) = (bp) modulo U, ;.
So it is enough to consider (p) and (ep) with € € F; \ (F;)*. If —1 is a square in F,, then there is
z€{l,...,p— 1} such that 2> = (—=1) + kp =, —1. Then e; + ze, in (p) L (p) has norm kp?, so
(p) L (p) = (k) L () € Up_y. Similarly {(ep) L (ep) € Up1.

If one may choose € = —1 then (p) + (—p) = 0 in W(Q), so (ep) = —(p) and we have to show
that (p) + (p) + (p) + (p) = 0 (mod U,_1) and (p) + (p) = (ep) L (ep) (mod U,_1). Then there
are a,b € {1,...,p — 1} such that a® + b* = € + kp. The vector ae; + bes € (p) L (p) has norm
ep + kp?, so (p,p) = (ep,ep) (mod U, _1). 0
O

Corollary 5.36. To reqular rational bilinear spaces (Eq,by) and (Es, by) are isometric, if and only
if dim(E,) = dim(Ey), sgn(by) = sgn(bs) and d,(by) = 9,(b2) for all primes p.

Proof. These conditions yield equality in the Witt group, so there are hyperbolic modules H;, Hj,
with
(El,bl) 1 Hl = (E27b2) 1 HQ.

Since dim(E;) = dim(FEs), we get H; = Hy and by Witt’s cancellation theorem, this implies that
(E1,b1) = (B, by). O



Chapter 2

Quadratic forms over discrete valuation
rings.

6 Discrete valuation rings.

Definition 6.1. (a) A discrete valuation ring R is a local principal ideal domain (commutative,
without zero divisors) which is not a field.

(b) Let K be a field. A discrete valuation of K is a mapping v : K — Z U {oo} such that

(0) There is some x € K* such that v(x) # 0.

(i) v(r) =00 < = =0.

(i1) v(zy) = v(z) + v(y) for all z,y € K*.

(111) v(z 4+ y) > min{v(z),v(y)} for all x,y € K.

Clear: v(1) =0, v(z™!) = —v(x), v: K* = (Z,+) is a group homomorphism so the image of v is
an ideal aZ of Z. Replacing v by (llv we hence may assume that v is normalized, i.e. v(K*) = Z.

Remark 6.2. v(z + y) = min{v(z),v(y)} if v(z) # v(y).

Proof. First note that v({) = 0 for any ¢ € R such that (" = 1 for some n. In particular v(—1) =0

and v(—y) = v(y).
Assume that v(x) < v(y). Then

o) = v(@ +y —y) = min{v(@ +y), v(y)} = min{v(@), v(y)} = v(x).

We therefore have equality everywhere and v(z+vy) = v(z) (note that v(y) > v(x) by assumption).
([

Example 6.3. Let p € Z be a prime. v, : Q — Z U {oo}, v,(3p
discrete valuation with valuation ring Zgy = {x € Q | vy(x) > 0}
ideal pZy = {x € Q| vy(x) > 0}.

i if pfab, v,(0) = oo is a

i =
=1{% € Q| pfb} and maximal

Proposition 6.4. (a) Let R be a discrete valuation ring with maximal ideal p = 7R # {0}. Then
K = Quot(R) =Ujez 7 R* U {0} and the mapping v : K — Z U {oo}, v(7'R*) := i,v(0) := 00 is a
discrete valuation of K.

(b) If v : K — Z U {oo} is a discrete valuation, then R = {x € K | v(z) > 0} is a discrete
valuation ring with maximal ideal {x € K | v(x) > 1} =: p = 7R for any 7 € K with v(mw) > 1
manimal.

37
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Proof. (a) Since R is a local ring the units are R* = R\ p. Any element a € R is either a unit
(a € R*) or a multiple of m and then a; := 77'a € R. Also a, is either a unit or a multiple of 7.
Continuing like this, we may write any non zero element of R in a unique way as a = 7"u with
u € R* and n € Zso. Similarly any element 0 # z = ¢ € Quot(R) = K can be written as 7'w
with w € R* and i € Z in a unique way. Therefore v is well defined. It clearly satisfies (o), (i)
and (ii). So it remains to show the strong triangular inequality. Let x € n'R*, y € ®'R*, 1,7 € Z,
i >j. Then z +y € 7R and so v(x +y) > j = min{v(z),v(y)}.

(b) We prove that Risaring: 0€ R, 1€ R,a,be R=abe Rand a+b € R.

The unit group of Ris R* = {x € K | v(z) > 0and —v(z) > 0} = {x € K | v(z) = 0}. In
particular p is the unique maximal ideal of R. Choose 7 € p such that v(7) is minimal. Then for
any z € p we have v(z) > v(r) and hence zr~! € R. So p = 7R is a principal ideal. O

Remark 6.5. Let R be a discrete valuation ring and v € K = Quot(R). Then either x € R or
vt € p. In particular K = RU{z™' | 0#x € p}.

6.1 Completion

Remark 6.6. Let v : K — Z U {oo} be a discrete valuation and s € (0,1). Then v defines an
ultra-metric
d: K x K = Rsq,d(z,y) = s'@Y

where s> := 0. This means that d satisfies the following three axioms:
(1) d(a,b) =0 if and only if a = b.

(11) d(a,b) = d(b,a) for all a,b € K.

(111) d(a,c) < max{d(a,b),d(b,c)} for all a,b,c € K.

Definition 6.7. A metric space (M, d) is called complete, if any Cauchy sequence in M converges
towards a limit in M.

Theorem 6.8. Let v: K — ZU{oo} be a discrete valuation of the field K. Put R the ring of all
Cauchy sequences in K and N the ideal of all sequences in K that converge to 0. Then N IR is
a mazimal ideal and hence K := R/N is a field. The valuation v extends to a valuation v of K
and K is complete. The mapping ¢ : K < K,a v+ (a,a,a,a...)+ N is injective and the image is
dense in K. The field K is called the completion of K. It is unique up to isomorphism.

Proof. See the lecture Computeralgebra. a

Theorem 6.9. Let v: K — Z U {oo} be a discrete valuation of the field K with valuation ring R
and mazimal ideal 7R. Define

S = hmR/ﬂ'lR = {(ao,al, .. ) | a; € R/ﬂ'iJrlR, a; + 7TiR = Gifl}.
—

Then S is an integral domain and ¢ : R — S,a +— (a+7R,a+ 7R, ...) is a ring monomorphism.
The valuation v extends uniquely to a valuation v of S, v(ag,a1,...,) =1 ifa; #0, a;_1 =0. S
is complete with respect to this valuation and K := Quot(S) is the completion of K.

Proof. S is a ring with component wise operations since the projections a + 'R — a + 7 'R are
ring homomorphisms.
¢ is injective because (2, 7R = {0}.
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It is clear that v is a valuation that extends the valuation of R (exercise).

To see the completeness of S let (z,),>0 be a Cauchy sequence in S, so lim v(x, — z,) = 0
- n,m—00

or more concrete that for all k& > 0 there is some N(k) € N such that v(z, — z,,) > k for all
n,m > N(k). Wlog assume that (N(n)),>o is monotone increasing. Put = (zn(k)x)r>0. Then
x € S since

k k
TNk, +T R=Tpp +T R=2Tpr 1= TNRk-1)k-1

for all n > N(k). Similarly one shows that v(z — z,,) — oo for n — oo so z is the limit of the
Cauchy sequence. a

6.2 The p-adic numbers.

Let K = Q, v = v, for some prime p, R = Z,). Then the completion of Q w.r.t. v, is denoted by
Qp, the field of p-adic numbers. The completion of Z,) is the valuation ring

Zy:={z €Q,|vy(x) >0} =lmZ/p'Z.
F

the ring of p-adic integers. Any z € Z, can be written uniquely as @ = > >~ a;p° with

CLiE{O,l,...7p—1}.

Theorem 6.10. The ring Z, of p-adic integers has the following properties:
(i) Z is a subring of Z, dense with respect of d, but Z, uncountable. (Z,,d) is complete.
(i1) Ly = Zyp — pZy is the unit group of Z,.
(ii1) Any a € Zy, a # 0, is of the form a = p™u with v € Z; and n = vy(a).
(iv) All ideals # 0 of Z,, are of the form p"Z,, n € N. We have Z,/p"Z, = Z/p"Z.
(v) Zy is an integral domain, with respect to v, it is a Buclidean domain. (vi) Z; = Cpy X (Zy, +)
forp#2 and Z; = Cy X (Zg, +).
(vii) Q,/Z, = | ]%Z/Z < Q/Z as an additive group.
i>0

(viti) Z,, is compact, i.e. any sequence in Z, has a convergent subsequence.

Proof. Exercise O

6.3 Hensel’s Lemma

Theorem 6.11. Let K be a discrete valuated complete field with valuation v, valuation ring R.
Let f € R[X]| be a polynomial and ay € R such that

v(f(ao)) > 2v(f'(ao))

Then there is some a € R such that f(a) = 0. More precisely the sequence

flan)

Up41 = Qp — f’(CL )
n

€ER

converges towards some a € R such that f(a) =0 and v(a — ag) > v(f(ao)) — v(f'(ag)) > 0.
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Proof. Note that f(t + x) = f(¢) t)r + fz( )x* + ..., for fi(t) € R[t], fi(t) = f'(t). Define
by :== — JJ;,(( )) Then v ( ) = - v(f’(ao)) > v(f'(ap)) >0, s0 a1 € R.
Moreover v(f(ag + bo)) ao)b") | i@ > 2}, since f(ag) + fi(ao) - bp = 0. Therefore

min{o(f(
v(f(a1)) = 2v(bo) > v(f(ao)). Now f'(t+ ) = f'(t) + 22 f>(t) + ... implies v(f'(a1) — f'(ao)) >
v(bo) = v(f'(ao)), so v(f'(ar)) = v(f'(ao)).

This shows that f(a;) converges to 0 v(f(a;)) — 00).

We now show that (a;) is a Cauchy sequence:

V(apt1 — ay) =v(b,) = v (— J“f,((in))) = v(f(a,)) — v(f'(as,)) — oo, because that first summand
is strictly monotonously increasing (in Z) and the second summand is constant. So if m > n:
V(am—an) = v((@m—am—1)+(m-1—0m—2)+...+(apr1—ay,)) > min{v(a;—a;—1) | n <i <m} — oo
which means that (a;) is a Cauchy sequence. 0

6.4 Example: The square classes in Q.

Lemma 6.12. Let p # 2 be a prime. Then Z; = (Z3)* U €(Z)* and the square classes in Q5 are
represented by 1,¢,p, ep. Here € € Zy, is any element such that € + pZ, ¢ (IF;)Q.

Proof. Let a € Zj. Then a + pZ, € (F})* or ea + pZ, € (F3)?. In the first case f(X) :=
X? —a € Z,[X] has a zero ap mod p and in the second case f(X) := X? — ae. In both cases
vp(f'(ao)) = vp(2a0) = 0 since 2 € Z7 and also ag € Z;, so by Hensel’s lemma there is some
o = (oo € Zy such that f(a) =0. So o® =a and a € (Z})* or o® = ea and a € €(Z;)*.

Any element in Q@ is of the form up’ for u € Z} = (Z3)* U €(Z;)* and j € Z. After multipli-
cation be a certain power of p? € (Q;;)2 we may assume that j € {0,1}. So the square classes
in Q are represented by 1, €, p, ep. It is clear that no two of them represent the same square class. O

Example. /—1 € Zs: We need to find a zero of f(X) := X? + 1 using Hensel’s Lemma. Put
ao := 2. Then f(ag) =5 and f'(ap) =4 = —1 (mod 5).

a; :=ag— f(ag)/f'(ap) =2+ 5=7 (mod 25) satisfies f(a;) =49+1=0 (mod 25).
Gy = T4+ 50 =24 5450, a5 =2+ 5+ 50 +5% =212, ... as, = 2,121342303220 . . ..

Lemma 6.13. The square classes in Z} are represented by {1,3,5,7} and the ones in Q} by
{1,3,5,7,2,6,10, 14}.

Proof. We just give the argument for Zj3, the square classes in QQ} are then obtained in the same
way as for odd primes. We use the same approach as before, trying to find a zero of the polynomial
f(X) = X? — a € Zy[X] using Hensel’s lemma. But now f’(X) = 2X and so for any ay € Z} the
valuation vy(f"(ag)) = v2(2) = 1. To apply Hensel’s Lemma we hence need to find a zero ag of f
modulo 2* = 8. Any odd integer a = 1 + 2m satisfies

m(m + 1)
2
o ((Z/8Z)*)* = {1} and the square classes in (Z/8Z)* are represented by M := {1,3,5,7}. For

a € Z3 we find a unique m € M such that a = m (mod 8). Then f(X) := X? — am € Zy[X] has
a zero ap mod 8 which can be lifted by Hensel’s lemma to some o = a, € Zj satisfying a? = am. O

a>=(1+2m)P=1+4m+4m*=1+38 =1 (mod 8)



7. LATTICES OVER DISCRETE VALUATION RINGS. 41

7 Lattices over discrete valuation rings.

Let R be a discrete valuation ring with maximal ideal 7R and residue field R = R/7R. Denote
by K := Quot(R) the field of fractions of R, (V,q) a f.d. quadratic K-space, (V,b) a f.d. bilinear
K-space, E <V an R-lattice in V.

Theorem 7.1. (a) If char(R) # 2, then any R-lattice E in the bilinear K-space (V,b) has some
orthogonal basis, i.e. E = @;_, Re; such that b(e;,e;) =0 for all i # j.

(b) If char(R) = 2, then any R-lattice E in the bilinear K-space (V,b) is the orthogonal sum of
lattices of rank 1 or 2, i.e. E = @}_, E; such that b(E;, E;) = {0} for all i # j and dim(E;) < 2.

Proof. (1) If b(E, E) = {0} then any lattice basis of E has the desired properties.

(2) So assume that b(E, E) # {0}. Then we can always multiply b by some power of 7 to achieve
that b(E, F) C R but not b(E, F) C 7R.

(a) There is some e; € E such that b(e1, e;) € mR: Then Re; is a regular submodule of the bilinear
R-module (E,b) and hence E = Re; D ei. Then continue with e

(b) For all z € E we have b(z,r) € mR. Note that this case cannot occur if char(R) # 2, because
there are always =,y € FE with b(z,y) ¢ wR. If b(x,z) and b(y,y) € 7R then b(x + y,x +y) =
b(x,x)+b(y,y)+2b(x,y) & TR because 2 € R*. Also for residue characteristic 2 there are e;,e5 € F
such that b(ey, e2) € TR. Then (ey, e5) is a regular submodule of E and E = (e, e5) D{e1, ex). O

2 11
Example: Z)A; with Gram matrix | 1 2 1 |. Put E; := (e, ez) : (? ;) Then
11 2
det(E)) = 3 so Ej is a regular submodule. We compute Ef- = (e3 — te; — se2 =: €) and get the
21 0
new Gram matrix | 1 2 0
0 0 4/3

Remark 7.2. Let E be some R-lattice in a quadratic K-vector space (V,q) such that q(V') # {0}.
Then O(E,q) contains reflections.

Proof. We can always scale the quadratic form so that ¢(E) C R, but q(E) ¢ wR. Then there
is some e € E with g(e) € R* and hence s, € O(FE, q). Note that the orthogonal group does not
change if we scale the quadratic form. a

7.1 The Jordan decomposition.

Theorem 7.3. Any R-lattice L in a regular bilinear K-space (V,b) has a decomposition
L= (La,’ﬂ'aba> L (La+1’ 7Ta+1ba+1) ... L (Lc,ﬂ'cbc)

with a < ¢ € Z such that (L;,b;) are reqular bilinear R-lattices (possibly 0). The dimensions
ne = dim(L,) are uniquely determined as well as the determinant det(b,) € R /(R")2.

Proof. The existence follows by applying Theorem 4.16 successively. As (V,b) is a regular bi-
linear K-space, there is a unique a € Z such that for ¢/ := 7% satisfies b'(L, L) C R but
b'(L,L) € mR. By Theorem 4.16 (applied to the R-module (L,b")), there is a regular R-lattice
(Lq,b') with (L,0') = (L4, ") L (L', ') such that b'(L', L') C m7R. We continue with (L, 7~*b')
until we obtain the full Jordan decomposition.
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To obtain the uniqueness of the invariants note that £ := (L/7L,V) is a bilinear R-space with
radical £/ = L'/mL'. So the determinant of (L,,b') is modulo 7 exactly the one of the bilinear
R-space (E/E',V) and hence well defined in R /(R")?. Also dim(L,) = dimp(E/E"). O

Exercise: Implement an algorithm to compute this Jordan splitting for the rings Z,).

7.2 Lifting isometries

General setup: R discrete valuation ring, 7R <4, R, K = Quot(R), R = R/7R. (V,q) quadratic
K-space, b = b,, E <V an R-lattice.

Definition 7.4. Let (V,q), (V',¢) be two quadratic K-spaces. For a linear map u:V — V' let
by 2 V= V5 y = b (y) (= by (u(@),y)).
Theorem 7.5. Keep the notation from Definition 7.4. Let E <V be an R-lattice in V' such that
¢ (u(z)) = q(z) (mod 7) for all z € E( some k € N).
Let F be a f.g. R-submodule of V' such that
E* = Homg(E, R) = b,(F) + nE* and n*¢(F) C nR.

Then there is a linear mapping v’ : E — V' such that u/'(r) — u(x) € 7*F for allx € E and
¢ (z)) = q(z) (mod 7¢*1) for all v € E.

Proof. We construct v’ as u'(z) = u(x) + m*v(z) for some linear mapping v : E — F. Then

¢ (W (2) = ¢ (u(x)) + 7% (v(x)) + 7 (u(z), v(z)) = q(z) (mod 7" for all x € E.
We automatically have 72%¢/(v(z)) € 7*¢/(F) C 7" R. So we need to achieve

1
Tk

Vu(z),v(z)) = —(q(z) — ¢ (u(x))) =: G(z) (mod 7) for all x € F.

By Lemma 2.4 there is some (not necessary symmetric) bilinear form a : £ x E — R such that
a(x,z) = ¢(x) for all x € E. Let (z1,...,x,) be some R-basis of E. By assumption there are
vy, ...,0, € F such that

V(u(z;),v;) = a(zy,x;)  (mod m) for all 1 <i,j <n.

Define the R-linear map v : E — F by v(z;) := v;. Then for x =3 "  ax; € E

n

b (u(z),v(x)) = Zaiajb'(u(xi),vj) = Z aiaja(r;, x;) = a(z a;x;, Zajxj) = a(z,z) = ¢(x).

1,3 i=1 j=1

O

Corollary 7.6. If additionally R is complete then there is an isometric embedding u : £ — V'
such that u(x) — u(z) € 7*F for all x € E.
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Proof. The mapping v’ of the statement of Theorem 7.5 satisfies

V(' (z),y) =¥ (u(z),y) + 7 (v(z),y) forallz € B,y € F.
—_——

mrkq (F)CrR

In particular 0/, (F) +7E* = b,(F) 4+ 7mE* and v’ satisfies the assumption of Theorem 7.5 for k + 1
instead of k. We hence can use Theorem 7.5 to construct a sequence u™ : E — V' with v(©) = v,

'™ (z) = u™ V() (mod 7™F) and ¢ (™ (z)) = q(z) (mod 7™**) for all z € E

Then @ := lim,,_,oo u™ is the desired isometry. O

Corollary 7.7. Let R be complete (F,q') a reqular quadratic R-module, u : (E,q) — (F,q’) linear
such that @ - (E,q) — (F,q) an isometry. Then there is an isometry @ : (E,q) — (F,q') with
t(z) = u(zr) (mod wF) for allx € E.

In particular if (E,q) = (F,q') then (E,q) = (F,¢).

Proof. The isometry 7 is injective, so B = u(E)*. As we work with vector spaces, every R-linear
form on u(E) can be extended to F, and F' is regular, so

I
I

-

U(B)" = Vy)(F) = ba(F).

So u satisfies the assumptions of Theorem 7.5 for £ = 1. The corollary hence follows from Corollary
7.6. O

Corollary 7.8. R complete, then W (R) = W (R).

Corollary 7.9. Let R be complete such that R =T, is a finite field.

(a) If (E,q) is a reqular quadratic R-module of rank > 2 and t € R*, then there is some v € E
with q(x) = t.

(b) If (E,q) is regular or semi-regular of rank > 3, then

Ea=| 5 |oE.w

for some reqular resp. semi-reqular (Ey, q1).

(¢c) There are exactly two regular 2-dimensional quadratic R-modules: H(R) and N(R), with
N(R) = N(F;) = (Fp2, N) is the unique 2-dimensional anisotropic F, module.

(d) If £ is odd then either (E,q) = @, [1] or (E,q) = Q" [1] D [¢] for fized e € R* \ (R*)?.

(e) If € is even then

(1] ;ﬂl{o (1)] ifn=2m+1
(E,q) = @?;1{0 H if n =2m
w05 Jovm ga—m
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Proof. (a) Define (F,¢') := [t] so F' = Rf with ¢'(f) =t. We apply Corollary 7.6 with £/ and F
interchanged. Since F is universal, there is some y € E with ¢(y) = ¢ # 0. Then y € 7F, so by
the regularity of E, there is some z € E with b(z,y) = 1. Define v : F' — E by u(f) = y. Then
u satisfies the assumptions of Theorem 7.5 for £ = 1 and we obtain an isometry u : FF — E. Put
x:=u(f).
(b) By the classification of quadratic forms over finite fields, the Witt index of (E,g) is ind(E,q) >
0, so o o
(B, )= (&,62) OFLG).
——

101

a 0
. . = _ 01
with (semi)regular (Fy,q;). Let H := H(R) = 0
by w(h;) = e; (1 = 1,2). Then Corollary 7.6 yields the existence of an isometric embedding

u: H — (E,q) and the regular submodule (@(hy),u(hy)) = H splits as an orthogonal summand
of (E,q). O

= (hy,hg) and u : H — E defined

8 Quadratic forms over complete discrete valuated fields.

We assume that R is a complete discrete valuation ring, K = Quot(R), R = R/7R. (V,q) a
regular or semi-regular quadratic space over K.

Lemma 8.1. Assume that ind(V,q) = 0. For z,y € V with q(x) € 7 'R, q(y) € m'R we obtain
b(z,y) € TR.

Proof. Assume that b(z,y) € 7R and let v € R* such that b(z,y) = 7/u for some j < i. Re-
place ¢ by m7u~'q to achieve that ¢(z) € R, q(y) € 7R, b(x,y) = 1. Then E := (x,y)r satisfies

(E/mE,q) = [ * (1) } , so E regular and hyperbolic. Therefore (E,q) = H(R) and so (E, q) = H(R)
is not anisotropic, contradicting the assumption that ind(V, q) = 0. a

Theorem 8.2. Let ind(V,q) = 0. Fori € Z put
E; = FEi(V,q) = {x €V | q(z) € T'R}.
Then E; is an R-lattice in V.

Proof. By Lemma 8.1 we have for x,y € E; also x +y € E;, so E; is an abelian group. Clearly FE;
is closed under multiplication by elements of R, so F; is an R-module. We need to show that F;
contains a basis of V. If (e1,...,e,) is a K-basis of V, then suitable multiples of e; are contained
in E;, therefore E; contains a sublattice L of full rank. As b(E;, E;) C 'R we have

LCE, CnEfCrL?
and so (by the main theorem on f.g. modules over principal ideal domains) F; is a lattice in V. O

Corollary 8.3. Let (V,q) be a regular or semi-reqular quadratic K-space. Then any two mazximal
R-lattices are isometric.
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Proof. By Corollary 4.13 we can write (V,q) = (V',¢)© O™ H(K) with m = ind(V,q) and
(V',q') anisotropic, unique up to isometry. So any maximal R-lattice in (V,q) is isometric to

Eo(V',¢) © Q™ H(R). =

We now additionally assume that R = R/mR = F, is finite. Then we know that N(F,) :=
(Fr2, N) is the unique anisotropic quadratic Fy-vector space of dimension 2. Let (G, q) = N(R) be
the regular quadratic R-module from Corollary 7.9 such that (G,q) = N(F).

Lemma 8.4. (K@, q) is an anisotropic K -vector space and q(G) = UL 7w R* U {0}

Proof. (K@, q) is anisotropic: Otherwise there is some 0 # g € KG such that ¢(g) = 0. Multiply-
ing by a suitable power of 7 we may achieve that g € G\ 7G. But then 0 # g € G with g(g) =0
contradicts the fact that (G, ) = N(F,) is anisotropic.

D: Tt is clearly enough to show that R* C ¢(G). So let G = (e, f), q(xe + yf) = ax® + by + cy?,
where we assume that b = 0 if 2 € R*. Then the regularity of (G, ¢) implies that b € R* if 2 ¢ R*
and ac € R* if 2 € R*.

Let u € R*. Since N(R) is universal, there are xg, yo € R such that q(xoe + yof) = axd + bzoyo +
cy? = u (mod 7). As u € R*, one of g or y is not in 7R. Wlog assume that xo ¢ TR if 2 € R*
and yo € 7R if 2 ¢ R*. Consider the polynomial p(z) := az* + (byo)r + cys — u € R[z]. Then
p(zo) € TR, p'(xy) = 2axy + byg € R* (by our choice in both cases). In particular by Hensel’s
lemma there is some 2., € R such that ¢(z) = 0, so ¢(zoce + Yo f) = u.

C: We need to show that all elements in ¢(G) have even valuation. Clearly G = {g € KG | q(g) €
R} is the unique maximal lattice in KG. Let g € G with ¢(g) = 7™+ for u € R* such that m is
minimal. Then also ¢(7~™¢g) = mu € R so 7~ "¢ € G, by the maximality of G. This implies that
m = 0 and ¢(¢g) = mu. Then g € 7G so g # 0 but g(g) = 0 contradicting the fact that N(IF,) is
anisotropic. O

Corollary 8.5. (U, q) := (KG,q) O(KG,7q) is a universal anisotropic K -vector space of dimen-
S1ON 4.

Theorem 8.6. Let (V,q) be a reqular or semi-reqular quadratic space over K with ind(V,q) = 0.
Then dim(V') < 4 and if dim(V') =4, then (V,q) = (U, q).

Proof. Let E; := {x € V | ¢(x) € R} be the maximal lattice from Theorem 8.2. Then E, D
E1 2 EQ = 7TEO and

dim(V) = dimp(Ey/mEy) = dimp(Ey/ Ey) + dimp(Ey /mEp).

The quadratic space (Ey/F;,q) is an anisotropic R space, so dim(Ey/E;) < 2, and if equality
holds, then (Fy/E;,q) = N(F,). Similarly (E /7 Ey, 7~1¢) is anisotropic. So dim(V) < 4.

Assume that dim(V) = 4 and let (e;,eq,e3,e4) be an R-basis of Ey so that es, ey € E;. Then
(€1, €9) is a regular submodule of (Ejy,q) whose reduction modulo 7 is N(F,), so (e1, ea) = (G, q)
from above and (Ey,q) = (G,q) O(G’,7¢') such that (E,/7FEy, 7-1q) = (G',¢) = N(F,). This
implies that (G',¢') = (G, q) and (V, q) = (U, qo)- O

8.1 The Witt group of Q,.

Just to avoid the technical details to construct a Q/Z-valued quadratic form from an F,-valued
form we now restrict to the case that R = Z, and K = Q,. Then we may identify K/R with a
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subgroup of Q/Z,
1
Qp/Zp = Z[];]/Z <Q/Z.
Theorem 8.7. We have the exact sequence

0 — W(Z,) 5 W(Q,) > WQ(p) — 0

where §((V,q)) = [(L*/L,qz)] is the homomorphism analogous to the one in Lemma 5.51 (so
(V)] = [(Eo(V,@)*/Eo(V,q),q)] if (V,q) is anisotropic) and «([(L,q)]) = [(Q,L,q)]. This

sequence s split, hence

Cy x Cy p=-—1 (mod 4)
W(Q,) =WQ(p) ®W(Z,) = Cy p=1 (mod 4)
Cg X CQ X Cg p = 2.

Proof. As in Section 5.4 we may define ¢ also on arbitrary representatives (V,¢) by choosing any
Zy-lattice L <V such that ¢(L) C Z, and mapping [(V,q)] — [(L¥/L,q].

The surjectivity is easily shown by constructing explicit preimages:

First let p be odd. Then WQ(p) = W(F,) = ([1], [e]). Choose u € Z} with u = ¢ and define the
1-dimensional spaces (V,¢) and (V, ¢.) by V = Qpe with ¢;(e) := p resp. ¢c(e) := pu.

For p = 2 a lift of ¢y is given by (Qqe, gx) with gx(e) := k. a lift of ¢y is (Qqe, q) with g(e) = 2¢
and Y is lifted by the 2-dimensional space (Q2G,2¢q). This construction also finds a left inverse to
0, showing that this sequence is split.

Moreover the map 9§ is a group homomorphism with [(V,¢q)] € ker(d) if and only if there is some
lattice L < V with ¢(L) C Z, and L# = L. Then (L, q) is a regular Z,-module and hence the
kernel of this map is the Witt group of Z,. a

Corollary 8.8. The explicit isomorphism is W(Qq) = ([1]) x ([1, —2]) x ([1,1,1, =3]) = Cs x Cy X
Cs.

Proof. The Witt group of Qs is generated by the one dimensional forms [a] where a represents the
square classes in Qq, so a € {1,3,5,7,2,6,10,14}. We have [a, b] = [a+ b, ab(a+b)] for all a,b and
[1,7] ~ [3,5] ~ H so we obtain the following relations

(1] [3] [5] [7 [2] [6] [10] [14] (1] [3] [5] [7] [2] [6] [to] [14]
1 00 1 0 0 0 0 1 0 0 1 0 0 0 O
o 1 1 0 0 0 0 0 o 1 1 0 0 0 0 0
1 0 0 1 -1 0 0 -1 o 0 1 1 0 0 1 -3
1 -1 0 0 1 -1 0 O 0 0 0 2 0 0 0 -2
1 -1 0 0 0 0 1 —1 O 0 0 0 1 0 0 1
1 0 0 -1 0 1 -1 0 0O 0 0 0 0 1 -1 -2
2 0 0 0 -2 0 0 0 O 0 0 0 0 0 2 2
0O 0 2 0 0 0 -2 0 o0 0 0 0 0 0 8



Chapter 3
Clifford algebras.

9 Construction of the Clifford algebra.

Definition 9.1. Let (E,q) be a quadratic A-module. An A-algebra C := C(E, q) together with an
A-module homomorphism g : E — C s called a Clifford algebra, if

(a) For all x € E we have g(z)* = q(x)1¢ and

(b) For any A-algebra B and any A-module homomorphism f : E — B with f(z)?> = q(z)1p
there is a unique A-algebra homomorphism ¢ : C — B such that pog= f.

Remark 9.2. In C(E,q) we have g(x)? = q(x) so for any z,y € E we compute
9(x)g(y) + 9(y)g(x) = (9(x) + 9())* = 9(x)* — 9(v)* = a(z +y) — a(z) — a(y) = by(z.y).

In particular g(x)g(y) = —g(y)g(z) if v L y.

Theorem 9.3. For any quadratic A-module (E, q) there is a Clifford algebra C(E, q). This Clifford
algebra is unique up to A-algebra isomorphism.

Proof. The uniqueness follows from the universal property: If (Cy,¢g1) and (Cs, go) are two Clifford
algebras for (E, ¢), then there are unique A-algebra homomorphisms ¢ : C; — Cy and s : Co — Cy
with ¢ 091 = g2 and gy 0992 = g1. So g1 = 2 0 ¢y 0 g1 and both mappings ide, and @9 0 ¢ are
algebra homomorphisms ¢ : C; — C; such that ¢ o g = g;. By the universal property of C; this
yields @y 0 ) = ide,. Similarly ¢; oy = ide,, 50 @] = s, are algebra isomorphisms.

Existence: Let {e; : i € S} be some generating set of E and let D be the free A-module with basis

{leiy,---,ei.] | m€No,iy,... i, € S}
Then D becomes an A-algebra by putting
[€irs-esei] [y s =€y s €iry €y €4
Then 1p = [|. Let I < D be the 2-sided ideal generated by
o > aile], if Y ae; =01in E.
o [e;]* —q(e)]] for alli € S.
o [ei,e;] + [ej, €] —bylei,e;)]] foralli,j e S.

47
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Put C:=D/I and g: F — C, g(e;) := [e;] + I. Then

9 aiei)® = o ailel* + 3,5 aia;([ei 5] + [ej, e]) + 1
=Y aiq(e)[] + X0, aiabg(ei e5)[| + 1 = a(X aes)[| + 1

so g(e)? = q(e)lc for all e € E. We need to show the universal property for C. So let B be some
A-algebra and f : E — B an A-module homomorphism with f(e)? = g(e)1p for all ¢ € E. Define
@ : D — Bby ¢([e;]) = f(e;) for all ¢ € S. Since D is the free A-algebra on the {[e;] : i € S} this
defines a unique A-algebra homomorphism. We show that ¢(7) = {0}.

o 0> ailes]) = aif(er) = fF(O ae;) =0,if > ae; =01in E.
o O(leil* —qled)]) = plei]?) — ale)@([]) = f(ei)* — gqlei)1p for all i € S.
o O(lei, ej] + [ej,ei] — bglei e;)]]) = flei)f(e;) + fle;) fei) — bgles,e;)lp =0 foralli,j € S.

So I C ker(g) so there is some A-algebra homomorphism ¢ : C — B such that p(x + I) = ¢(x)
for all z € D. The uniqueness of ¢ follows from the fact that the [e;]+1 generate the A-algebra C. O

Remark 9.4. If S is ordered (in our cases S will be finite), then
C={(g(ey) --gle) | reNoip <...<ip).
Remark 9.5. D = Dy ® D; as an A-module, where
Do = ([eiy, .- €] | 7€ No,ij €5)a_module

and
Dl = <[ei1> <o 761'2»,-+1] ’ (S NO; ij € S>A7module

We have D;D; C D;.; (indices mod 2). Let I, :==IND;. Then I =1y & I, as the generators of I
are homogeneous of even or odd degree, and so

C=D/I=Dy/ly® Di/I, =Cy®Cy
with ClC] Q Ci+j.

Theorem 9.6. Let u € O(E,q). Then there is a unique A-algebra automorphism c(u) : C(E, q) —
C(E,q) such that c(u)(g(e)) = g(u(e)) for alle € E. We have ¢(—id)(xo + 1) = xo — x1 for all
Xg € Co, r1 € Cy.

Proof. The existence of ¢(u) follows immediately from the universal property of C(E,q) applied
to the homomorphism f : E — C(F,q),e — g(u(e)). We have c(u™')c(u) = ide so c(u) is an
automorphism O

Example 9.7. Let e E E such that q(e) € A*. Then g(e)™' = q(e)tg(e), so gle) € C* and

c(—se)(z) = gle)zg(e)™" for allz € C =C(F,q).
To see this it is enough to compute c(—s.)(g(a)) for a € E.

g(e)g(a)g(e) ™" = (—gla)g(e) + by(a,€))g(e) " = —g(a) + by(a, e)q(e) "g(e) = —g(sc(a)).
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Theorem 9.8. There is a unique A-algebra anti automorphism v : C(E,q) — C(E,q) such that
t(g(e)) = g(e) for all e € E. We compute t(g(e;,) - g(e;,)) = gle;, )~ gle;,) and * =id.

Proof. This follows from the universal property of C := C(E, q) applied to the A-algebra B = C
(which is C as an A-module with multiplication a xb = ba for all a,b € Cand f =¢g: F — B. O

Example 9.9. o Let E = Ae be free of rank 1, q(e) = a € A. Then C(E,q) = A[X]/(X?—a).
o [f E = [a,b] is free of rank 2 with orthogonal basis (e, e3), qe1) = a, q(ez) = b, then
C(E> Q) = <17 g(€1)7 g<€2)7 g(el>g(62)>A7module

with g(e1)g(es) = —g(e)g(er). The mapping C(E, q) — A, defined by

01 0 0 0010
ey | @0 0 0 () 0001
g\ 00 0 —1 |9 b 00 0
00 —a 0 0b 0 0

is an A-algebra monomorphism, whose image is a free A-module of rank 4, so C(E,q) is free

of rank 4.

Theorem 9.10. If E is a free A-module with basis (eq, ..., e.), then C(E,q) is a free A-module of
rank 2" with basis
G:=(g(e;,) -gle.):s€Ny, 1<y <...<ig<r)

By Remark 9.4 this is always a generating set as an A-module. So we need to show the A-linear
independence of these products. For this we need some preparation:

Definition 9.11. (graded tensor product) Let C' = Cy & Cy and D := Dy @ Dy be two A-algebras
such that
CiCj C Ciyj, DiD; C Diyjiyj,i+ 5 € {0,1} =T,

Then the graded tensor product s defined as
C®D =C ® D as A-module

with multiplication '
(e @dy)(¢y @ dy) = (1) eic) @ d;d.

Remark 9.12. The graded tensor product C®RD is a Co-graded algebra with
(O@D)o = OO & DO ) Ol & D1 cmd (C®D)1 = C() & D1 () Cl & Dg.

The mapping gc : C — CR®D,c — c® 1 resp. gp : D — C®D,d — 1 ® d have the following
universal property: If K = Ky ® K is another Cy-graded A-algebra and fo : C — K, fp: D — K
are graded A-algebra homomorphisms such that

*fC(Ci)fD(dj) = (—1>iij(dj)fc<Ci) for all 1. € {0, 1},01' € Ci,dj c Dj

then there is a unique graded A-algebra homomorphism h : C®D — K with h o go = fo and
hogp = fp. (h is uniquely defined on the generators by h(c ® 1) = fo(c) and h(1 ® d) = fp(d).)
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Theorem 9.13. C((E1,q1) O(E», ¢2)) = C(Ey, q1)RC(Es, ¢2).

Proof.
E, EtDFE E,
y N
C(E1, q1) C(Ey D Es) C(Es3, qo)
Tw T

C(E1,Q1)®C(E2,QQ)

Let v; : E; - E1D Ey =: (F,q) be the obvious embedding, g, g1, g2 the homomorphisms of
E, Ey1, B, into their Clifford algebras. Then f, := go v, : By — C(F, q) satisfies fi(z)? = q(x) for
all z € Fj, so by the universal property of C(E1, ¢;) there is a unique «; : C(Ey, q1) — C(E, q) such
that ay o g1 = g o y. Similarly we get ay : C(Es, q2) — C(F,q). We compute

a1(gi(er))aa(gz(ez)) = —az(ga(ea))ai(gi(er)) for all e; € E;.

As the g;(e;) generate the algebra C(FE;, ¢;), the algebra homomorphisms «; satisfy condition x from
Remark 9.12. Because of the universal property of the graded tensor product, there is a unique
algebra homomorphism h : C(E1, ¢1)®C(E», q2) — C(E,q) with ho ¢; = a.

We now show that h is an isomorphism. Consider

fiEl L Ey— C(E1,q1)RC(Ea, o), fler + €2) :=¢1(g1(e1)) @ 1 + 1 ® pa(galea)).
Then

fler+e2)” = (p1(g1(e1) ® 1+ 1 ® pa(ga(e2)))” =
(p1(g1(e1)) @ 1)* + (1 ® pa(g2(e2)))* + (w1(g1(ex

= ¢1(91(€1)%) @ 1 4+ 1 @ pa(ga(e2)?) + w1(g1(e1)) @ pa(gales)) — ¢1(gi(e
= (q1(e1) + qa(e2))1 ® 1.

1)) ® p2(ga(ez))

So by the universal property for C(E,q) there is some k : C(E,q) — C(Ey,q1)®C(Es, q) with
kogouv =p;0g; fort=1,2. Then hok =id and k o h = id again by the universal property. O

Corollary 9.14. If (E,q) = [a4, . .., a,] is a free A-module with orthogonal basis (e1, ..., e,), then
C(E,q) is a free A-module with basis (g(e;,)---g(ei,) | s € No,1 < iy <...<is<r). So Theorem
9.10 1is true for free A-modules with orthogonal basis and hence in particular for all rings A, such
the 2 € A*.

Corollary 9.15. Theorem 9.10 is true if A is an integral domain with char(A) = 0.

Proof. Let B = Quot(A), E = @ Ae;, BE = @ Be;. Then char(B) # 2 so BE has some orthog-
onal basis (e1,...,e,) € E", and C(BE,q) is a free B-module with basis G := (g(e;,) - g(ei,) |
s € No,1 <iy < ... < iy <r). The elements of G are also linearly independent over A, so the
rank of C(FE, q) is at least 2". But it is generated by 2" elements, so therefore it is free on these 2"
elements. O

Proof. (of Theorem 9.10 in the general case) Let (a; : i € S) be some generating set of the ring
A (recall that A is commutative), A := Z[\; :i € S], f: A = A N\ — a; and I = ker(f), then

) @ 1)(1 @ pa(g2(e2))) J; (1® @2(g2(€2))) (p1(g1(e1)) © 1)
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A=A/ Let (E,q) be a free quadratic A-module with basis (eq, ..., e,), (F,§) the free quadratic
A-module with basis (é1,...,6), and ¢ some quadratic form on E that satisfies

r T

q() &) +1= Q(Z(i’z + I)e;).

i=1 i=1

Such a quadratic form can be constructed by choosing preimages in A of the entries of the Gram
matrix

q(e1) by(eis €5)
q(er)
By the corollary above C(E, q) is a free A-module with basis G := (§(é;, ) g(é,) | s € N_o,l §
iy < ...<is<r). Therefore G +1 = (Z+ 1|z € G) is an A-basis of C(E,q)/IC(E,§) =: C.

mapping f : £ — C defined by
i=1
is well defined, independent of the choice of the preimage 7; of x; and satisfies f(e)? = g(e)1 € C
for all e € E. By the universal property of C(F,q) there is some A-algebra homomorphism
¢ :C(E,q) — C with o(g(>_ xzie;)) = f(O xse;) In particular we compute
p(g(ei) -~ gles,) =g(é:)---g(é;,) + IC(Ea q)

so p(G) = G + IC(E,q) is linearly independent. Therefore also G is linearly independent. This
concludes the proof of Theorem 9.10. O
Corollary 9.16. If (E, q) is a f.g. projective quadratic A-module, then g : E — C(E, q) is injective.
Proof. Write E as a direct summand of a free A-module of finite rank and extend ¢ to some
quadratic form on the free module. Then by Theorem 9.10 the corresponding map g from the free

module in the Clifford algebra is injective and so is its restriction g : £ — C(FE, q). a

In the following we will hence identify E with ¢g(E) and write ejes instead of g(e;)g(ez). We
also have A = Al C C(E Q).

Remark 9.17. Let (E,q) be some f.g. free quadratic A-module, a € A*.
(Z) CO(E7 Q) = CO(EaCLQ) via h : CO(E7G/Q) — CO(E7 q)v h(l’y) = ary fO?” all T,y € E.

(i) If F = EQ(f) with q(f) = —a then h : C(E,aq) — Co(F,q) defined by x — xf for allz € E

s an A-algebra isomorphism.

Proof. As an exercise. O
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9.1 Some examples of Clifford algebras

Definition 9.18. Let B be an A-algebra. Then an A-algebra antiautomorphism ~ is called a
canonical involution, if

t(r):=x+T€ A andn(zx) =27 € A for all x € B.
Remark 9.19. Let B be an A-algebra with a canonical involution —, x,y € B.
e T=t(z)—z=tz)—T=ux
o 22 —t(x)x +n(z) =0.
o n(ry) = 2yTy = vYyT = n(z)n(y).
e n(z+y)=(x+y)(T+7Y) =2T+yy+ 27+ yT = n(z) + n(y) + t(z7y)
e n: B — A s a quadratic form with b,(z,y) = t(x7y).

Definition 9.20. A simple A-algebra QQ with dim4(Q) = 4 that admits a canonical involution is
called a quaternion algebra.

Examples:
(i) B = A?*? is a quaternion algebra with n = det, t =trace. For this define

(a)-(%0)
Then n(( ¢ )) — ad — bd, so (A2, det) = H(A) @) H(A).

(ii) B = A[X]/(X? —aX +b), 2 := X + (X? —aX + ), (1,z) is an A-basis of B and ~—: B —

La } (B,n) is regular, if

B,a+ Bz := a+ B(a — ) is a canonical involution with (B,n) = [ b

and only if a® — 4b € A*.

Remark 9.21. Let (E,q) be some free quadratic A-module. If C(E, q) has a canonical involution
~, then
a = t(c(—id)(a)) for all a € C(E,q).

Proof. For x € E we compute 2% — ¢(x) = 0, so ~ : C — C satisfies T = —x for all z € E. As
—z = 1(c(—id))(z) and ¢ o ¢(—id) is an antiautomorphism, we get that @ = ¢(c(—id)(a)) for all a €
C(E,q). m

Example 9.22. Let (E,q) = [ “ i } be some free quadratic A-module of rank 2 with basis (eq, e3).
Then

(o) C(H(A)) = A**2 by mapping the two usual generators to ( 8 (1) ) resp. ( ? 8 >

(i) Co(E,q) = (1,2 := ejes) with n(z) = 2Z = ejeseqe; = qer)q(es) = ac and t(z) = z+Z =
e1ez + ese1 = by(er,e2) = b, so

aEam=|" |

ac
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(ii) — = 1oc(—id) is a canonical involution on C(E,q) and

(C(Ev Q)a n) = (Cl> n) @(CO’ n) = (Ev _q) @(C(J? n)
which follows from the fact that C; = E and n(x) = 2T = —q(z) for allx € E.

(iii) If there is some e € E with a := q(e) € A*, then v +— xe : Co — Cy is an A-module

isomorphism with q(xe) = —n(xe) = —xeex = q(e)2T = an(x) for all x € Cy, so (Cy,an) =
(E,q).

(iv) Assume that E+ = {0}. Then Co(E,q) = {x € C(E,q) | zy = yx for all y € Co(E,q)} = C
and Z(C) = A.

Clearly Cy = (1, z) is commutative, so we need to show that there is some x € C; = E such
that zx # xz. If zx = xz, then

Tejey + erey = e1eax + ejxres = by(x, e1)es = by(x, e2)e.
As (e1, eq) is a basis of E, this implies that by(x,e,) = by(z,e2) = 0 and so x € E+ = {0}.

(v) If A is a field and (E, q) regular, then C(E,q) is a quaternion algebra.
We will prove that C(E, q) is simple in Lemma 10.4 below.

10 The center of the Clifford algebra.

Definition 10.1. Let C' be some A-algebra B C C. Then the centraliser of B in C is C? =
{z € C|zy =yx for all y € B}.

Theorem 10.2. Let A be some field of characteristic # 2 and (E,q) = |a1, ..., a,] = Dl Ae; be
some reqular quadratic A-space, z :==ey...e, € C(E,q) =:C. Then

n

(a) 2* = (—1)(2)a1 cea, =:d.

(b) €& = (1,2) = A[X]/(X? — d).

(c) If n is even, then Z(C) = A and Z(Cy) = (1, z).
(d) If n is odd, then Z(C) = (1, z) and Z(Cy) = A.

Proof. (a) We compute 22 = €1 ---epe1 -+ €, = (—1)"leg - - e eter e, = ar(—1)"eg - e,)* =
ay - an(_l)z;L;11J
(b) C has an A-basis (1,e1,...,€n,€1€0,...,€160--€,) = (€5, +¢;. |0<r<ml1<i<...<

ir <n).Define e; :=¢;, ---¢; if J={iy,...,43} with 1 <y <... <4, <n. Then Cy is generated
as an A-algebra by e;e; (1 <i<j<n). For x:= ZJQ{I ny L€ We have

.....

ree; = E Tyejee; = E (—1)|Jm{l’]}|xjeiejej = e;e;T
J

J

.....

(1,z2).

The other statements follow by using the fact that e;z = (—1)""'ze; for all i. O
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Theorem 10.3. Let E be a free A-module with basis (eq,...,e,), q: E — A a quadratic form with
q(E)A = A. Put C := C(E,q), Cy := Co(E,q), and Z := C. Then there is a unique A-algebra
automorphism o € Auta(Z) such that

rz=a(z)r forallz € E,z € Z.
Then o =id and Z(C) ={z € Z | a(z) = z}.

Proof. Uniqueness: Let z; € F, a; € A such that 1 = Zle a;q(z;). We have x;z2 = a(z)z; for all 4,
SO

k k k
Zaixizmi = Zaia(z)x? = a(z2) Zaiq(xi) = a(z) for all z € Z ().
i=1 i=1 i=1

Existence: Define o by the equation (x). Then «a(z) € Z for all z € Z because for all z,y € E,
z € Z we compute

alz)ry = Zle ;T2 Tk Yy = Zle A;T;TX2Y = T2Y
k <co k
rya(z) = D0 QX YT, 2T = T2 Y | GETTY = TZY

eCo

which implies that z € C% as the xy generate Cy as an algebra. For x € E, z € Z we then compute

k k
alz)r = Z QT2 Tk = Z a; 1?1z = 12,
- e -
=1 €Co =1
Moreover a? = id as
k k k
ala(z)) = Z ajxj(z QT 2%;)T) = Z ajxj(z QiT;T;) T2 = 2
j=1 i=1 j=1 i=1

again because z;x; € Cy commutes with z. So a? = id. Similarly one checks that az129) =
alz)a(z):

a(z)a(z) = (L, armz) (D), a5a521;) =
Zi’j QAT 21T ;200 = Z” QQTT;X 21 290§ = Zj a;jT;z1 200 = a2122).

Examples:
If x € E is such that g(z) € A* then a(z) = zza~! for all 2z € Z.
If E=lay,...,a,) and Z = Ale; - -+ e,) = A[X]/(X? — d), then ale;---e,) = (=1)""te; -+ - ey
If £ = Ae then C = A ® Ae is commutative, Cy = A and o = id.
If £ = Ae; @ Aey regular and ~ the canonical involution of C then « is the restriction of = to Z.

Lemma 10.4. Let K be a field (E,q) = [ “ lc) } regular with basis (e1,es) then Z(E,q) = A and
C :=C(FE,q) is a simple K-algebra.
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Proof. By Example 9.22 we only need to show that C := C(F,q) is simple. So assume that
0#1<C,0+# x=ux9+x €I sothat x; € C;. If vy = 0 then replace z by xe with e € E
q(e) # 0, so wlog 1 # 0. We have that Cy = C = (1,2 = eje2) = A[X]/(X? — bX + ac) and
(Z—2)% = (a(z)—2)>=0*—4dace A*. Asx €T also zz — 22 = 22y — 112 = (2 — (2))x; € I and
hence x; € I. Since (F, q) is regular, there is some y € E such that 0 # b,(x1,y) = z1y +yx; € 1,
hence 1 € I and so I =C. O

Lemma 10.5. Let E = B, D E, and o, oy, oy be the corresponding automorphisms of C°, v, v1,7v2 =
c(—id) the automorphisms of the Clifford algebras extending —id € O(E;,q). If E; and C(E;)0(F)
are free A-modules then

C(B)™™) = {z € C(B)®™) @ C(Ep)™™) | (a1 ® 12)(2) = (11 ® az2)(2)}.

Proof. We know that C(E) = C(E;)QC(E,). Co(E) is generated by Co(E1) ® 1, 1 ® Co(Es) and the
products z; ® o with ; € E;. Let 2z = Y u; ® v; € C(E)®). As » commutes with Co(F)) ® 1
and 1 ® Cy(FEs) this implies that u; € C(F)°F) and v; € C(EQ)CO(EQ) For x; € E; compute

(21 ®@x2)2 = ) i (11 ®@ m2)(w; @ v;) = Y (2171 (i) @ T90;) =
Yo on(n(u)r @ ag(vi)me = Y an (1) ® ya(aa(vi))z1 @ 12 = (a1 071 @72 0 @2)(2)(T1 ® 22).

Since a? = 72 = id we see that z € C(E)°®) if (o ® 72)(2) = (11 ® az)(2). Also

(x1® 1)z = (o ®¥2)(2)(x1 ® 1) and
(1@ z2)z = (M @ az)(2)(1 @ x2)

s0 = (1 @ Y2)jz = (N1 @ a2)|z. O

Lemma 10.6. In the notation of Lemma 10.5, if Z; = A[X]/(X? — X + ¢;) C Co(E;) fori=1,2
and (a;)z, is the canonical involution, then Z = A[X]/(X? — X + ¢) with ¢ = ¢1 + ¢ — 4c1c2 and
o)z 18 the canonical involution.

Proof. For i = 1,2 write Z; :== A® Az; = Az; ® Aa(z;) with 22 — z;+¢; = 0, a;(2;) + 2z, = 1. Then
z = a1121 Q29+ a1221 Qaa(22) + a9 01 (21) R 29 +a2201 (21) ®a(22) € Z & (1 ®72)(2) = (M ®@as)(2)

which yields aj; = age and ajs = a9y as z; € Co(E;) and hence 7,;(z;) = 2z;. So Z = Az @ Aa(z)
with 2 = 21 ® 29 + @1(21) ® an(22) and a(z) = 21 @ as(29) + a1(21) ® 25. We compute z + a(z) =
(z1+a(z1)) ® (22 + a(z2)) =1 and za(z) = ... = ¢; + ca — 4dcyco. O

Theorem 10.7. (a) Let (E,q) be regular and free of even rank 2m and write E = Q" E; with
Ei = Aegi,l D Aegi such that bq(€2i,1, egi) =1. Then

C(E)®E) = A Az = A[X]/(X? — X +¢)

with z € Co(E), z + a(z) =1, za(z) = ¢ and (a(z) — 2)> =1 — dc = (=1)™ det(ey, . . ., €2) € A*.
So here Z(C(E)) = A and Z(Co(E)) = Alz].
(b) If F is semi-reqular and free of odd rank 2m + 1 then F' = EQ Af where E is as in (a) and
q(f) =a#0. Then

C(F)®) = Aq At = A[X]/(X? —b)

with t € C1(F), a =id and b = (—1)"det'(ey, ..., eam, ) € A*.
So here Z(C(F)) = Alt] and Z(Co(F)) = A.
Moreover Co(F) = C(E, —aq) and C(F) = Co(F) ® Z(C(F)).
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Proof. (a) We proceed by induction on m. m = 1 has been done in Example 9.22 and Lemma
10.4. The induction step follows from Lemma 10.5: Write E = E; D B} with E} = Q7" E;
and B} = E,,. Let Z| := C(E)%WF) = A® Az with 2z + a;(z) = 1 and zoy(z) = o,
(_1)m—1 det(el, Ce ;€2m—2> =1 —461 = (Oél(Zl) —21)2, — det(egm_l, egm) = 1—402 = (062(22) —22)2.
By Lemma 10.5 C(E)%®) = A® Az where z = 21 ® 25 + a1(21) ® an(zy) satisfies z + a(z) = 1
and za(z) = ¢ + ¢ — 4ciep =: ¢. We compute (a(z) — 2)? = (a(z) + 2 — 22)? = (1 — 22)% =
1—4z+422 =1—4c = (1 —4c1)(1 — 4eg) = (—1)™ det(eq, ..., ean2)(—1)det(ean_1,€om) =
(—1)™det(eq, ..., eam).

(b) Write z = u + vegmy1 € C(F) where u,v € C(E). By Lemma 10.5 we have z € C(F)®) if and
only if u,v € C(E)%®) satisfy a(u) = v and a(v) = —v, so by (a)

C(F)P) = (1, = (a(2) = 2)eamsn)
where z € C(E)%®) is as in (a). We compute

((a(2)—2)eamas1)? “eC(®) (a(2)—2)2€50q = (—1)™ det(eq, . .., eam)q(E2ms1) = (—1)" d/et(el, ey €2mt1)-

The map g : E — Co(F), z — xf satisfies g(x)? = (zf)* = —aq(x) for all z € F. Therefore
there is a unique A-algebra homomorphism € : C(E, —aq) — Co(F) extending this map. As the
(xf :x € F) generate Cy(F') as an A-algebra, this homomorphism is surjective and hence bijective
as both algebras are free of the same rank. O

Theorem 10.8. Let A be a field, E = (E1,q1) D(Es, q2).
(a) If (Ey, q1) is reqular of even dimension 2m with basis (eq, ..., ean) then

C(FE) = C(Ey,q1) ® C(Ey,dgy) where d = (—1)"det(ey, ..., eam).

(b) If (E1,q1) is semi-reqular of odd dimension 2m + 1 with basis (e1, ..., €ami1) then
Co(E) = Co(E1, q1) @ C(Ey, dqs) where d = (—1)™  det/(eq, . . ., €ami1)-

Proof. (a) We know that C(E) = C(E,)®C(E,). We search a subalgebra D such that C(E;)®C(E,) =
C(E1) ® D, so D commutes with C(E;). We have

C(E)F) = C(E)°F) @ C(E,) = Z) ® C(Es)
with Z; = C(E,)%®) C Cy(E,) because dim(E)) is even. w € C(E)©F) lies in C(E£)°FV if and
only if (x® 1)w = w(z®1) for all z € Ey. Write Z; = (21, a1(21)) and w = 21 @ wy + a1(21) @ woy
with wy,wy € C(E3). Then
w(z®1) =217 @ (wr) + ar(21)r @ Y2 (w2) = 2o (21) @ Y2(wr) + 221 @ Yo (w2)
and (r ® 1)w = x2; @ wy + zay(z1) ® wy. We obtain equality if and only if 75(wq) = ws, i.e.
C(E)C(El) = 1 ® Co(E2> EB (@1(21) — Zl) ® Cl(EQ) Q C(E1)®C(E2)

The isomorphism between C(E)¢FV) and C(E,,dg) is given by (1 ® x135) + d 'z129, (ay(21) —
z1) @ x — x for all z, 1, x5 € E.

(b) Write (E1,q1) = (f) O(E], q;) with (E7, ¢}) regular of even dimension 2m and a = ¢(f) # 0.
Then

Co(E) = C((EY, —aqy) O (Es, —ags)) = C(E}, —aq;)RC(Ey, (—1)™ " det(q))agz) = Co(Er, 1)@C(Es, 0gs)

where the first isomorphism is from Theorem 10.7 (b) writing £ = (E] @ E2) @ Af and the second
one from part (a) of the present theorem. The last isomorphism is again from Theorem 10.7 (b)
applied to B} = E1 D Af. a
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Corollary 10.9. Let A be a field, (E,q) reqular or semi regular.

(a) If dim(E) is even, then C(E,q) is a tensor product of quaternion algebras, Z(C(E,q)) = A and
Z(Cy(E,q)) = C(E,q)%ED = 7. Cy(E,q) = B® Z, where B is a tensor product of quaternion
algebras.

(b) If dim(E) is odd, then Co(E,q) is a tensor product of quaternion algebras, Z(Co(E,q)) = A
and C(E,q)) = Z @ Co(E, q) where Z = C(E, q)%F9 = Z(C(E, q)).

11 The Spin group and the Spinor Norm

Theorem 11.1. Let (E, q) be a f.g. projective quadratic A-module. LetT'(E, q) := {a € Aut(C(FE,q)) |
a(E) C E}. Then vy :T'(E,q) = O(E,q),a — oy is a group isomorphism.

Proof. Clearly v is a group homomorphism. We have v(c(u)) = u for all u € O(F,q), where
c(u) € Aut(C(F,q)) is the automorphism defined by c(u)(e) = u(e) for all e € E. So v is surjec-
tive. The injectivity follows because any automorphism of C(F,q) is uniquely determined by its
values on the generators (as an algebra), the elements of E. O

Remark 11.2. For a € T' we have a(Cy) C Cy and a(Cy) C Cy so « is a graded algebra automor-
phism. In particular o induces an automorphism on Z = C(E,q)%F9 . Put Ty(E,q) = {a €
I'(E,q) | qz =idz}. Then Ty AT, If (E,q) is a regqular quadratic A-module over a field A, then
[y is a normal subgroup of index 2 in I

Definition 11.3. Let (E,q) be a regular or semi-reqular quadratic module over an arbitrary ring
A and put Z = C(E,q)°F9 . Then

SO(E. q) == {u € O(E, q) | c(u)z = id} = 7(Ty(E,q))
1s called the special orthogonal group.

Let A be a field and E be a regular quadratic A-module with basis (eq, ..., e,). If char(A) # 2,
then we may define the special orthogonal group by

SO(E,q) :={y € O(E,q) | det(p) = 1} <2 O(E, q).

For fields of characteristic # 2 every orthogonal transformation is a product of reflections. As
reflections have determinant —1, we get that SO(E,q) ={t € O(E,q) |t = s, -+ Sf,, }-

This definition also applies to rings of characteristic 2, however, if (E, ¢) is only semi-regular, say
E = E; D Ae with q(e) € A*, B regular, then e € E+ and s, = idg, so any product of reflections
is the product of arbitrarily many reflections.

Remark 11.4. Let A be a field of characteristic # 2. Then SO(E,q) = {u € O(F,q) | det(u) =
1} = {u S O(E7Q) ‘ uU=5p "'szt}'

Proof. Note that any orthogonal transformation is a product of reflections and reflections have
determinant 1. So any u € O(FE, q) with det(u) = 1 is a product of an even number of reflection.
If u= sy ---sp, then

c(w) =V Ky for = Kfroofan
is the conjugation with f;--- fo € Cj. It hence induces the identity on Z. All three descriptions
yield normal subgroups of index 2 in O(F, q), hence they coincide. O
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Theorem 11.5. Let (E,q) be a reqular or semi-regular quadratic module over a field A. Let

G ={9€C(FE,q)*|gEg'=FE} and
Go ={g€Co(E,q) |gEg" = E}

ThenTo(E,q) = {k,: g € Go} where k, : C — C,x + gzg~'. The kernel of the group epimorphism
Go = T'o(E,q),9 kg is Z(C(E,q))" NCo(E, q)" = A

Proof. Let a € I'y(E, ¢). Then aj¢, € Aut(Co).

If Z(Cy) = A, then Cy is a central simple A-algebra and by the Theorem of Skolem and Noether
any automorphism is inner, so there is p € Cj, such that a@ = x, on Cy. But then C = Cy @ Z and
k, and a both induce the identity on Z, so k, = a € Aut(C).

If Z(Co) = Z # A, then Z(C) = A and again by Skolem/Noether, there is some p € C* with
kp = € Aut(C). As r,y(2) = 2 for all z € Z we have p € CZ = (. O

Definition 11.6. Let ¢ be the involution of C(E,q) defined by t(e) = e for all e € E and define
N :C(E,q) — Co(E,q),x — x1(x).
Clearly N(e) = q(e) for any e € E, but in general N(c) ¢ A for ¢ € C(E,q). However we have
Lemma 11.7. N(g) € A* for all g € G.
Proof. We need to show that for g € G the element giu(g) € A*. The first remark is that ¢(g) € G.
We then compute for e € E

-1 -1

(9t(9))e(ge(g9)) ™ = gu(g)et(g™ g™ = gulg  eq)g™" = g(g " eg)g™" = e.
Therefore gi(g) € ker(k) NCy = A*. O

Definition 11.8. Let A be a field and (E, q) reqular. For u = v(k,) € SO(E, q) define the Spinor
norm
SN(u) := gi(g) € A/(A")?
and
SO™(E,q) :={u€ SO(E,q) | SN(u) =1}
the kernel of the Spinor norm.

Clearly: SOT(E,q)<SO(FE,q)<O(E,q) and SO(E, q)/SO*(E, q) is isomorphic to a subgroup
of A/(A*)?, in particular an elementary abelian 2-group. If we put

Spin(E, q) == {g € Go | g¢(9) = 1}.
then SO*(E, q) = {v(xy) | g € Spin(£, q)}.

Diagramm.

Clearly: If e, f € F with q(e)q(f) € A* then SN(s.s;) = q(e)q(f)(A*)2.
Example 11.9. Let A be a field and (E,q) = H(A) = (e, f) with q(e) = q(f) = 0 and by(e, f) = 1.

The only singular vectors in H(A) are the multiples of e and f. So any orthogonal transformation
u € O(E,q) satisfies

U=ty : e ae, f—atf or

U=Seqp: €—af,frrale
for some a € A*. We see that SO(H(A)) = {t, | a € A*}. As t, = Se_fSe—ay we compute
SN(ta) = q(e — f)ale — af) = a(A*)*.
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Exercise: Let A be a field and (F, q) be either regular or semi-regular of rank < 4. Then
Spin(E, q) = {g € Co(E,q) | N(g) = 1}.

Theorem 11.10. Let A be a field, (E,q) a regular quadratic space. Let g € SO(E,q), G <
SO(E,q).

e If g has odd order then SN(g) = 1.
e SN(¢?) = 1.
o If |G :G'] is odd then SN(G) = {1}.

o Ifchar(A) # 2 and g*> = 1, then SN(g) = det(E_1(g),q), where E_1(g) = {x € E | g(z) =
—x}.
o Ifchar(A) # 2 and g*> = —1, then det(E, q) = 1.

o Ifchar(A) # 2 and [G : G'] is odd then det(E_1(g),q) = 1 for all g € G with g* = 1. In
particular if —1 € G and [G : G'] is odd then det(E,q) = 1.

Proof. Only (iv) needs a proof: Let (eq,...,e,) be an orthogonal basis of F_1(g). As g
SO(FE,q) we have that m is even. Moreover g = s, - -+ s, and hence SN(g) = q(e1)---q(em)

27" det(E-1(g), q) = det(E_1(9), q)-

ol m

12 Invariants of elements of the Witt group

Recall that W (A) = {[(F,q)] | (E,q) regular } with (E, q) ~ (E’,¢) if and only if (F, q) D (E’, —¢')
hyperbolic. With respect to the orthogonal sum, the set W (A) becomes an abelian group.

12.1 The discriminant algebra and the Arf invariant

Let A be a commutative ring.

Definition 12.1. e A quadratic A-algebra B is a free (commutative) A-algebra of rank 2,
B = A[X]/(X? —aX + ). It is called separable, if a*> — 4b € A*. We will call it special,
if we may choose a = 1.

o Let z:= X+ (X?—aX +0b) € B. Then~: 2+ a— z is the canonical involution on B.
e Define a multiplication on the set of all separable quadratic A-algebras by
BioBy:={r € B ® B, | (n®id)(z) = (id ® v)(z)}.

Remark 12.2. The set of all isomorphism classes special separable quadratic A-algebras forms an
Abelian group Q(A) with Bo B = By = A[X]/(X? — X) the unit element of Q(A).

Proof. Let B; = (2;,7i(z:) = 1 — 2z;) = A[X]|/(X? = X + ;) (1 =1,2) Then

B = Bl o B2 = <Zl & 2o + 71(21) & /72(22) = Z,’Y(Z»
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with v := v ® id. We compute 2> — 2z +b = 0 with b = by + by — 4b1by, and (1 — 4b) =
(1 —4by)(1 — 4by) € A*. In particular the neutral element is By. We compute

BoB=A[X]/(X?*— X + (2b— 4b?)) = B,
as X2 — X +2b — 46 = (X — 2b)(X +2b — 1). m

Lemma 12.3. Assume that A is a field of characteristic 2. Then the map ¢ : a + a® + a is
Fy-linear and its image p(A) < A is a subgroup of the additive group of A and

0:Q(A) = A/p(A) 2 ker(p), A[X]/(X? — X +b) > b+ p(A)
18 a group isomorphism.

Proof. The additivity of ¢ is checked in the proof above, as 4b1by = 0. So we get a group epimor-
phism A — Q(A),b+ [A[X]/(X? — X +b). The kernel of this map is the set of a € A for which
X? — X + a is reducible, which are those a that are of the form ¢ — ¢ for some ¢ € A (a zero of
X? — X +a). O

Definition 12.4. Let A be a local ring. For a regular quadratic A-module (E,q) we define the
discriminant algebra d’(E, q) := C(E,q)®%9 € Q(A).
If A is a field of characteristic 2 and (F,q) a regular quadratic A-module then the Arf invariant
of (E,q) is p(d"(E,q)) € A/p(A).

Example.
Let A = I, be a finite field of characteristic 2. Then ker(p) = {a € A|a®> =a} 2 Fys0 A/pA = O,
and the Arf invariant of N(F,) is the non-trivial element in A/pA.

Example:
If (E,q) = O(E;, ¢;) with E; = (eg;_1, €2;) and b(eg;_1, €9;) = 1 then p(d"(E, q)) = >, q(e2i—1)q(ex).
Remark 12.5. By Lemma 10.6 the discriminant algebra satisfies

(B @ By) = d'(Ey) o d'(E)

if the rank of E1 or Es is even. We easily check that d"(H(A)) = By and hence get an group
homomorphism

d’" Wi (A) = Q(A)
where W1(A) < W(A) is the kernel of the dimension mod 2 homomorphism. Let Wy(A) =
ker(d") < Wi(A).

12.2 The Clifford invariant

(The notion Clifford invariant might be historically not correct, as this was introduced by Witt,
but it is easier to memorize.)

Let A be a field. Recall that the Brauer group of A is the group of all isomorphism classes
of central A-division algebras

Br(A) :={[D] | D is an A division algebra, Z(D) = A}

with [D;]o[Ds] = D if there are m, n such that (D;® Dy)"*"™ =2 D™*™_ Then [A] is the unit element
of this group. The multiplication is well defined, as the tensor product of two central simple A-
algebras is again a central simple A-algebra and any central simple A-algebra B is isomorphic to
a matrix ring of a unique division algebra B = D™*™ where D is the endomorphism ring of the
unique simple B-module.
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Definition 12.6. Let (E,q) be a regular quadratic A-module. If dim(FE) is even, then c(FE,q) :

C(E,q) and if dim(E) is odd, then c¢(F,q) := Co(E,q) is a central simple A-algebra. So ¢(FE,q) =
D™ ™ for some division algebra D and some m. Define the Clifford invariant ¢(E, q) := [D] €
Br(A).

Clear: Let A be a field and (E, q) aregular quadratic A-module. If dim(F) = 1 then ¢(E, q) = A.
If dim(F) = 2 then ¢(E,q) = C(E, q) is a central simple A-algebra of dimension 4. So this is either
a division algebra or isomorphic to A?*%. As C(F,q) carries a canonical involution, this algebra
is a division algebra, if and only if the norm form of C(F,q) is anisotropic. As we have seen in
Example 9.22 the norm form is

(C(qu ,TL) = (Clan) @(Co,n) = (Ev _Q) @(C(bn)

s L]
(E,q) = {a i}

We have C(E, q) = A**% if and only if (E, q) represents 1 (i.e. there is some e € E with g(e) =
If dim(E) = 3, then write (E,q) = (F1,q1) D Af where a = q(f) € A*. Then ¢(FE, q) = Co(F, q)
C(Ey, —aqy) is the Clifford algebra of a regular quadratic space of dimension 2.

1).

Theorem 12.7. ¢: W3(A) — Br(A) is a well defined group homomorphism.

Proof. By Theorem 10.8 we have ¢(E;) o ¢(Ey) = ¢(Ey L Ey) if dim(E;) is even and d"(Ey) = 1.
Moreover ¢(H(A)) = [A], so the map is a well defined group homomorphism. O

W(A) > Wi(A) = ker(dim (mod 2)) > W(A) = ker(d"”) > W3(A) = ker(c).

The Witt group of Q,.

Example 12.8. The invariants of the 4-dimensional anisotropic space over Q.
Let U, = (Q,G,q) D(Q,G,pq) be the unique anisotropic space of dimension 4 over Q,, where
(G, q) is the regular quadratic Z,-module with

(G/pG.q) = (N(Fp)) = (Fp2, N).
Then d"(U,) = d"((Q,G, q))d"((Q,G, pq)) = d"((Q,G,q))* = 1. Moreover

ClUp) = C((QG, ) @ C((Q,G, dpg))

where d = —det(Q,G). Since (G, q) represents all elements of Z,, it also represents 1, so
C((Q,G,q)) = Q2% But C((Q,G,dpq)) =: Q, is a division algebra, as (G,dpq) = (G, pq) rep-
resents exactly those elements of Z, whose valuation is odd. Using the fact that all anisotropic
4-dimensional spaces are isometric to U,, we can also show that the Clifford algebra of any 2-
dimensional reqular quadratic space over Q, is either isomorphic to Q?DXZ or to Q,, which is the
unique division algebra of dimension 4 over Q.

We have
Cy x Cy p=3 (mod 4)
W(Q,) =< (CaxCy)*  p=1 (mod4)
Cg X CQ X Cz p = 2
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The filtration reads as

wW(Q,) e

| e W(@)/M(Q,) 5 222
Wi(Qp) e

| 4@ S g { 57 DY
Q) o = (th) )

| e WHQ)/WH(@) 5 Bra@,) = {10,],[Q,]) = {1,-1}
W3(@p) e =0

Some explicit computations

From now on we assume that A is a field and char(A) # 2. We want to compute in the subgroup
of the Brauer group of A that is generated by quaternion algebras.

Definition 12.9. For a,b € A* define the quaternion symbol
(a,b) 4 = (a,b) :== c([a,b]) € Br(A).

Remark 12.10. For a,b,c,u,v € A* we have

(1) (a,b)a = (b,a)a.
(ii) (au?,bv*) s = (a,b) 4.
(iii) (a,—ab)a = (a,b)4.
(i) (a,a)a = (a,—1)a = (=1,a)a
(v) (a,—a)a = [A].
(vi) (a,bc) = (a,b)(a,c)
(vii) (ab,c) = (a,c)(b,c)
(viit) (1,a) = (a,1) = [A].

Proof. (i), (ii), clear. (iii): Put [a,b] = () D(f) and [a, —ab] = (g) D(h). Define ¢ : [a, —ab] —
C([a,b]) by @(zg + yh) := ze + yef. Then

o(xg +yh)? = (zve +yef)? = 2%a + zye’f + zyefe + y’efef = 2°a — y*ab = q(xg + yh).
—— =~

*xyer 7y2€2f2

So by the universal property of C([a, —ab]) the A-linear map ¢ can be extended uniquely to an
A-algebra homomorphism ¢ : C([a, —ab]) — C([a,b]). As C([a, —ab]) is a simple algebra and ¢ # 0,
the kernel of ¢ is 0, so ¢ is an isomorphism, since both algebras have the same dimension.

(iv) follows from (iii) using (ii).

(v) C(la, —a]) = C(H(4)) = A2+,

(vi) We want to show that

C([a. b)) ® C([a, c]) = C([a, be]) ® C([e, —a’c]).
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The last factor is (¢, —a*c) = (¢, —c) = [A] by (ii) and (v). Let (1,e;,e9,e3) and (1, fi, fa, f3) be
the standard bases of C([a,b]) and C([a, c]), so

6% = aaeg = b7€3 = €163 = _6261;f12 = a’7f22 =G f3 = f1f2 = _f2f1'
Put C :=C([a,b]) ® C([a, c]) and define subalgebras

B:={1®1,e1®1,e5® fo,e3 R fo)
D:=(1®1,1® fy,e1® f3,—ce1 @ fi1)

Then B = C([a,bc]), D = C([c, —a?*c]) and B and D commute. Moreover C' = (B, D) = BD so
B®D —C (x®y) — xy

is a A-algebra isomorphism.
(vii) follows from (vi) and (i) and (viii) using (vii): (a,1) = (a,1)(a,1) = [A]. O

Theorem 12.11. Let A be a field of characteristic # 2, a1, ...,a, € A*, n =2m even, r :=m—1,
5:= @ Then

(@) e(far.-.02]) = T ozl ) (~L T, ) (<1, =1

(0) e([ar, - an-1]) = Tligjcicnr (a5, @) (=1, TS @) (=1, =1)".

Proof. By induction over m. The case m = 1 is the definition.

m — 1 = m: By Theorem 10.8 we have

c([ar, ... an]) = c(lar, ..., an—so])c([ban_1,bay])

(
where b= (—=1)™ ' [[/=] a;:2"2 or (since 2”72 is a square) b := (—1)" "' ][I ;.
We compute ¢([ba,_1, ba,]):

(=)™ 'TZ 1aan 1 (=1)mt fla] n) =

(=1, (=)™ T2 %an)m IHZ S (@ (D)™ T aga,) =

(=1, —1)mH (-1 H] L a)" (=1 a) (I =) TS (s ag)
H?:_f(%an)(an 1, —1)"" 1H (ai>an—1>(an—lvan>

(_17 1)m 1<anan*17_1)m 1H (al,az) Hyz_lz(a“anflan)(anfluan) =
(_17_1>m71(anan—17_1) ( 1 Hz 1 az) H1§i<j§n7n—1§j§n(aiaaj)

So by induction hypothesis we compute

c([a, ..., an_so])c([bay_1, ban]) =

[Ticjcicnoalaj,a) (=1, L2 Fa;) (=1, —1)mDm=2)/2

(=1, =1)"(anan—1,—1)" (-1 H =1 az) H1§i<j§n7n—l§j§n(aiv aj) =

H1§j<i§n(aj? a;)(—1 Hz:l a;)"(=1,-1)°
To get (b) we use that c([a, ..., a,-1]) = ¢([—an-101, ..., —an_1a,_2]) by Theorem 10.8 (b) applied
to Ey = [a,_1]. We then apply part (a) of the present theorem to see that

C([ Ap—1Q1,..., —an—lan—Q]) =

H1<]<z<n 2( an—10j, an 1@1)(—1,1_[?:_12 _a’”*lai)r_l(_l’_1>(m_1)(m_2)/2 -

[T (an,0)  TL (—an1,00)" 7 Tl jcigya(0g, @) (=ano1, =) 2007972

( 11—[ ) (_1( an_1>n—2)r—1(_17_1)(m—1)(m_2)/2

H1§J<Z§n72<ajaaz) H:ril:_f(_anflaai)(_l?_1>(m_1)(m_2)/2+(m 2 ( 1 H =1 al) (_1’a"71)m_1 =
[icicicn (@, ai) T (ano1, ai) (=1, =1)* (=1, T['5 a;)"



Chapter 4

Local-Global Principles.

Let K be a global field, i.e. a finite extension of Q or of F,(?).

Definition 12.12. A property P is called local, if P holds over K if and only if it holds over all
completions of K.
So a property P is a local property for Q means that P holds for Q if and only if it holds for all

Q, (p a prime) and for R =: Q.
We want to show that isometry of quadratic spaces is a local property, so two rational quadratic
spaces (F,q) and (E',q’) are isometric, if and only if all their completions

(E®Q,,q) = (EF'®Q,,q) forall pe PU{oo}

which is the weak theorem of Hasse and Minkowski. We even have the strong Theorem of Hasse
and Minkowski that (£, q) is isotropic, if an only if (E ® Q,, ¢) is isotropic for all p € P U {oo}.
So the Witt index of (E, ¢) is the minimum of the Witt indices over all completions.

13 The Theorem of Hasse and Minkowski.

13.1 The Witt group of Q revisited.
In Section 5.4 we have seen that

s1= (0,00, 6,): W(Q) = Z&Z/2Z & P W(F,)

p>2 p>2

is an isomorphism, where o ([(E, ¢)]) is the signature of the rational quadratic space (F,
0 if and only if vy(det(E,q)) is odd, and for p > 2 6,(FE,q) = [(L¥/L),,q)] € W(
primes p, the map 6, is defined on the 1-dimensional forms by d,([(pa)]) = [(@)] and
fora e {1,...,p—1}.

We also recall the Gauss sum, v : W(Q) — ((s)IC*, defined by

Y([E,q]) = \/ﬁ m+L§#/L exp(2mig(x))

where L is any even lattice in E,q (so ¢(L) C Z). As the Sylow p-subgroups of the finite abelian
quadratic group L# /L are orthogonal to each other, we have v = Hp Vp, Where

1 .
w(E,q) = > exp(2mig(x))
| Sylp(L#/L>| a+LeSyl, (L# /L)

64
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Lemma 13.1. Let a € Z be odd. Then ~((a)) = (¢ and

(s a=1 (mod4)
72((2a)) = { (' a=—1 (mod4).

Proof. Let (F,q) = (a), then E = (e) with g(e) = ¢ and (2¢) =: L is an even lattice in (F,q).
(

2
Then L# = (%@ and the 2-Sylow subgroup of L# /L is generated by %e + L with q(%e) =2 (and

-8
has order 4). So

1 a a a a

%(B0) = 5(GE+HE+E+E) =G
If (E,q) = (2a) then E = (e) with ¢(e¢) = a and L = (e) is even with L# = (5-¢). Again the
2-Sylow subgroup of L# /L is generated by 3¢ + L. Now this group has order 2 and ¢(1e) = 2. So

(1+i)=C¢ a=1 (mod4)
(1—4)=¢"' a=—1 (mod 4).

S-Sl

2o(E, q) = %mcza) :{

Remark 13.2. There is a unique homomorphism

ti=(too to, [ [ 1) Z® Z/2Z & W (F,) — (Gs)

p>2 p>2

such that tos = 73, i.e. %([(E,q)]) = too(0(E,9))12(02(E, ) [0 tp(0(E, q)) for all [(E, )] €
W(Q).

Theorem 13.3. (a) t(n) = (¢ foralln € Z=W(R) = o(W(Q)).
(b) to = 1.

(c) t,({(1)) = & for all primes p > 2.

(d) t,([N(F,)]) = —1 for all primes p > 2.

Proof. (a) Let u := [(1)] € W(Q). Then vo(u) = (s and d3(u) = d,(u) = 0 for all primes p. As
o(u) = 1 we hence have y5(u) = t(1) = (5. The statement follows from the fact that t., is a
group homomorphism.

(b) Let w := [(1,—2)]. Then §,(u) =0 for all p > 2, o(u) = 0, d2(u) = 1. Therefore

t(1) = 72(u) = 92((1))12((—2)) = GG = 1.

(¢) Let w := [(—1,p)]. Then ,(u) = 0 for all primes g # p, o(u) =0, d,(u) = (1) so

to([(D)]) = 72(w) = w((=1)0(p) = G 'E =&

(d) For p =3 (mod 4) the statement follows from (c) as here the form (1) generates W (F,) = Cy.
In particular N(F,) = (1, 1) and hence

L(IN(F,)]) = 6((1D])” = G777 = —1.

The case p =1 (mod 4) is more difficult. The strategy is to find any 2-dimensional form over F,
for which ¢, # 1. As there are only two 2-dimensional forms (H(F,) and N(F,)), one may conclude
that this form is N(F,) and satisfies t,([N(F,)]) = —1.

First assume that p = 5 (mod 8). Then consider v = [(p, —2p)]. Then J,(u) = 0 for all primes
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2 <q#p, o(u) =0 and 6,(u) = [(1, —2)] has even dimension. As ty = 1 the value d2(u) has no
relevance. Hence

tp([{1, =2)]) = 12 (u) = 12({P))12({=2p) = FGs ' =& =G = -1

From this we hence have that (1, —2) is an anisotropic form over [, and hence 2 is not a square
mod p. The same computation also shows that ¢, of this form is 1 for p =1 (mod 8) which shows
(assuming that the theorem be proved) that 2 is a square mod p. To finish the proof, we need one
lemma:

Lemma 13.4. Let p =1 (mod 8) be a prime. Then there is an odd prime q < \/p < p such that
p 1s not a square modulo q.

Assume the lemma, let ¢ be the prime of this lemma and consider u = [(1, —p, —q, pq)] € W(Q).
Then 7v5(u) = Cél —p—q+pg) =1 because p =1 (mod 8). We have o(u) = 0, dy(u) = 0 for all
primes 2 < [ # p,q. We have

= N(FF,) since p is not a square

Og(u) =
Ip(u)

By induction we have t,(N(F,)) = —1 and therefore also ¢,((—1,¢)) = —1. (The induction starts
with p =17,¢ = 3.) O

Proof. (of Lemma 13.4) Let m be the odd number with m < ,/p < m + 2 and put

. [p=12 p=32\ . (p=m%) _ 1™ p—i?
N = ( 1 ) ( 1 1 = Hi:l,odd 1 <
m+24+1 m+2—1 m+24+3 m+2-—3 m+24+m m+2—m __

2 2 2 ) ;= (m+ 1

We now show that is ¢ is a prime with ¢ < ,/p so that p is a square mod ¢, then ¢ divides NV to at
least the same power as it divides (m + 1)!. This then yields a contradiction, as all prime divisors
of (m + 1)! are < \/p and also N < (m + 1)!. Note that m < ,/p and m + 1 is even implies that
all prime divisors of (m + 1)! are < ,/p. So let ¢ be a prime ¢ < \/p. Then

m—l—l
m+1

Now assume that p is a square modulo ¢. As p =1 (mod 8) for any s € N there is an a such that
(%) a®>=p (mod 4¢°).

We can add 2¢® to a or replace a by 2¢° — a, so there are solutions of (x) in (0, ¢%), (¢%,2¢%), ...,
so ¢° divides at least Lm“J factors of NV, so v, (N) > Zitmqflj. O

Recall that the Clifford invariant on W(Q,) only takes two values: [Q,] or [Q,]. Identify
Bry(Q,) with {1, —1} and put ¢(E,q) := —1iff ¢(E,q) = [Q,].

Lemma 13.5. Let (F,q) be a regular quadratic Q-vector space of dimension 4 and determinant
€ (Q")?. Then t,(6,(E,q)) = ¢«(E ® Q,) for all prime p > 2 (including co) and ¢(E @ Qp) =
72<E7Q) € {17 _1}
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Proof. By the assumption d"(E,q) = 1 we get that ¢(£ ® Q,) = 1 if and only if £ ® Q, =
H(Q,) @ H(Q,). So assume that ¢(F ® Q,) = —1.

If p# 2 and p # oo then £ ® Q, = U, and hence 0,(E) = N(F,) and so t,(0,(E)) = —1.

To deal with p = oo we note that (F, q) is either positive or negative definite, so o(F, q) = +4 and
0 too(0(E)) = GGt = —1.

Also for p = 2 the assumption ¢(F ® Q) = —1 is equivalent to £ ® Qy = U, (the anisotropic
quadratic space of dimension 4). As v, only depends on the 2-Sylow subgroup of L# /L this in-
variant can be read off from F ® Qq = (1,1,1,1). So 12(F,q) = (§ = —1. O

Theorem 13.6. Let (E,q) be a reqular quadratic Q-vector space. Then

H C(E@Qp) = 1.

peEPU{o0}

Proof. The statement is true for 1-dimensional spaces, as these have trivial Clifford invariant.
It is also true if dim(E) = 4 and d”(F) = 1 by the preceding lemma and the fact that v (F, q) =

[L,52tp(0p(E, 0))tc (0 (E, q))-.

As the Clifford invariant can be computed as a product of the Clifford invariant of 1- and 2-
dimensional orthogonal summands, it is enough to handle the case of dimension 2. So let dim(E) =
2 and d := det(F). Put (F1,q) :=[1,d] a 2-dimensional space of the same determinant as F. As
FE represents 1, we have C(E;) = Q?*? and so also

C(E1®Q,) =C(E) ®Q, = Q2.

Let V = (E,q) D(Er, —q1) so that [V] + [(Er,q1)] = [(B, )] € W(Q). Then [C(V)] = [C(E, q)].
But V is a 4-dimensional space of determinant 1, so by the Lemma above, C(V') satisfies the prod-
uct rule. 0O

13.2 The quadratic reciprocity law.

Definition 13.7. Let p be an odd prime, a € Z not divisible by p. Then put

(5)- {1, 22 G

Theorem 13.8. (Quadratic reciprocity law) (a) If p,q are odd primes then

(5 ()
<%>  (—1)-Drs
(_?1) _ (—1)e-Dr2,

(b) If p is an odd prime then

(c) If p is an odd prime then
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Proof. For (a) we consider V := (1, —p, —¢, pq). Then ¢(V@R) =1, ¢(V®Q,) = ( ), (V®Q,) =

a
p
<§> and
(V@) =7nV)= C;—p—qﬂ?q _ Cél—p)(lfq) _ (_1)(p71)(q7]_)/4

To see (b) consider V := (1,—2,—p,2p). Then ¢(V@R) =1, ¢(V®Q,) = < ), and

2
P
B  depa s p=1 (mod4) 7 p=1 (mod4)
C(V®Q2) - VQ(V) - C; C8 t. { Czl p= -1 (mod 4) — { Czilip p= -1 (mod 4)

For the last statement let V' = (1,1, —p, —p). Then ¢(V @ R) =1, ¢(V ®Q,) = <_—1>, and

p

(VRQy) =%(V)=( %= (-1)r b2

13.3 The Theorem by Hasse and Minkowski
Theorem 13.9. Let (V,q) be a reqular quadratic space over Q. Then (V,q) is hyperbolic if and
only if (Q, ® V,q) is hyperbolic for all p € P U {oco}.

Proof. = is clear.
<: Assume that (Q, ® V,q) is hyperbolic for all p € P U {oo}. Then s([(V,q)]) = 0 and hence
[(V,q)] =0 in W(Q), which is equivalent to (V, ¢) hyperbolic. O

Corollary 13.10. (Weak form of Hasse/Minkowski) Let (V,q), (W,q') be regular quadratic spaces
over Q for which (Q, ®V,q) = (Q, @ W,¢') for allp € PU {oc}. Then (V,q) = (W,q).

Proof. (V,q) = (W,q¢') & (V,q) O(W, —¢') is hyperbolic. O

So isometry of rational quadratic spaces is a local property.

Corollary 13.11. A regular quadratic space (V,q) over Q is determined up to isometry by the
muariants:

e dim(V)

e o(V,q) (the real signature)

e d(V,q) the discriminant in Q*/(Q*)?

e ¢(V,q) € Bra(Q) the Clifford invariant.

So we have:
w(Q)
e: W(Q)/Wi(Q) = Z/2Z
Wi(Q)
d: Wi(Q)/W2(Q) = Q*/(Q*)* = D,p Z/2Z

¢ : Wa(Q)/Wa(Q) = Bry(Q) = @, e Z/2Z

([Es ® QJ)
Z

e 1l

5
S
e — 66 — 6 — o — o
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Theorem 13.12. (Hasse/Minkowski) Let (V,q) be a reqular quadratic space over Q. Thenind(V, q) >
0 if and only if ind(V ® Q,,q) > 0 for all p € P U {o0}.

Proof. For the proof we distinguish the cases dim(V') = 2,3,4 and dim(V') > 5.

e For dim(V') = 2 we have ind(V, ¢) > 0 if and only if (V, ¢) is hyperbolic, so the statement follows
from Theorem 13.9. ,

o Now let dim(V) = 3. Put W := V @(—d(V)) where d(V) := (—=1)(""2") det(V) = — det(V) is
the discriminant of V. Then d(W) = 1, dim(WW) = 4. For any p € PU{co} we have ind(W ®Q,) >
0,s0 W®Q, =X, OH(Q,) with dim(X,) =2, d(X,) = 1. As we have seen in the exercises this
implies that X, = H(Q,), so W ® Q, is hyperbolic for all p € PU {00}, so again by Theorem 13.9
also W = H(Q) O H(Q). Now

H(Q) @ H(Q) D(d(V)) = W D(d(V)) =V D(=d(V)) D(d(V)) =V D H(Q)

So V=H(Q)D(d(V)) has ind(V) = 1.

e Now let dim(V) = 4. This is the hardest case. We try to find W such that V = W @ H(Q).
Put V, := V® Q,. Then ind(V,) > 0, so V, = W, © H(Q,) for some quadratic space W, with
d(W,) = d(V,) for all primes p € P U {oo}. We try to construct some 2-dimensional rational
quadratic space W such that W ® Q, = W, for all p € PU {oco}. Then by Theorem 13.9 we have

W O H(Q) = V because these spaces are isometric locally everywhere.

Let L be some Z-lattice in V, d := d(L) € Z, then d(W,) = d(Q})?, so W, = (ap, —da,) for
a, = p**b, € Q) where b, € Z*, a;, € {0,1} with oy, = 0 for all p not dividing 2d(L) (in particular
a, > 0 only for finitely many p).

We try to construct W = (a, —da) with a = b[[,p**. For all

p | 2d(L) we want that @ = a, (mod 4p**™'Z,)

50 b = [ 00,7 “bp (mod 4p®»*17Z,). Then a and a, are in the same square class in Q, and
hence W @ Q, = W, for all p | 2d(L). By Dirichlet’s theorem on primes in arithmetic progressions
we may and will choose b such that +b = ¢ is a prime, where the sign is to be chosen so that
W &R =2 Wy. Then for all primes p # g we have W ® Q, = W, because these two spaces
have the same dimension, the same determinant and the same Clifford invariant (which is [Q,] if
p)2bd(L)). By the product formula we also have ¢(W ® Q,) = ¢(W,) and d(W ® Q,) = d(W,) by
construction. So W @O H(Q) = V by the weak Theorem of Hasse and Minkowski, in particular V'
contains isotropic vectors.

e The last case is dim(V') > 5. Here we find a subspace W < V' of dimension dim(W) = 4 such
that W ® Q, is isotropic for all p € P U {oo}. Then by the previous step W is isotropic over Q
and hence also V.

To construct such a W let U < V be a 3-dimensional subspace such that U ® R is isotropic. Let
L < U be an integral Z-lattice. For all primes p that do not divide 2 det(L) we have that U ® Q,
is isotropic. So there are only finitely many primes p such that ind(U ® Q,) = 0.

Claim. For these p there is a y, € V ® Q, such that ind(U @ Q, D(y,)) > 0.

To construct such a y, consider 2 cases: If ind(U+ ®Q,) > 0 then U+ ® Q, represents all elements
of Q, so we may take an arbitrary x, € U\ {0} and choose y, € U+ ®Q, such that q(y,) = —q(x}).
If ind(U+ ® Q,) = 0 then there is z, € U ® Q, and y, € U ® Q,, such that g(z,) = —q(y,) # 0
(because V@ Q, = (U® Q,) QU+ @ Q,) is isotropic). We now choose some y € V such that
y =y, (mod pV) for N large enough. Then W := (U, y) is the desired subspace of dimension 4. O
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Corollary 13.13. Let (V,q) be a regular quadratic space over Q and t € Q*. Then t € q(V) if
and only ift € ¢(V ® Q,) for allp € PU{oo}.

Proof. t € ¢(V ® Q,) if and only if ind(V ® Q, D[—t]) > 0. O

Corollary 13.14. (Meyer’s theorem) Any indefinite reqular quadratic space over Q of dimension
> 5 has positive Witt index.

14 Integral quadratic forms.

14.1 Hermite’s inequality

Theorem 14.1. (Hermite inequality) Let E < (V,q) be a Z-lattice in the n-dimensional regular
quadratic space (V,q) over Q. Then

1 4 (n=1)/2
min(£) := min{|g(x)| | z € E,x # 0} < 3 (5) | det(E) Y™
Proof. Induction on n = dim(E). Let m := min(E), d := | det(£)|.
For n = 1 we have d = 2m.
So let n > 1. If m = 0 then the statement is trivial. So assume m > 0 and choose e; € FE with
q(er) = m. Let
b(x,eq)

2m

TV e, xrra— el

be the orthogonal projection onto ef and put E' := 7(E) = (7(e3),...,m(e,))z, m' := min(E’)
and d' := det(E’). Then d = 2md'.
Let 2’ € E’. Then thereisz € E, t € [-1/2,1/2] such that z = 2’ +te;. Then q(z) = q(2)+t*q(e1)
shows that ] 4

m < |g(z)| <m' + Nk and hence m < gm/.

4)(n_2)/2 (1)1/(%1) and hence

By induction hypotheses we have m/ < 1 (3 m

4 n—1 4 n—1 4 (n—1)(n—2)/2 d 4 (n—1)n/2 d
(2m>n—1 S - (2m/)n—1 S - - Rl - T
3 3 3 2m 3 2m

(n—1)n/2

so (2m)" < (3) d which is the statement of the theorem. O

Theorem 14.2. For given n,d € N there are only finitely many isometry classes of integral lattices
E in reqular quadratic Q-spaces such that |det(E)| < d and dim(E) = n.

Proof. We again proceed by induction on the dimension n, where the case n = 1 is clear.

Now let n > 1 and E be some integral lattice in a regular n-dimensional space with det(E) < d.
we put m := min(E).

If m > 0 then choose some e; € E with |g(e1)| = m and put F := (e;)z. If m = 0 then we choose
some primitive vector e; € E such that g(e;) = 0. We have b(ey, E) = aZ for a > 0 such that

a® | |det(E)| < d, because

- 1 -
E<,E:=(E ~¢) C(E)* <, E*
a
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Then choose ey € E such that b(ej, e3) = a and put F' := (e, e3). Then

Gram(F)—(g Z)~(2 c—a2a)

so we may assume wlog that —a < ¢ < a and hence there are only finitely many possibilities for
this lattice F'.
In both cases (m > 0 and m = 0) put G := ENF*. By Theorem 3.5 | det(G)| < |det(E)||det(F)|
and dim(G) = { Z : ; . So by induction hypothesis, there are only finitely many possibilities for
the lattice G. As

FOGCECE*CF*QG*

we also have only finitely many possibilities for the lattice E. a

Example 14.3. (Integral lattices of determinant +1) Let E be an n-dimensional integral lattice
of determinant +1. As %2 < 2 we have that min(E) =0 or min(E) =1 if n < 5. Hence forn <5
all integral unimodular lattices are of the form

L =<1>"DO<-1>QH(Z)

with eitherr =s=0andt <2 ort=0andr+s=n <25.

14.2 Genera of lattices.

Definition 14.4. Two lattices E < (V,q) and E' < (V',q') are said to be in the same genus, if
and only if EQ@R =2 E' @ R and for all primes p € P the p-adic lattices E @ Z, = E' ® 7, are
isometric. Notation E ~ E'.

Clear By the theorem of Hasse and Minkowski we have (V,q) = (V’,¢'), so we usually assume
that (V,q) = (V',¢'), i.e. the lattices live in the same regular rational quadratic space.
Any genus of lattices is a union of isometry classes.

Theorem 14.5. Every genus of lattices contains only finitely many isometry classes.

Proof. This easily follows from the previous subsection together with the fact that det(E) = det(E’)
if £ and E’ are in the same genus. a

Example. For £ = E# and dim(E) < 5 the genus of E consists only of a single class:
genus(ly 1) = [I54) for r+ s+ 2t <5.
? 112 MndE,:ﬁ fls>
because min(£) = 1 and min(£’") = 2. To see that £ and E’ are in the same genus, we first note
that both are even positive definite lattices of determinant 23. So they are isometric over Z, for
all primes p € P U {00} except possibly for p = 23. For p = 23 we note that 2 and 4 are squares
in Fa3, hence also in Zys, so £ = [1] L [23] = E'.
Do) amd B = ).
because they are not isometric over Zs.

In particular we have seen that isometry of lattices is not a local property. However equality
of lattices is such a local property:

Example. Let F = ( . Then E ~ E’ but E and E' are not isometric,

Example. Let E = ( Then E and E’ are not in the same genus,
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Theorem 14.6. Let V be a finite dimensional rational vector space and E < V' be some fized
Z-lattice in V. Then there is a bijection

B AE <V | E' Z-lattice} — {(E,)per | E, <V @ Q, Zy-lattice, E), = E @ ZLyfaap} =: M(E)

where faa means “for all but finitely many”) defined by B(E') := (E' ® Z,),ecp with inverse - :
p)p
(E)per — NV NE.

Proof. (a) B(E') € M(FE) for all lattices E' in V, as the base change matrix between the lattice
bases of E and E’ only involves finitely many primes in the denominators of the entries and the
determinant.
(b) v((E})) is a lattice in V, because £, = £ ® Z, for all but finitely many primes p. Hence there
are ap, b, € Z such that

p*(E®Z,) C E, Cp”(E® L)

with a, = b, = 0 for all but finitely many primes p. Therefore

(J[r™)E=p"E®Z,)nV) < ((E,nV)=7(E) € (J(W"E®Z,)nV)=(]]p™)E

peP peP peP

and hence y((E]),ep) is a lattice.
(c) v(B(E')) = E': This follows from the fact that Z = (5 Z,): Clearly E" C y(B(E")). To
see the other inclusion let (ef,...,e)) be a Z-basis of E’. Then any element of V' is expressed
uniquely as a rational linear combination = = Y ", a;ej. Now z € (3(E’)) if and only if all
a; € Z, N Q = Z,) for all p € P.

(d) BV ((E))per)) = (E,)pep: Let E' := ’y((E;)peP) and (), ...,e},) be some Z-basis of E’. For
x € E there are a; E @q with z = Y7 | a;e}, because B, <V®Q,=FE ®Q, Write a; = a; + a;
with af € Zg, a; = 75, b; € Z and m > 0. Then ) aje; € Z, ® E' and x — Y aj'e; = ) aje; € E.

Because the a) € Q are rational, we have Za’ e; € E,NV. For p # q we even have that
Yoakel € (QN Z »)E' €V N E), and hence ) aje; € ﬂ (V ﬂ E) = E'. Therefore a; € Z and hence
E(’I C E' ® Z,. The other inclusion is obvious. O

Theorem 14.7. Let E < (V,q) be a Z-lattice in the reqular rational quadratic space (V,q). Let
t € Q* be such thatt € ¢q(E®R) and t € ¢(E ® Zy,) for all p € P. Then there is some lattice £’
in the genus of E such that t € q(E').

Note that ¢ is not necessarily represented by E itself as the example ¢ = 1 and £ = ( 411 (15 )
shows. Also if E' does no represent 1, it represents 1 everywhere locally and E' = ? 112 ) in the

genus of F represents 1.

Proof. We first observe that ¢ € ¢(V ® Q,) for all p € P U {oco}. So by the Theorem of Hasse and
Minkowski there is some z € V with ¢(z) = t. Write z = """ | a;e; where (eq,...,e,) is some
Z-basis of E. Let S be the set of primes that divide the denominator of some of the a;. Then
|S| < ocoand z € E®Z, for p ¢ S. For p € S there is by assumption z, € E ® Z, such that
q(z,) = t. Then by Witt’s theorem there is an isometry u, € O(V ® Q) such that u,(z,) = x.
Put

E=ESZNV)N[)(u(E®Z,)NV).
pES peSs
Then E' is alattice in V, z € E' and (F'®Z,) = EQZ, for all p € P, i.e. E'isin the genus of £. O
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Corollary 14.8. If genus(E) = [E], then t € q(F).

Example 14.9. (a) (Euler 17/9) A number t € Z \ {0} is the sum of two squares if and only if
t >0 and vy(t) is even for all primes p =3 (mod 4).

(b) (Gaufy 1801) A numbert € Z \ {0} is the sum of three squares if and only if t > 0 and t is not
of the form 4*(8b + 7).

(¢) (Lagrange 1770) Any t € N is the sum of four squares.

Proof. For r = 2, 3,4 we have that genus(I,) = [I,] so it suffices to consider the quadratic equations
over all completions Z,. More details are left to the exercises. O

14.3 Unimodular lattices

Lemma 14.10. Let E; = EZ# be two unimodular Z-lattices of the same signature, then QFE; = QF,
and By ® Z, = Ey ® Z,, for all primes p > 2.

Proof. We have det(E;) = det(FEy) = (—1)*® if the signature is r — s, n = dim(E;) = r + s. So for
p > 2 the lattice By ® Z, and E; ® Z, are regular quadratic lattices of the same determinant, and
hence isometric. In particular Q, ® £y = Q, ® E, for all p € PU {oo}, p # 2. From the product
formula 13.6 we get that ¢(Q ® E1) = ¢(Qy ® Es). As both spaces have the same dimension and
determinant this implies that also Qo ® E; = Qo ® E5. So by the theorem of Hasse and Minkowski
QEl = QE2 O

Lemma 14.11. Every odd unimodular Zs-lattice L has an orthogonal basis. More precisely there
are 1,5 € Z>g, d € {1,—1,3, =3} such that L = DQ"(1) O°(—1) D(d). If det(L) € {£1} then
L=7,®1,,.

Proof. We proceed by induction on the dimension n = dim(L). Let e; € L be arbitrary such
that b(ey,e;) =: a; is odd. Then a; € Z} and hence L = Zye; @ M for some unimodular lattice
M. If M is odd then we may proceed by induction. Otherwise we need to choose a different e;:
So assume that M is even and choose ey € M arbitrarily. As M = M?¥ there is some e3 € M
such that b(es,e3) = 1. Replace e; by €] := e; + es. Then b(e], €}) = a1 + b(es, e2) is odd and
¢y = ey —ajes € (e))* satisfies that b(e}, €4) = a; +alb(es, e3) is odd. So L = Zyey O M’ with M’
odd unimodular of dimension n — 1.

So we arrive at some orthogonal basis L = (4,...,a,) with a; € {1,—1,3,-3}. If a; € {£3} then
replace e; by e; + 2e, to achieve that b(e;, e;) € {£1} 4+ 8Z,, so after multiplication of e; by some
unit b(e;, e;) € {£1}. O

Exercise For r > 4 we have I, s @ Zo = I,_4 514 @ Zo.

Theorem 14.12. (a) For all (r,s) € Z%, there is a unique genus of odd unimodular Z-lattices of
signature r — s and dimension v+ s. It is represented by I, = D" (1) O*(—1).

(b) Even unimodular lattices only exist if r — s € 8Z. For fized (s + 8t,s) they belong to a single
genus represented by O°*H(Z) O D' Eg (fort >0) resp. O°*H(Z) D O *(Eg, —q) (fort <0).

Proof. To see (b) we note that we already showed that even unimodular lattices exist if and only
if the signature is in 8Z. Clearly the given lattices are such even unimodular lattices. It remains
to show that all even unimodular lattices of signature (r,s) belong to the same genus. The real
isometry class is determined by the signature and over Z, (including p = 2) these lattices are
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regular quadratic forms. So these are isometric if and only if they are isometric over [F, if and
only if they have the same determinant.

For (a) we can see that the real space and the isometry class of L&Z, for odd primes p are uniquely
determined by the signature (r,s) as in (b). So we know that L ® Z, = I, ; = 7Z, for all p > 2
including co. For p = 2 we need the lemma above: As the determinant of L is +1 we see that
L®Zy = Iy ¢ @ Ly for some 17, s" with s’ = s (mod 2). By the product formula we also know that
c(Qe®L) = c(Qe®1,¢) = ¢(Q2®1,5). This determines s (mod 4) and hence Zo® L = Zy®1, ;. O

14.4 Weak approximation

In the whole section, S will be a finite set of places of the global field Q. The following definitions
and theorems may be transferred to arbitrary global fields.

Definition 14.13. Let S C PU{oo} be a finite set of places of Q. Define Z(S) = Z[% | p € S\{o0}]
to be the set of rational numbers for which the denominator only involves primes from S.

Theorem 14.14. (Strong approzimation for numbers) For any ¢ € S the image of the diagonal
embedding Z(S) = [1,es\ sy Qp is dense with respect to the p-adic product distance.

Proof. (Kneser 23.1) in the exercises. O

Applying the approximation for numbers to the coefficients of the vectors with respect to some
lattice basis we conclude

Corollary 14.15. Let L be a lattice in the finite dimensional rational vector space V. Then the
image of the diagonal embedding Z(S)L = [[,cq\( Qo ® V is dense.

Theorem 14.16. Let (V,q) be a reqular quadratic space over Q. Then the image of the diagonal
embedding SO(V) = [[,cs SOV ® Q,) is dense.

Proof. Let u, € SO(V ® Q,). Then w, is a product of an even number of reflections:

Up = s“p,l e SGP,ZT

where we may assume that the length 2r is the same for all p € S. (Otherwise we multiply by a
b(z,a)
q(a)

product of squares of reflections.) We have s,(z) = = — a, in particular the mapping

{aeV|qa)#0}cQ' = Q7" Par Ps!
is continuous. By Corollary 14.15 we may approximate all the a,; by some a; € V, (all p € S) if
the approximation is close enough, then g(a;) # 0 and u := s4, - -S4y, € O(V') approximates u,
forallp € S. O

Clear: We cannot hope to get this approximation property also for the group O(V) as one
cannot simultaneously approximate orthogonal mappings with different determinant. However we
may approximate elements with different Spinor norm, because the ¢(a;) can approximate different
q(aip) € Q, for all the finitely may places p € S.

Corollary 14.17. Assume that E, F are lattices in V' that are in the same genus. Then there is
some isometry u € O(V') such that E @ Z, = u(F) ® Z, for allp € S.
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Proof. By definition there are u, € O(V ® Q,) such that £ ® Z, = u,(F ® Z,) for all p € P. In
the case det(u,) = —1 we can multiply u, by some reflection in O(F ® Z,,) so that we may assume
wlog that u, € SO(V ® Q,). Finitely many u, (for p € S) may be approximated simultaneously
by some u € SO(V), so that u(F) ® Z, = u,(F ® Z,). O

Definition 14.18. Let L be a lattice in the reqular quadratic space (V,q). Fort € Q put
L(t):={leL|ql)=t} and V(t) :={xz €V |qz) =t}.

Theorem 14.19. Assume that dim(V) > 2, t € Q* such that V(t) # (0. Then the image of the
diagonal embedding

ve) = 11V e )@

peS

18 dense.

Proof. Let z, € (V ® Q,)(¢) for all p € S and choose x € V(t). By Witt’s theorem there is some
u, € O(V ® Q,) such that u,(r) = z,. Replacing u, by w,s, for some non-singular a € V' with
a L z (this is possible because ¢t # 0 and dim(V) > 1) we may assume that all u, € SO(V ® Q,).
So we may approximate u, (for all p € S) simultaneously by some u € SO(V'). Then u(z) approx-
imates the =, = u,(z). O

Recall the definition of the spin group
Spin(V,q) := {u € Co(V,q) | uVu™ = V,N(u) = 1}

Then Spin(V,q) — SO*(V,q),u — (k,)|v is an epimorphism with kernel {£1}. If char(K) # 2
then O(V, q) is generated by reflections and

SO+(V>Q) = {Sal " Sag, ’ reNay,... ay € MQ(al)”'Q(GQT) = 1}
and hence also Spin(V,q) ={a1---as. | 7 € Nyay, ..., a9 € V. q(a1) - - - q(ag,) = 1}.

Lemma 14.20. Let (E,q) be some quadratic space over a field A with ind(E, q) > 0. Suppose that
(E,q) % H(F2) D H(F2). Then Spin(E,q) = (ef | e, f € E,q(e)q(f) =1}

Proof. As we have seen in an example the lemma is true for £ = H(A). (exercise)

Let N := (ef | e, f € E,q(e)q(f) = 1}. Then for any g € V, q(g) # 0 we have gNg~* = N and
hence N <C(V)*.

By assumption V' =H Q@ W. Now assume that u := f; - - fa,, € Spin(V, q). Then there are h; € H
such that ¢(f;) = q(h;) for all i = 1,...,2m, therefore

uN = fi+++ fomN = hy -+ hoN € C(V)*/N.

But Ay - - hoy € N so also u € N and the lemma is proved. O

Theorem 14.21. (Weak approzimation for Spin groups) If dim(V') > 3 then the image of the
diagonal embedding of Spin(V') is dense in [ ], Spin(V @ Q).
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Proof. If we enlarge S then we get a stronger statement, so we may assume that ind(V ® Q) > 0
for all ¢ ¢ S (choose a maximal integral lattice L in V and include to S all prime divisors of
2det(L) and the infinite place).

Let (up) € [],csSpin(V @ Q,) and write

Up = fp1- fpom for [, €V QQy, HQ(fp,z‘) =1

Again we may assume that all such expressions have the same length, as we may multiply by

ff Y= flq(f)'f)=1for any f € V with q(f) # 0.
We now want to approximate the f,; simultaneously by some f; € V' so that ¢(f1)---q(fam) = 1.

To this aim we first approximate the f,; forallp € S and ¢ = 1,...2m —1 by some vectors f; € V.
Then we look for the last vector fs,, as an approximation of f, 9., for all p € S with the additional
condition ¢(fam) = [ " q(f;)~". The equation

2m—1

(@) = [] o) =t

i=1

has a solution z, € V ® Q, with z, close to f, 9, for all p € S whenever the approximation of
fpi is good enough. Now V' ® Q, is has positive Witt index for p ¢ 5, so (%) also has a solution
z, € V®Q, for these p. By the strong theorem of Hasse and Minkowski this implies that (x) also
has a solution x € V. In particular V(¢) # () and so we may apply Theorem 14.19 to construct a
solution = € V(¢) that approximates all the finitely many x, with p € S. O

As the mapping
[[spin(Ve@,) = [[ 50" (Ve Q,)

peS peS

is continuous and surjective we get the following

Corollary 14.22. If dim(V') > 3 then the image of the diagonal embedding of SOT (V) is dense
in [[es SOT(V @ Q).

14.5 Strong approximation

In this section let ' C PU {oo} be some finite set of places. As before L <V will denote a lattice
in some regular quadratic space (V,q) over Q. Recall the definition Z(T) := Z[z—l) lpeT]

Definition 14.23. Fort € Q put
L(T,t):={( e Z(T)L | q(¢) = t}.
We also define

SO*(V.q) :={u € SO(V,q) | SN(u) = 1}

OL,T) ={uecO(V,q) |u(L®Z,) = L&Z, forp T}
SO(L,T) ={ue SO(V.,q) |w(L®Z,) = LRZ, forp g T}
SOt (L, T):={ue SO (V,q) |u(L®Z,) = L®Z, forp T}
Spin(L, T) := {u € Spin(V,q) | u € Co(L @ Z,) forp ¢ T'}

Here and in the following we identify w € O(V') with its image u € O(V ® Q,).
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Theorem 14.24. (strong approximation theorem) Let (V,q) be a reqular quadratic space of di-
mension > 4 over Q, t € Q* such that V(t) # 0. Assume that oo € T and that ind(V ® Q,) > 0
for some £ € T. Let L be some Z-lattice in V so that (V@ Q,)(t) NLQZ, =: (L ®Z,)(t) # 0 for
all p € T. Then the image of the diagonal embedding

LTt — [ VeQ)

teT\{¢,00}
15 dense.

Note that the strongest version of the strong approximation theorem asserts that under the
assumptions
LTt = J] Ve@)
teT\{¢}
is dense. However, for our purposes it is enough to prove Theorem 14.24 as stated. For the proof

we need two lemmata (and even then it is quite technical but elementary). I refer to Kneser’s
book, p. 98-101.

Theorem 14.25. (strong approzimation for the spin group) Let (V,q) be a reqular quadratic space
over Q, dim(V') =: n > 3, Assume that ind(V ® Q) > 0 for some ¢ € T. Then for any Z-lattice
L in'V the images of the diagonal embeddings

Spin(L, 7)< [ Spin(V@Q,) and SO*(L,T)— [[ SO*(VeQ,)
peT\{¢,00} peT\{{,00}

are dense.

As in the strong approximation theorem, we may omit oo in the statement and hence also
approximate at the real place, however for our purposes the above statement is enough.
Proof. As the mapping

[[ sein(veq)— ][ so0*(veq)

pET\{¢,00} pET\{¢,00}

is continuous and surjective, it is enough to prove the theorem for the Spin groups.
So let
(Up)per\{t,00} € H Spin(V ® Q)

pET\{¢,00}

We want to approximate the wu, simultaneously by some element v € Spin(L,T"). Note that we
may enlarge 7' by adding some finite set of primes r and setting u, := 1. If the approximation w is
close enough, then automatically u € Spin(L ® Z,) and hence the denominators of u and u™! will
not involve the prime r. In particular we may enlarge 7" so that L ® Z, is regular for all p ¢ T
Then ind(V ® Q,) > 0 for all primes p ¢ 7.

First assume that n = 3. Then Spin(V) = {x € Co(V) | 2T = 1} = (V',¢'), where V' := Cy(V) is
a 4-dimensional quadratic space for ¢’ :  — 27. For all primes p for which ind(V ® Q,) > 0 we
also have ind(V’' ® Q,) > 0. Let L' := Cy(L). Then by the strong approximation theorem 14.24
the image of the embedding L'(T’,1) <> J[ ez 7,000 (V' ® Qp)(1) is dense which is precisely the
statement of Theorem 14.25.

Now assume that n > 4. Put

G := H Spin(V ® Q,) and F := ¢(Spin(L,T))

peT\{{,00}
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so F'is the subgroup of all elements of G that may be approximated by some element in Spin(L, T').
Then F'is a closed subgroup of G and we need to show that F' = G.
Let G :={(1,...,upy, ...) € G | up, = ef,e, f € V@Qyp,q(e)q(f) = 1}. We first show that G C F'.
As V is dense in V ® Q,, we may assume that e, f € V so t:=q(e) = ¢(f)"' € Q. Let 7" D T be
a set of places that contains 7" so that t € Z;, for all p ¢ T" and put

ep=efp=1f for p = po
ep=¢e,fp=et=t"le forpeT \{oo,l},p+#po

By the strong approximation theorem 14.24 there are ¢’ € L(T",t), f' € L(T",t™'), such that ¢’ f’
approximates (1,...,(ef)py,---,1) €G.

As the ef generate Spin(V ® Q,) if ind(V ® Q,) > 0 we find that F' contains all elements
(Uup)per\{t,00} € G for which u, =1 if ind(V ® Q,) = 0.

Now assume that (up)per\ (o0} € G is an arbitrary element in G. By the weak approximation
theorem for Spin groups there is some «’ € Spin(V') that approximates all the u, simultaneously.
If ' € Spin(L,T) then we are done. In any case v’ € Spin(L,T") for some suitable 7" 2O T. We
search for some v = v'u” € Spin(L,T") with «” € Spin(L,T") such that v” ~, 1 for p € T\ {{, 00}
and w'u" ~, 1 for p € 7"\ T. For the latter primes we assumed that ind(V},) > 0, so we already
know how to approximate all such (uy) by a single " € Spin(L,T"). If the approximation is good
enough then u — v'u" ~u —1 € Zy*™ for p € T"\ T In particular the matrix of u (with respect
to some lattice basis of L) does not involve p in the denominator, so u € Spin(L,T). a

14.6 Spinor genera

Definition 14.26. Two lattices L < (V,qy) and M < (W, qw) in the reqular quadratic Q spaces
V and W belong to the same Spinor genus, if there is an isometry u : V. — W and orthogonal
transformations v, € SOT(V @ Q,, qv) such that M & Z, = u(v,(L ® Z,)) for all primes p € P.

Clearly spinor genera partition the set of isometry classes of lattices into equivalence classes.
Any genus of lattices is a union of finitely many Spinor genera.

Theorem 14.27. Let (V,q) be a reqular quadratic space, dim(V) > 3, £ € P U {oco} such that
ind(V® Q) > 0. Let L be some lattice in V. Then any isometry class [M] in the Spinor genus of
L contains some lattice M' C'V such that M' ® Z, = L ® Z,, for all primes p # (.

Corollary 14.28. Let (V,q) be a reqular quadratic space, dim(V') > 3, ind(V ® R) > 0. Then any
Spinor genus of lattices in V' consists of a single isometry class.

Proof. (of Theorem 14.27) Let u € O(V), v, € SOT(V ® Q) be the orthogonal transformation so
that u="(M ®Z,) = v,(L®Z,) for all primes p € P. Since M and L are lattices in the same space
V, we have L ® Z, = v (M ® Z,) for almost all primes p € P. Let

T:={peP|LZ,#u " (M®L,)} U{L}

Then T is finite. By the strong approximation theorem for Spin groups 14.25 there is some
ve SO (V,q) N O(L ® Z(T)) so that

V(L ®Zy) =v,(L®Zy,) for pe T\ {¢} and v(L ® Z,) = (L ® Z,) for p ¢ T.

Then v(L) ® Z, = v,(L® Z,) = (u*(M) ® Z,) for all p € P\ {(}. O
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Example: The assumption that dim(V') > 3 is necessary. To see this consider

L= e flz=

9
5 )
andM = (fe,4f)z = ( )

NeolesliNe R e]

32>

Then L and M are not isometric, as L represents 2 but M does not. However both lattices are
indefinite and they lie in the same Spinor genus: To see this we first note that Z, ® L = Z, ® M
for all p # 2. So we only need to find some u € SO1(Qy ® L) such that u(Zs ® L) = Zs ® M. To
this aim we write both lattices are hyperbolic planes,

1 161 1 09

1
L=le,f—gelz=1{g o)and M={ze,df = Fre=4(f = sz = ()

The transformation u : e — te, f—ge — 4(f —$e) is hence an orthogonal mapping u € O(Q2®L).
By Example 11.9 we see that u =1 € SO(Q; ® L) has Spinor norm § € (Q3)2.

Lemma 14.29. Let (V,q) be a regular quadratic space, dim(V) > 3, a € Q" with a > 0 if
ind(V @ R) = 0. Then there is some u € SO(V') with SN(u) = a(Q*)?.

Proof. For p € PU{oo} we look for vectors z,, y, € V®Q, such that ¢(z,)q(y,) = a. By assumption
this is no problem for p = oco. It is also no problem if dim(V') > 4 or ind(V ® Q,) > 0 as then
q(VeQ,) =Q,. Ifdim(V) = 3 and ind(V®Q,) = 0 then ¢ ¢ ¢(V®Q,) if and only if Ve Q, O[—|
is anisotropic, so if and only if V®Q, @ [—c] = U,. Then ¢(Q})* = 2det(V®@Q,) = 2det(V)(Q})*.
For these primes p we choose
by € (@p)" \ 2det(V)(Q})* \ 2a det(V)(Q})*

As there are at least 4 square classes, this is possible. Then we solve ¢(y,) = b, and ¢(z,) = 5 to
obtain the solution.

For these finitely many exceptional p and for p = co we approximate z, by some x € V' so that
q(x)/q(z,) € (Q})?. Then there is some y € V such that q(y) = a/q(z) by the theorem of Hasse
and Minkowski, as there are y, with ¢(y,) = a/q(x) for all p € PU {oo}. Then u := s,s, has
Spinor norm a. a

Theorem 14.30. Let (V,q) be a reqular quadratic space, diim(V') > 3, L a lattice in V so that for
allpeP
(x) SN(SO(L ® Zy)) 2 Z;(Q@;)*.

Then the genus of L consists of a single Spinor genus.
Exercise: The condition (x) is satisfied, if one of the Jordan components of L ® Z, has dimension
> 2.

Proof. Let M be a lattice in the genus of L. As O(M ® Z,) contains reflections, there there are
u, € SO(V®Q,) such that u,(L®Z,) = MKZ,. We take u, = 1 for all p for which M ®Z, = L&Z,,
i.e. for almost all p. Let SN(u,) = p*rb,(Q})* with b, € Z%, oy, = 0 and b, = 1 for almost all p. By
Lemma 14.29 there is some u € SO(V') such that SN(u) = [, p* Then M ®Z, = u(u™'u,(LRZ,))
and SN(u"'u,) = b,(Q})*. By assumption there is some w, € SO(L®Z,) with SN(w,) = b, (Q})>.
Then v (M) ® Z, = v tuyw,(L ® Z,) with SN(u"tu,w,) = 1. O
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14.7 Kneser neighboring method

Definition 14.31. Two lattices L, M in the reqular quadratic space (V,q) are called neighbors
or p-neighbors, if [L: LN M| = [M : LN M]=p.

Define a distance on the set of lattices in Z[%]L Ngenus(L) by d(L, M) = s if and only if [L :
LOAM]=[M:LnM) =p.

Clear: If L and M are neighbors, then det(L) = det(M). If L ® Z, and M ® Z, are both
maximal lattices in Q, ® V', then L and M belong to the same genus.
Theorem 14.32. Let L # M be two lattices in V' such that Z[%]L = Z[]%]M (or equivalently
Zi@L =7y @M foralll € P\ {p}). If L&®Z, and M ® Z, are mazimal even then there is a
chain of neighboring lattices
L=1ILoLy,... La=M

such that all L; belong to the genus of L and such that L; and L;_ are p-neighbors.

Proof. Let v € M\ (LN M) such that pv € LN M. Then b(v,v) € Z. Since L is p-maximal integral,
the vector v is not in the dual lattice of L and hence L, :={f € L | b(v,{) € Z} is a proper sub-
lattice of L of index p. Put L, := L, 4+ Zv. Then L; is an integral lattice containing L, = L N L,
of index p. So alse L is p-maximal integral, L, is a neighbor of L and Ly N M = LN M + Zv so
d(Ly, M) =d(L, M) — 1. By induction we obtain the theorem. O

By the strong approximation property 14.27 we hence obtain the following corollary which
yields an algorithm to enumerate the Spinor genus of a lattice.

Corollary 14.33. Let L and M be lattices in the same Spinor genus. Assume that ind(L®Q,) > 0
for some prime p € P. Then there is a lattice M’ in the isometry class of M and a chain

L:Lo,Ll,...,LSZM/
such that all L; belong to the genus of L and such that L; and L; 1 are p-neighbors.

Lemma 14.34. The integral 2-neighbors of I,, are isometric to D} L I,,_,, with m € 47, 0 <
m <mn and m # 4.

Proof. Let L be an integral neighbor of I,,. Then M := L N I, is a sublattice of index 2 in [, so
there is some v € I, = I# such that M = {{ € I, | (v,{) € 2Z}. Moreover M only depends on
the class v + 21I,,, so we may assume that v =v; :=)"._,e; for some subset J C {1,...,n}. Then
the sublattice M is isometric to Dy; @ I,—|;. Note that all v; with constant |.J| are in the same
orbit under Aut(/,) = C31.S,. The unimodular lattice L is hence isometric to some sublattice of
Dﬁéﬂ @ I,,—; that contains D,y @ I,—;. As Iy is the only unimodular sublattice of ]D)Téf,| for |J|

odd or |J| = 2 (mod 4) and for |J| € 4Z the other two unimodular sublattices are isometric to
Dy}, the statement follows if we observe that D} = I,. O

Corollary 14.35. The genera of Ig and I; only consist of a single class.

Proof. All 2-neighbors of Ig or I; are isometric to Ig resp. I7;. As the neighboring graph is con-
nected, we obtain that these lattices are unique in their Spinor genus. But for unimodular lattices
Spinor genus and genus coincide by Theorem 14.30. O
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14.8 The Mass formula.

If Ly,..., Ly is a system of representatives of isometry classes of lattices in the genus of L then

Z | Aut(L;)| "' = mass(genus(L))

where mass(genus(L)) can be read off from the local stabilizers Staboveq,.q)(L ® Z,;) (local den-
sities).
Idea: The isometry classes of lattices are the O(V, ¢)-orbits in the O(V ® A, g)-orbit genus(L),
where A := {z € R x [[, Q, | x, € Z, for almost all p} the adele ring of Q and Aut(L) = {g €
O(V,q) | g(L) = L} is the stabilizer of L in O(V,q).

The proof of the mass formula uses analytic techniques. But for a finite group G acting on
finite set M this is very easy. Let miG, ..., m,G be the orbits of G on M and S; := Stabg(m;).

Then
h h Iel
(M| =" |mG] :Zm
i=1 i=1 "7
and hence
L
— |Si| |G
In our situation this reads as
2": L _|o(VehAq-Ll _ |O(VeAq)
— | Aut(L;)] OV, q)| | Aut(Ly)[|O(V, q)|

which needs to be replaced by

h
1
> [Aut(Ly)] ~ WOV, \O(V @ A, q)/ Aut(Ly))
i=1 i
where p is a suitable measure.

The mass of self-dual binary codes and self-dual doubly-even binary codes
For a given length N = 2n let
M;:={C <F} | C=C*, C singly even } and M;; := {C <F} | C = C+,C doubly even }

(where we only define Mj; if N is a multiple of 8). Then the orthogonal group of V := (1)+/(1)
acts transitively on M; and M;; because the elements of M;; and M; correspond to maximal
totally singular (resp. not totally singular) self-dual subspaces of V. In particular the cardinality

n—1 n—2
|M[| =ay = H(QZ + 1) and ’M]I| = bN =2 ]‘_[<2Z + 1)
i=1 i=1
is just the index of the stabiliser of such a maximal isotropic subspace.
The symmetric group Sy also acts on M; and M;;. Two codes are called equivalent, if and
only if, they are in the same orbit under the Sy. Let [C] denote the equivalence class of C. We
also define the automorphism group

Aut(C) := Stabg, (C) = {7 € Sy | 7(C) = C}.
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Theorem 14.36. Let M; = [C1] U ... U [Cy] and My = [Dy] U ... U [Dy]. Then

i 1 a h 1 b
JE _N JE _N
; Aw(cy] -~ v e z; |Aut(D;)] ~ NU

Proof. M; = [C}] U ... U [Cy] is a disjoint union of orbits under Sy. The length of the orbit is

1 |Sn] _ N1
1G]] = Stabs (Ci) — [Aut(Cy)[” S0

k
CLN—‘MI‘_Z| |_N‘Z|Aut

Note that for N € 8Z we have ay = 2”;“ by.

Theorem 14.37. Let N be a multiple of 8 and L, . . ., L be a system of representatives of isometry
classes of positive definite odd unimodular lattices of dimension N = 2n. Let My,..., My be
a system of representatives of isometry classes of positive definite even unimodular lattices of
dimension N. Then

i 1 @2 =) ) 1
; [ Aut(Li)| 2 ; | Aut(M;)]’

Proof. Let L be some odd ummodular lattice and Ly < L be its even sublattice. Then (by the
assumption that N € 8Z) L] / Ly =2 Cy x Oy and the two other lattices M and M’ between L# and
Ly are even unimodular lattices. (As these properties can be seen over the 2-adics, it is enough to
consider L ® Zy = Iy to see this.) So any odd unimodular lattice L has exactly 2 even neighbors.
On the other hand given any even unimodular lattice M any unimodular (even or odd) neighbor
L = (LN M,z) is obtained by joining an isotropic vector = € %M \M. Put D:= L+ M. Then D
contains exactly 3 unimodular lattices, 2 of them are even and 1 on them is odd. So the number
of odd neighbors of M is exactly the number of 1-dimensional isotropic subspaces D/M of %M /M
which is (2" — 1)(2"7! + 1) by Lemma 4.14. O

The proof of the last theorem also describes a strategy how to enumerate the positive definite
odd and even unimodular lattices in a given dimension simultaneously. For instance for dimension
24, there are exactly 24 isometry classes of even unimodular lattices, but 156 isometry classes of
odd unimodular lattices in dimension 24. We apply the Kneser-neighbor-method for the prime 2,
to enumerate the genus of even unimodular lattices: We start with some even unimodular lattice
L (e.g. L =T2 for n = 24). Then we find representatives of all orbits of Aut(L) on the sublattices
M, of index 2 in L. Each such M, defines a unique 2-neighbor L’ of L, i.e. an even unimodular
lattice L' such that L' N L = Mj. Let M be the unique other lattice in M| # /My = Cy x Cy. Then
M is an odd unimodular lattice. During the neighboring method one hence enumerates also all
odd unimodular lattices M. I strongly encourage you to implement this method in MAGMA. Note
that the lattice M, contains 2L, so corresponds to a 23-dimensional subspace of L/2L = F34 ie
of the form v+ for some v € F2*. There is a MAGMA function OrbitsOfSpaces, that computes

representatives of the Aut(L)-action on either the vectors v or the subspaces vt.



Chapter 5

Orthogonal representations of finite
groups.

15 Representations of finite groups.

Let G be a finite group and K be a field. A K-representation of degree n of G is a group
homomorphism A : G — GL,(K).

Two K-representations A, A’ of degree n are called equivalent if there is some A € GL,,(K)
such that AA(g)A™! = A'(g) for all g € G.

Xa : G — K, g+ trace(A(g)) is called the character of A.

Theorem 15.1. If char(K) =0 then A ~ A’ if and only if xa = xa-
Any K-representation A : G — GL,(K) defines a KG-module structure on the vector space
K™ =:V where KG is the group ring
KG = {Zagg | ag € K7}
geG

So KG is the free K-module on G with multiplication extending the group multiplication by

distributivity. The group algebra carries a natural involution °: KG — KG,>  a,g — > a,g™ .

Theorem 15.2. (Maschke’s theorem) KG is a semi-simple algebra if and only if char(K) f|G]|.

Proof. Assume that char(K)/f|G|. The trace of g € G on the regular KG-module KG is 0 for

1#g€Gand |G| for g=1. So \_c1:| times the regular trace defines a bilinear form on K G so that

(97! : g € G) is the dual basis of G. This shows that KG is a separable algebra if char(K) does
not divide the group order. a

So if char(K) |G| then every KG-module is the direct sum of simple modules, so every repre-
sentation A is equivalent to a completely reducible representation

A = diag(Aq, ..., Ay)

where the A; : G — GL,,(K) are irreducible representations.
The endomorphism ring of the representation A (or the module V') is

Endg(V) = Endga(V) = End(A) = {X € K™ | XA(g) = A(g)X} < K™

It is a skew-field if A is irreducible.

83
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Definition 15.3. Let A : G — GL,(K) be a representation. Then
F(A):={Be€ K" | B=B", A(9)BA(g9)" = B for all g € G}
is called the space of A-invariant bilinear forms. Similarly
Q(A):={q: K" — K | q quadratic form ,q(zA(g)) = q(x) for all x € K"}
18 the space of A-invariant quadratic forms.
Clearly the map g — Gram(b,) maps Q(A) into F(A) and this is a bijection, if char(K) # 2.

Remark 15.4. Let A be an irreducible representation of G, D := End(A). Assume that F(A) #
{0}. Then any 0 # By € F(A) defines an involution ~ on the division algebra D defined by
@:= Bya'"By! for alla € D. Then

F(G)={aBy|a=1ae€ D}.

Example. Let K =R and A : G — GL,(R). Then By, := |_c1:| > gcc A(9)A(g)" € F(A) is a
positive definite A-invariant form. If A is irreducible, then F(A) = {aBy | a € R}:
Let B € F(A). Then there is some matrix 7' € GL,(K) such that TByT" = I, and TBT" =
diag(ay,...,a,). In particular b := a; By — B € F(A) has a non-zero radical V+?, which is hence
an invariant submodule of V' = K. By the irreducibility of A this implies that b = 0 so B = a,Bj.

Example. Let K = Q and A : G — GL,(Q) be irreducible. Let D := End(A). Then D is a
division algebra with center

L=Q(xa) =Q(x(9): g € G)

the character field of ya, [L : Q] =: d, and L is some abelian number field. Let m? := dimy (D). A
famous theorem by Brauer and Speiser tells us that m € {1, 2} if L is totally real. Then we call D
definite, if D ®; R = H. Again this property does not depend on the choice of the real embedding
of L into R, as D has “uniformly distributed invariants”. Then

@2 Ccmm i L is totally complex

-] PR if L = D is totally real
PR if L is totally real, D indefinite
B H if L is totally real, D definite

and dim(F(A)) = ng, d, 3d, d in the respective cases.

16 Equivariant Witt groups.

Let R be a Dedekind ring with field of fractions K (or K an arbitrary field) and A a finite
dimensional K-algebra. An involution ° on A is a K-linear map °: A — A with (ab)® = 0°a°
and (a°)° = a for all a,b € A. Let A C A be an R-order in A, so a subring that is an R-lattice in
A. We assume that A° = A.

Example. G a finite group, A= KG, A= RG, °: A= A3 00,9 D 509 "

A A torsion-module is a finitely generated R torsion-module with an R-linear right action
by A. For a A torsion-module V' we define the dual torsion-module to be V* := Hom(V, K/R).

Definition 16.1. Let B= A and L = K or B=A and L = R. LetV be a right B-module that
18 projective and finitely generated as an L-module and b :V x V. — L be a symmetric L-bilinear
form or B = A, R # K,V a A-torsion-module and b : V xV — K/R a symmetric R-bilinear
form.
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(i) b is called B-equivariant, if b(va,w) = b(v,wa®) for all v,w € V, a € B. We then call
(V,b) a orthogonal B-module. b is called regular, if V. — V* : v — (w — b(v,w))
is an isomorphism. (Note that we do not automatically assume that V is projective as an
L-module, this would not make much sense for torsion modules.) Two orthogonal B-modules
(Vi,b1), (Va,by) are called isometric, if there is an isometry ¢ : (Vi,b1) — (Va, be) such that
o(vb) = p(v)b for allv e Vi, b€ B.

(i) Let (M,b) be a regular orthogonal B-module. Then (M,b) is called metabolic, if there is
some B-submodule N < M with N = N*+.

(iii) Two reqular orthogonal B-modules (V1,b1), (Va,by) are called Witt-equivalent if there are
metabolic B-modules (My,¢1) and (Ma,vs) such that (Vi,b01) L (M, 1) = (Vo,be) L
(Mz,109) as orthogonal B-modules.

Remark 16.2. Let (V,b) be some orthogonal B-module. Then rad(V,b) = {v € V | b(v,V) = {0}}
is a B-invariant submodule of V. More general, if U <V is a B-submodule of V, then Ut :=
{veV]|bw,U)={0}} is B-invariant.

Remark 16.3. The set of equivalence classes of L-projective reqular orthogonal B-modules (resp.
A-torsion modules) is a group w.r.t. orthogonal sums called the Grothendieck-Witt-group
GW (B, °) (resp. GW'(A, °)) of reqular orthogonal B-modules (resp. A-torsion-modules).

Remark 16.4. If A = A; & A for some A-ideal Ay, then GW (A, °) ={0}.

Proof. Let € be the central idempotent in A with A; = Ae. Then €° = (1 —¢) is the central idempo-
tent of A with A; = A(1—e¢). For any regular orthogonal A-module (V,b) we have V' = Ve®V (1—¢)
with b(Ve, Ve) = b(V,Vee®) = b(V,0) = {0}. Similarly V(1 — ¢€) is an isotropic submodule of V.
So V' is metabolic. O

Definition 16.5. A B-submodule U <V of the orthogonal B-module (V,b) is called isotropic, if
U # 0 and b(v,w) =0 for allv,w € U (soU CU*L).
(V,b) is called B-anisotropic, if V' has no B-invariant isotropic submodule.

Exercise. If (V,b) is an orthogonal A-module and U < V' an isotropic A-submodule, then b
induces an A-equivariant bilinear form b on U+ /U. Moreover (U1 /U, b) is anisotropic if and only
is U <V is a maximal isotropic submodule.

Lemma 16.6. Let (V,b) be a regular orthogonal A-module.

(i) The class of (V,b) has a unique (up to A-isometry) A-anisotropic representative in GW (A, °).
This is isometric to (U+/U,b) for any mazimal isotropic A-submodule U <V .

(i) If (V,b) is A-anisotropic, then (V,b) is the orthogonal sum of simple reqular orthogonal A-
modules.

(ii2) If [(V,b)] =0 € GW(A, °) then (V,b) is metabolic.

Proof. (i) Uniqueness: Let (V,b) and (W, ¢) be two A-anisotropic orthogonal A-modules represent-
ing the same element in GW (A, °). Then

[(V,0)] = [(W, )] = [(V,0)] + (W, =c)] = ({(W, )] + [(W, =)]) = [(VD W, b L (=¢))]
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is metabolic. So there is an A-invariant submodule N = N+ < (VO W,b L (—c)). Then NNV
and N NW are either {0} or isotropic A-submodules of V respectively W. As V and W are
A-anisotropic, NNV = NNW = 0. Now dim(N) +dim(N+) = dim(V) +dim(W) so 7y (N) =V,
mw (N) = W and there is an A-module isomorphism ¢ : V' — W so that

N = {(z,¢(x)) e VO W}

Now N is isotropic, so b(x) = ¢(¢(x)), which means that ¢ is an isometry.

Existence: Let (V,b) be an orthogonal A-module and U < V' a maximal isotropic sub A-module.
Then b induces an A-invariant form b on U+ /U and (U /U, ') is A-anisotropic. So we need to show
that M := (V,b) O(U+/U, V) is metabolic. Let X := {(z,z+U) € M | x € Ut}. Then X < M
is an A-invariant submodule and X C X*. Indeed we have X = X+, because if z € V, y € Ut
with (2,4 + U) € X*. Then b(z,z) = b(y,z) for all x € U+ and hence z —y =:u € U = (U+)*.
But y € U* then implies z = y +u € Ut and (2,y + U) = (2,2 + U) € X. This shows that
X = X! and that M is metabolic.

(ii)) Let N <V be an A-submodule of V. Then also N L <4 V and so N N N*t is an isotropic
A-submodule of V. As V is anisotropic this implies that NN N+ =0and V = N@ N+. In par-
ticular any simple A-submodule N has a complement N*. Choosing the next simple A-submodule
N; < N+, we can write V = N O N; O(N+ N Nit). Continuing this way we can decompose V' as
a direct sum of simple modules, i.e. V' is a semi-simple A-module.

(iii) Let [(V,b)] = 0 € GW(A, °) and let N < V be a maximal isotropic submodule of V.
Then (V,b) is Witt equivalent to the anisotropic space (N+/N,b), so we may assume that (V,b)
is anisotropic. Let (V',b) be a metabolic A-module so that (V,b) D(V’,b') is metabolic. Let
N = Nt be a maximal isotropic A-submodule of (V’,#'). Then N := {0} L N is an isotropic
submodule of the metabolic module (V,b) @ (V',¥) with (N)*/N 2 (V,b) is anisotropic. So N is
maximal isotropic. As (V,b) @ (V’, ) is metabolic we have N+ = N so V = {0}. O

Remark 16.7. Lemma 16.6 and its proof can be easily transferred also to A-torsion modules.
(exercise)

Part (ii) of this lemma does not hold in general for anisotropic quadratic A-modules (V, q) if
char(K) = 2. Assume for instance that G = Cy acts on the quadratic space H(FFy) = (e, f) by
interchanging e and f. Then (e + f) is the unique G-invariant submodule and g(e + f) = 1, so
this module is not isotropic and H(Fy) an anisotropic quadratic FoG-module.

However we have the following theorem

Theorem 16.8. Let K be a finite field of char(K) = 2 and (V,q) be an anisotropic quadratic
A-module. Then either (V,q) is semi-simple or V' contains a non-zero mazximal self-orthogonal
submodule U C U*. Then U 2 K and U+ /U is semi-simple.

Proof. If V' is anisotropic with respect to b,, then V' is semisimple by Lemma 16.6 (ii). If not then
let 0 # U < V be some maximal self-orthogonal A-invariant submodule of V' (i.e. U C U*+). Then

q(U) #{0}. As
q(z +y) = q(z) + q(y) — by(z,y) and by(U,U) =0

the quadratic form is an Fy-linear mapping from U to K satisfying q(za) = aa®q(z) for all z € U.
In particular the kernel of ¢ is an A-submodule of U. Now V' is anisotropic with respect to g so the
kernel of this mapping is 0. The image of ¢ is a K2-submodule of K. We assumed that K2 = K
soU =K.

As we have seen in the proof of Lemma 16.6 (iii) the factor module (U /U, b,) is anisotropic with
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respect to the induced bilinear form b,. In particular Lemma 16.6 (ii) shows that U+ /U is semi-
simple. O

Lemma 16.6 suggests the following description of GW (A, °):
Let Vi,...,V, be a system of representatives of the simple A-modules, that admit regular
A-equivariant symmetric bilinear forms b; # 0. Let

D; :=Enda(V;) :={z € Endg(V}) | vax = vza for all a € A,v € V;}

be the endomorphism ring of V;. Then by Schur’s lemma, D; is a division algebra. Moreover b;

defines an involution ~ on D; by taking the adjoint endomorphism so b;(vd, w) = b;(v,wd) for all
v,we 'V, de D,
The space of symmetric A-equivariant symmetric bilinear forms on V; is then

0\« (v, w) = b(vd,w) | d=d € D;}

In particular if {d € D; | d = d} is not contained in the center of D; then the involution ~ depends
on the choice of b;.

Remark 16.9. As A carries an involution the dual module V* := Hompg(V, K) of any right
A-module V' becomes a right A-module by putting

(fa)(v) := f(va®) for all f € Vv e V,ac A.
Then b; induces an A-module isomorphism between V; and its dual module V;* = Homg (V;, K),
by - Vi = Vv (= bi(v,x))
and {V1,...,Vs} is the set of simple A-modules that are isomorphic to their dual.

Theorem 16.10. With the notation from above we have
GW(A, °) = PHew(D;,").
i=1

Proof. Let (V, b) be a regular orthogonal A-module. Then by Lemma 16.6 (i) its class in GW (A, °)
has a unique anisotropic representative (V’, ). This module is an orthogonal sum of simple A-
modules by Lemma 16.6 (ii), so

s d;

(V' 0) = EDER Vi bi™))

i=1 j=1

We hence obtain a group homomorphism

é W (D;, ) — GW(A, °)

i=1
defined on the 1-dimensional forms (d;) € W(D;, ) with d; = d; € D; by (d;) — (V;, bgdi)). I omit
the proof that this is a well defined isomorphism. a

Remark 16.11. Let K be either algebraically closed or a finite field of characteristic 2. Then all
D; are either K or finite fields of characteristic 2 and hence GW (D;, ™) = Z/27 via the dimension
modulo 2. So GW (A, °) = (Z/2Z)".

Example. Let G be a finite group, A = FoG. Let (V,b) be a regular orthogonal A-module.
Then (V,b) is metabolic, if and only if all self-dual simple FyG-modules S = S* = Homg, (S5, Fs)
that occur in V' as composition factors have even multiplicity.
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17 The sequence GW(A) — GW(A) — GW!(A).

Let R be a Dedekind domain with field of fractions K, A a separable K-algebra with involution
°and A = A° C A be some involution invariant R-order. As we have seen before for A = QQ and
A = Z we then have an exact sequence

(x) 0= GW(A, °) 5 GW(4, °) > GWHA, °).

For A = Q and A = Z the mapping ¢ is surjective. However surjectivity already fails for arbitrary
number fields A = K and A = Zg, where the cokernel of ¢ is C'(K)/C(K)? the largest exponent 2
factor group of the class group of K (see Husemoller, Milnor: Symmetric Bilinear Forms, IV, Ex.
3.4).

We want to define ¢ and ¢ in our general situation:

We define ¢ : GW (A, °) — GW(A, °) by «([(M,b)]) := [(KM,b)]. This is clearly a well defined

group homomorphism.
Lemma 17.1. ¢ : GW(A, °) = GW (A, °) is injective.

Proof. Let (M,b) be a regular orthogonal A-lattice so that «([(M,b)]) = [(KM,b)] is metabolic.
Let V be a maximal isotropic A-submodule of (KM,b). As K is the field of fractions of R we
have V. = K(V N M). Now (M,b) is a maximal integral lattice in (KM, b), therefore VN M is a
maximal isotropic A-submodule of M. So also (M, b) is metabolic. O

Also the mapping ¢ is defined as in the classical case:

Definition 17.2. Let 6 : GW (A, °) — GW*(A, °) be defined by 5([V,b]) := [(L#/L,b)], where L
is some integral A-lattice in the reqular orthogonal A-module (V,b).

As we have seen in Section 5.4 this definition does not depend on the choice of a A-lattice L in

V:

Lemma 17.3. Let (M,b) be a regular orthogonal A-torsion module and N < M a A-submodule
with N C N+. Then b induces a reqular A-equivariant form on N*+/N and (M,b) D (N+/N, —b)
s metabolic.

Proof. Let X := {(z,x+ N) |z € N*} C M & Nt/N. Then X = X+, because X C X' and for
y € M,z € N* with b(z,y) = b(x, 2) for all z € N* we have y — 2z € (N+)* = N. O

Lemma 17.4. The mapping 6 : GW (A, °) — GW*'(A, °) is well defined.

Proof. Let L;, Ly be two maximal integral A-lattices in the regular orthogonal A-module (V).
Then b defines non-degenerate bilinear forms

b L¥/L; x L¥ /L; — K/R, bi(a+ Li,b+ L;) := b(a,b) + R (i = 1,2).
Let M := LN Ly. Then M is an integral A-lattice in V' and M# = L}éé +L§/7£. Moreover Ly /M and
Ly /M are isotropic A-submodules of (M#/M,b) with (L;/M)* = L¥ /M (i =1,2). So by Lemma
17.3 we have in GW*(A, °) that
(LY /L1, b0)] = [(M#/M.D)] = [(LF /L, b)) O

Lemma 17.5. ((GW (A, °)) = Ker(6).
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Proof. We have ((GW (A, °)) C Ker(d). To see the other inclusion let (V;b) be a regular or-
thogonal A-module with §([(V,b)]) = 0. Let L be a maximal integral A-lattice in (V,b). Then
(L#/L,b) is an anisotropic A-torsion-module, that is 0 in GW*(A, °). So (L#/L,b) is metabolic
and anisotropic, which implies that L# = L. So (L,by;) is a regular orthogonal A-module and
hence [(V,b)] in the image of . O

Remark 17.6. There is a (non canonical) isomorphism
GW'(A, °) = @,GW(R/p @ A, °)
where © runs through the maximal ideals of the Dedekind domain R.

Proof. Let [(M,b)] € GW!(A, °) where (M, b) is the anisotropic representative of its class. Clearly
(M,b) is the orthogonal sum of its p-primary components (M,b) = @ (M,b),. Since (M,b), is
anisotropic, it is annihilated by @, so (M, b)p is a R/p-module and b takes values in p~' /R < K/R.
Choose some isomorphism ¢, : o~ '/R — R/p. Then (M, p,0b), € GW(R/pR® A, °). O

17.1 The Witt decomposition matrix.

We now assume that R is a local ring (e.g. R = Z, or a finite extension thereof) with residue field
k:= R/p, K its field of fraction, A a separable K algebra that carries a K-linear involution and
A some involution invariant R-order in A. Let a := A/J(A) be the largest semisimple quotient
of A. Then a is a semisimple k-algebra. We assume that R is big enough, so that k splits a and
K splits A, ie. A = @5:1 Kmixmio Let Vi, ...,V be a system of representatives of the simple
A-modules, that admit regular A-equivariant symmetric bilinear forms b; # 0. By assumption

End(V;) = K, so b; is unique up to scalar multiples. Let Sy, ..., S, be a system of representatives
of the simple a-modules, that admit regular A-equivariant symmetric bilinear forms f; # 0. Again
all invariant forms on S; are scalar multiples of f;. Let ey, ..., e, be a system of representatives of

the involution invariant primitive idempotents in A so that e;S; = 6;;5;.

Let L; be an integral A-lattice in (V;, ;). Then there is a basis B = U Be; of L; =L | Lje;,
so that the Gram-matrix of b; wrt B has the form diag(aj;; f; | ¢ € r;) for certain aj; € R;-ljidei,
with dj; the multiplicity of S; in L;/pL; (the so called decomposition number).

Definition 17.7. The Witt-decomposition matrix WD(A) wrt by, ..., bs and fi,..., fn is the
s X h-matriz with entries

WD(A)Jﬂ =aj; € W(K, O).
Eine s x h-Matriz WD(A)

Example The group ring Z3Ss has 3 blocks, two of which are full matrix rings over Zs. The
only non-trivial block is the principal block and it has a Witt decomposition matrix

1 v 6 4 4
IO
N R € I :
S5a | (1) . . (3) .
5a’ | . (1) . . (3)
50 | (1) . . . (3)
50 . (1) . (3) .
16 (1) (1) (-1) (3) (3)
o). . (1 @ .
w| . . @ . (3
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18 Clifford algebras as (G-algebras.

1

Let (V,q) be a non-degenerate quadratic space over the field K and G be a subgroup of the
orthogonal group O(V, q). Then (V, q) is also called an orthogonal K G-module. We want to develop
practical methods to obtain information on C(V, ¢) from the character x = yy of the G-module V.

Since G < O(V, q), the action of O(V, q) on C(V,q) restricts to a linear representation Ac(y,q)
of G on the Clifford algebra that respects the grading:

Remark 18.1. The character of the KG-module C(V, q) respectively Co(V, q) is
X = ZAi(X) respectively Xo := Z A'(x)
=0 1=0,7 even
where A'(x) is the i-th exterior power of the natural character x of G on V.

Proof. Let (ey,...,e,) =: e be a basis of V' and
gZ: g(@) = (1,61,...,en,ele%,_.’el...en)

be a basis of C(V,q). Let g € G and A = A°(g) be the matrix of g w.r.t. the basis e. As
e;e; = —eje; + b(e;, ;)1 the matrix of ¢(g) with respect to the basis G is

0 0
A 0 0
0 A%24) 0 :

*x O =

Note that
X(g) = (=1)"py(—1) for all g € G

where p, is the characteristic polynomial of g on V. With this trick one can calculate x(g) (and
Xo(g)) with the help of GAP by restricting x to the subgroup (g) < G, for any group G whose
character table and power map is known.

Assumption. From now on we assume that the order of the commutator factor group G/G’ is
odd. We then have G < SO™(V, q). As we have seen before SOT(V, q) = {v(r,) | g € Spin(V, q)}.
The mapping

P :SO*(V,q) — Spin(V,q) C ¢(V,q),u = v(ky) = g

is a so called projective representation of SOT(V,q) satisfying P(u)P(v) = £P(uv). Note that
P(u) depends upon the choice of g € Spin(V, ¢) with u = k,, so up to £1.

Lemma 18.2. Let Py := P. Then Py®Fy : G — GL(¢(V, q)) is a linear representation equivalent
to Ac(V,q)-

1G.Nebe, Invariants of orthogonal G-modules from the character table. Exp. Math. 9 (2000) 623-630
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Proof. The mapping P, : G — Spin(V, q), g — Py(g) is a projective representation of G. Spin(V, q) <
Co(V,q)* acts on the simple ¢(V, ¢)-module W. Let D := Endy,q)(W). The regular ¢(V, ¢)-module
¢(V, q) (with ¢(V, q) acting by left multiplication) is then isomorphic to the tensor product W& pW*.
But ¢(V, ¢) is an algebra with an involution, which shows that W = W*, so

c(V,q)c(Vva Q) =W ep W™

The representation ) ®@p Py of G is linear and equivalent to the linear representation Ayy,q) of G
on ¢(V, q). O

Corollary 18.3. Assume that char(K) # 2 and let g € G be an element of order 2 and e the
dimension of the —1-eigenspace of g in V. Then Py(g)* = (—1)(§>id.

Proof. Let vy, . . ., v, be an orthogonal basis of the —1-eigenspace of g on V. Then Fy(g) = a,v1 ... v,

and Py(g) = agve...v1 = (—1)(;)P0(g). Since Py(g9)Py(g) = id, one has Py(g)* = (—1)(S)id. O

If ¢(V,q) = D" for some central K-division algebra D, then the simple ¢(V, ¢)-module W is
isomorphic to D®. Over the algebraic closure of K, the ¢(V, ¢)-module W is isomorphic to the sum
of m copies of a simple module, where m is the index of D (dimg (D) = m?).

‘We now fix a covering group u : G — G of G such that P, is equivalent to a linear representation
of G. Let W be the simple ¢(V, ¢)-module and m the index of End,y,q) (V).

Corollary 18.4. Let mxw be the character of a linear KG-module that is equivalent to W over
the algebraic closure of K. Regarding x as a character of G one has

X N even

XW@XW_{ Xo N odd.

For the next theorem we additionally assume that K is a number field. In general ¢(V,q) is
a tensor product of quaternion algebras. Since K is a number field, this implies that ¢(V,q) is a
matrix ring over a quaternion algebra and Cy(V,q) = D*** where D = L := Z(Co(V,q)) or D is a
quaternion division algebra over L.

Theorem 18.5. With the notations above let m be the Schur index of D, W the simple Co(V,q)-
module and mxw the corresponding character of G. Assume that there is an absolutely irreducible
character ¢ of G occurring with odd multiplicity in xw .

(a) If nis even and L = Z(Co(V,q)) is a field then L is a subfield of the character field K ().

(b) Assume that n is odd. If the Schur index of ¢ is odd, then K (1) splits D. Otherwise let U
be the irreducible K G-module whose character contains ¢. Then D C Ends(U).

Proof. We have Py(G) < Spin(V, q) is already contained in Cy(V, ¢) and therefore Ende, (v, (W) C
Endé(W).

In both cases Cy(V,q) = D**® and dimg (Co(V,q)) = a®>m?[L : K] = 2""! is a power of 2. Let
x be the multiplicity of ¢) in xy,, U the irreducible K-module whose character contains 1 and
Dy := Endys(U). Then Dy is a skew field with center K(¢) and of index, say, my. Let U’
be the U-homogeneous component in Ws. Then Endys(U') = DY for some y € N. Since the
multiplicity of ¢ in myy and the multiplicity of ¢ in xy are equal, one has

* mx =ymy.
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Since D has no zero divisors, D embeds into End5(U’) and hence
A= Dlojp ®K(¢) (D XK K(¢)) — DoUp ®K(¢) D(yJXy = K(w)m?]yxm%]y =B

where Djf denotes the opposite algebra of Dy. If K (1))®xk L is a field then let € :== [L : K] € {1,2}.
Then A is a central simple K (1) ® L-algebra isomorphic to D¥** for some central K (1) ®x L-
division algebra D of index, say, m. If K(¢) @ L is not a field then let ¢ := 1. Then A is a
direct sum of two isomorphic central simple K (v)-algebras isomorphic to D¥<k for some central
K (¢)-division algebra D of index, say, m.

In both cases the dimension of A over its center is

(ox) mi -m?* =m?* - k?

and the K (1)-dimension of a simple A-module is € - m? - k and divides the K (¢))-dimension of the
simple B-module, which is m?; - y

e-m? - k divides mg, - .

We claim that m is odd and € = 1. Since K is a number field, m is either 1 or 2. If m = 1, then
my and y are odd by x (recall that x is odd) and hence also m and € are odd.

Assume that m = 2. Then % implies that either my is even and y - =% is odd, or y is even and
my - % is odd. Assume that 2 | m. If my is even, then 2% divides m? - k and if my is odd, then 22
divides m? - k. But this power of 2 does not divide m? -y in both cases, which is a contradiction.
Therefore m is odd and k is even. If my is even, then 4 divides k by (xx) and therefore € is odd. If
my is odd, then also € = 1 since £ is even and § is odd. Therefore the claim follows. In particular
e = 1 and hence L is a subfield of K (1)) which proves (a).

Now we prove (b). Since n is odd, L = K and ([Dy] ™' - [D ® K(¢)]) has odd order in the Brauer
group of K (1) because

([Du]™ - [D @k K(@)])™ =1 € Br(K(v))

Therefore the local index m,(Dy) is even, if and only if the local index m,(D @k K (1)) is 2, for
all (infinite and finite) places g of K(v). Hence D ®f K (1)) embeds into Dy. O

In the applications absolutely irreducible orthogonal G-modules (V, ¢) over totally real number
fields K are of special interest. Then ¢ is (positive or negative) definite. If n is even, then the
discriminant of ¢ is negative, if n = 2 (mod 4) and positive, if 4 | n.

Corollary 18.6. In addition to the assumptions of the theorem let K be a totally real number field
and assume that (V,q) is definite.

(a) Let n be even. If [K(v¢) : K] is odd or n = 0 (mod 4) and all intermediate fields K(¢) D
L D K of degree [L : K] =2 are complez fields, then the discriminant di(V,q) = 1.
Ifn=2 (mod 4), then K(¢)/K has a totally complex intermediate field L with [L : K] = 2.

One of these fields is isomorphic K[\/d+(V,q)].
(b) Assume that n is odd. If 1) has Schur indez 1, then the Clifford invariant [¢(V, q)] satisfies

[c(V,q) @k K()] = [K(¢)] € Bra(K ().

If ¥ has Schur index 2 then [K(¢) ®k ¢(V,q)] = [Endy)&(U)] € Bro(K(¥)) for the irre-
ducible K (¢)G-module U with character 2v.
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18.1 Examples.

We now apply the methods presented before to some irreducible representations of finite quasi
simple groups. The notations are taken from the ATLAS.

1) Let G = 2.0{(2). Then G is perfect and its universal covering group is G' = 22.07(2).
Let V' be the 8-dimensional faithful QG-module with character xy and ¢ a non zero G-invariant
quadratic form on V. Then dim(¢(V,q)) = 2® and Yy = yw ® xw for a 16-dimensional G-module
W. One calculates that yw = xs + x% is the sum of the two irreducible characters ys, x5 # X
which belong to absolutely irreducible rational modules of degree 8 of G. Therefore d+(V,q) =1
and also [¢(V, q)] = [Q].

Of course, that d+(V,q) = 1 is well known and can also be seen by inspection of the modular
constituents of V.

2) Let G = M°L and (V,q) a 22-dimensional orthogonal QG-module with character x. The
universal covering group of G is 3.G. Therefore Py : G — ¢(V,q) can be chosen to be linear.
There is a unique character yy of G satisfying xw ® xw = x. In the notation of ATLAS one
has xw = 2(x1 + x2 + x3) + X5 + X6- Now the character field Q[xs] = Q[xs] = Q[v/—15]. Since
dim(V) =2 (mod 4), Corollary 18.6 yields d+(V,q) = —15.

3) Let G = Sg(3) and x the irreducible character of degree 78 with orthogonal QG-module (V/ q).
The universal covering group of G is G' 2 2.54(3). Let xw be the character of G on the simple
¢(V, q)-module. If g € G is an element of order 2 in class 2B in the notation of ATLAS, then —g
has a 42-dimensional fixed space on V. Therefore yy is a faithful character of G by Corollary 18.3.
With GAP one finds that there is only one faithful character xyw of G satisfying xw ® xw = X.
The character yy contains the two complex conjugate irreducible characters ¢; and 15 of degree
13 with multiplicity 1683. Since dim(V) = 2 (mod 4) and Q[¢;] = Q[v/—3] Corollary 18.6 yields
d+(V,q) = =3.

4) The applications are not restricted to the characteristic 0 case. Let V' be the 4-dimensional
FyAg-module. If V' admits a non-degenerate Ag-invariant quadratic form ¢, then there is a pro-
jective representation Ag — Co((V, q))* yielding an irreducible Fy Ag-module of dimension 2. Since
there is no such module, one concludes that V' is not of quadratic type.

Now let (V,q) be a 4-dimensional simple orthogonal F3As-module. Then there is a linear repre-
sentation 2.45 — Co(V, ¢)* giving rise to a nontrivial action of F32.A5 on the 2-dimensional simple
Co(V, g)-module. Since the two irreducible [F32. As-modules of dimension 2 are only realisable over
Fy, the determinant d.(V,q) = —1 is not a square in F%.

5) Let G = U3(5) and (V,q) be a 21-dimensional simple orthogonal QG-module. The universal
covering group of G is 3.G. Therefore Py : G — ¢(V,q) can be chosen to be linear. There is
a unique character xy of G satisfying yw ® xw = X. In the notation of the ATLAS one has
Xw = 2X1 + X2+ 2X3 + 2X7 + 2Xx10 + X11 + Xa2 + X13 + x14. The character field of x (of degree 20)
is Q and its rational Schur index is 2. If U is the irreducible QG-module with character 2xs then
Endge(U) = Qa5 the rational quaternion algebra ramified only at 5 and the infinite place. Now
Corollary 18.6 yields [¢(V, ¢)] = [Qoo5)-

19 Orthogonal Frobenius reciprocity.

2

Let G be a finite group with subgroup H C G and K be a field of characteristic 0. If W
is a right K H-module, then the induced module W& defined as W¢ = W ®xuy KG is a KG-
module. On the other hand, by restriction, any K G-module V' can also be viewed as a K H-module.

2G. Nebe, Orthogonal Frobenius reciprocity. J. Algebra 225, 250-260 (2000)
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Classical Frobenius reciprocity establishes a canonical isomorphism between the vector spaces of
homomorphisms
(F)  Homgup(W,V) = Homga(WY V), ¢ °.

Now assume that W admits a non-degenerate symmetric bilinear form Fy : W x W — K that
is H-invariant, i.e. Fy (v,w) = Fy(vh,wh) for all v,w € W,h € H. Call such a pair (W, Fy)
an orthogonal K H-module. Then Fy defines a G-invariant form Fj§; on W% such that (W, F$)
becomes an orthogonal K G-module.

If (V, Fy) is an orthogonal K G-module, then it is natural to ask what happens with the K H-
isometries Isomg g (W, Fw), (V, Fy)) :=

{p € Homgu(W,V) | Fy(w,w") = Fy(e(w), p(w')) for all w,w" € W}

if one applies Frobenius reciprocity. Note that here by definition isometries are injective but not
necessarily surjective. Since Frobenius reciprocity does not respect injectivity of the mappings, one
has to dualise the right hand side of (F') to again get isometries: Fy induces a K G-isomorphism
between V' and its dual V* := Homg(V, K). Let Fy}; be the form on V* such that this isomorphism
is an isometry. Assume that V' is a uniform KG-module, which means that Fy, generates the space
of all G-invariant symmetric bilinear forms on V. Then orthogonal Frobenius reciprocity gives a
canonical bijection

Isompn (W, Fw), (V. Fy)) = Isomga((V, Fy), (W), (F§)"))

defined by W)
dim(V Chr
= Gmwey )
Here the condition that V' is uniform is clearly necessary. Otherwise the restriction of Fy to
©(W) might not determine the G-invariant form Fy. The constant can be easily remembered by
taking V and W to be the trivial modules. Then W and also (W%)* is the permutation module
with orthonormal basis (w ® g1, ...,w ® g,) and the trivial KG-submodule of W¢ is generated by
vi= )" w® g; with squared length (Fif)*(v,v) = s.
In the next section this orthogonal Frobenius reciprocity and two useful generalisations are
proved. It is applied in the last section to determine the rational isometry class of some irreducible
orthogonal QS,,-modules.

19.1 Orthogonal Frobenius reciprocity.

Let K be a field of characteristic 0 and G be a finite group with subgroup H C G. Let G :Ule Hy;
be a decomposition of GG into H-cosets.

If W is a K H-module with K-basis (by,...,by,) then (b @ g1,..., b, ® 91,01 @ gay . ., by @ gs)
is a K-basis for the KG-module W¢. The action of g € G on W€ is calculated combining the
permutation of the cosets induced by g with the action of H on W: If g;g = hg; with h € H then
(w® gi)g =wh® g; for all w e W.

If o : W — Vg is a KH-homomorphism, then ¢% : W& — V defined by ¢“(} 7, w; ® ¢;) =
S p(w;)gi is a KG-homomorphism. The mapping ¢ — ¢ is independent of the choice of the
coset representatives g; and defines a K-isomorphism Homggy(W, Vi) — H omya(WY V) with
inverse Hom g (W%, V) — Homgu (W, Vir); @ = @, the restriction to W, where W is identified
with W®1 C WY

If (W, Fyy) is an orthogonal K H-module, then F§ defined by

FS(w® gi,w' ® g;) = 0 Fw(w,w') (w,w' € W,1<1i,j <s)
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is a non-degenerate G-invariant symmetric bilinear form on W¢.

Any non-degenerate symmetric G-invariant bilinear form Fy on the KG-module V defines a
K G-isomorphism Fy : v — Fy(-,v) between V and the dual space V* = Homg(V, K). Note that
V* is again a right KG-module, via (fg)(v) = f(vg™?!) for allvEVfEV*,gEG Let F}s be the
form on V*, for which Fy is an isometry: For f € V* let vy := E};'(f) € V. Then

Fy(f,h) == Fy(vg,v) for all f,h e V™.

Theorem 19.1. Let K be a field of characteristic 0, (W, Fy) an orthogonal KH-module, and
(V, Fv) a uniform orthogonal KG-module. If ¢ : (W, Fy) — (V, Fy) is a K H-isometry, then the
transposed mapping
dim(W¢)
G\ * * * *\G * \G
: ————F F,

() (v, S G ) = (V)% (F))
18 a KG-isometry.
Remark 19.2. The constant dzm( (VC; can be easily remembered by taking V and W = (w) with
Fw(w,w) =1 to be the trivial modules. Then WY and also (WY)* is the permutation module

with orthonormal basis (w ® g1, ..., w ® gs) and the trivial KG-submodule of W€ is generated by
vi= )0 w® gy with squared length (F§)*(v,v) = s.

To prove the theorem it is convenient to choose a basis of W and V' and work with matrices. So
Fy, Fy also denote the Gram matrices of Fy respectively Fy, with respect to the chosen basis, g
the matrix describing the action of g, € G, right multiplication with ¢ the corresponding mapping
p etc.

Lemma 19.3. Let (W, Fw) be an orthogonal KH-module and (V,Fy) be an orthogonal KG-
module. Let ¢ € Isomxp((W, Fw),(V,Fv)). Then the orthogonal projection Py € Endgp(V)
onto (W) is given by right multiplication with

PW = FngtTF‘;/vlgo.

If V' is a uniform KG-module, then

B dim(W¢
Treu(Pw) Zg] '"Pyg; = W dy .

Proof. A straightforward calculation shows that Py is the orthogonal projection onto ¢(W). There-
fore Py Fy is the Gram matrix of a symmetric H-invariant bilinear form on V. By construction
Tra/u(Pw) € Endga(V) is a KG-endomorphism of V. Since g;Fy = Fv(g§r)_1, the trace

Tram(Pw)Fy = g7 ' PwFv(g; )"

Jj=1

is the Gram matrix of a G-invariant symmetric bilinear form on V. Since V is a uniform KG-
module, this implies that Trq/u(Pw) is a scalar matrix. The trace of the matrix Py is

tr(Py) = tr(FvgotTFI;,lgp) = tr(chvcp”Fv;l) = dim(W).

Hence the trace of Trg u(Pw) is s - dim(W) = dim(W¢) and Trg/u(Pw) = d;:”m( Lidy,. O
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Proof of Theorem 19.1.
Let (w,]1 < a < m) be a K-basis of W and v, := ¢(w,) (1 < a < m). Then the set {v,g; | 1 <
i <s,1 <a<m} generates the vector space V over K, because V' is an irreducible K G-module.
Therefore V* is generated by the functions

foi=Fy(vag) 1<a<m,1<i<s).

Since FI?, is non-degenerate there are unique w§a’i) e W (1 <j <s) such that
(%) “(fai) = FGZw ®gj) foralll <a<m,1<i<s.

For1 <a,b<m,1<1,k<sonehas

(@G)*(fa,i)(wb ® gr) = fa,i(%OG(wb ® k) = fai(Vsgr) = Fv (Vsgk, Vai)-

On the other hand
(P (o) @ g1) = Fip (1 © gt Z W © g;) = R (w0,

Choosing K-bases and working with matrices one therefore gets
Fw(w,(ga’i))tr = g Fygiv forall 1 <ik<s1<a<m.

Hence the scalar product of (¢%)*(fyx) and (p%)*(fa:) with respect to (Fy;)¢ is

s

Z w§bak)F (a l) Z Ub G Fvg] trFW QOQJFV) tr tr'

Jj=1

By Lemma 19.3

dim(W©)
tr tr 1
ZFVQ Fy, SOQJF\/—JZIQJ PygiFv = W 1%
and therefore i (WG)
FG * G * G\ * ] _ tm F
( W) (((P ) (fb,k:)? (QO ) (fa,Z)) dzm(V) V(fb kafa z)
forall 1 <i,k <s,1<a,b<m, which proves the theorem. O

If W& contains simple KG-modules with multiplicity > 1 then Theorem 19.1 does not give a
complete decomposition of the orthogonal KG-module (WY, F§).

Theorem 19.4. Let (W, Fy) be an orthogonal K H-module and let (V, Fy) be an absolutely ir-
reducible orthogonal KG-module. Assume, there is C = C'" € GL,(K) such that (p1,...,¢n) :
(W™ C® Fw) — (V,Fy) is a KH-isometry. Then

dim (W)

Ty O ® F) = (V) (1))

(L) (o)) = (V)™

1s a KG-isometry.
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Proof. With the notation from the proof of Theorem 19.1 let v{” := ¢, (w,) and f él;) Fr(v$g:)
for1<a<m,1<z<n,1<i<s. Asabove one calculates

S

(1) (FD)E) U B D) = D0 9eFr gl ey ) (pagi Frgl (08",

7=1

Now Fvcngv{,lgox € Endgp(V) has trace ¢, ,dim (W), where ¢, is the z, y-entry of C, since
o Fy @l = oy Fyw. Therefore

ZFVg] pr FW P35 € EndKG(V)

is an endomorphism of trace ¢, ,dim(W®). Since V is an absolutely irreducible K G-module, this
endomorphism is scalar, hence the right hand side of (1) is

dim(W¢ )

dim(W¢%) )
Y dim (V)

Cry dzm(V) Uby ngngr(Uax))tT = (fb(?;)v f ) O

In Theorem 19.1 the KG-module V' was assumed to be uniform. If one drops this assumption,
one has to know more about the K H-isometry ¢ : W — V to identify the invariant form Fy, .

Let (W, Fw) be an orthogonal K H-module and (V, Fy) be an irreducible orthogonal KG-
module. Let C be the space of symmetric K G-endomorphisms of V/,

C:={p € Endgg(V) | QDFV = FVSO*}

and D the space of symmetric K H-endomorphisms of W. Assume that there is a K-linear mapping
a: C — D satistying tr(c)/dimg (V') = tr(a(c)) /dimg (W) for all ¢ € C.

Proposition 19.5. With the notations above let p : (W, a(c)Fw) — (V,cFy) be a K H-isometry
for all0 # c € C*t. Then

im(W¢
() s (VS TR 5 (V)% (i)

1s a KG-isometry.

Proof. The proof of the proposition is analogous to the one of Theorem 19.1. It only remains to
show that the statement of Lemma 19.3 holds with the assumption of the proposition. But the
assumptions on ¢ guarantee that for all c € C'

r tr o— r— dlm(W)
tr(cFVg§ @ legogj) = tr(pcFy ¢ le) =tr(alc)) = tr(c)W.
Now C' is the eigenspace of the mapping Endxe(V) — Endkxg(V), ¢ +— ﬁ’vcp*ﬁ";l, which is
orthogonal with respect to the trace bilinear form. Therefore the restriction of the trace bilinear
form of the separable algebra Endkq (V') to C' is non-degenerate, and therefore

dim(W¢)

Z Fvgtr trFW wYg; = W%dv ]
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20 The Specht modules S"*5),

The representation theory of the symmetric group S, is very well understood. The irreducible
representations, so called Specht modules S*, of S,, over a field of characteristic 0 are in bijection
with the partitions A of n. They have the remarkable property that S* occurs with multiplicity one
as a submodule of a permutation module M?*, such that all the other constituents of M* belong
to partitions that are smaller than A\ for a suitable ordering. So the Specht modules are good
candidates to apply orthogonal Frobenius reciprocity (Theorem 19.1).

A particular easy construction for S* can be given, if the partition A of n has only two parts.
Solet k,l,n € Nwith 1 <k <1 <% and let S; x S,_; denote the Young subgroup of the symmetric
group Sy, which is the set stabiliser of the subset {1,...,l} of {1,...,n}.

Let M™=%#) be the S,-permutation module having the k-element subsets of {1,...,n} as an
orthonormal QQ-basis. Denote the corresponding S,-invariant symmetric bilinear form by I ()

Then
dimg (MM = (Z) and M0FH =18 o

For a fixed subset T C {1,...,n} let o7 : M%) — Q be the Q-linear mapping defined by

O'T(S)Z:{(l) ;%g

for all k-element subsets S C {1,...,n}. Then the Specht module S®~%k) C M (=Fk) jg

Sn—kk) — ﬂ Ker(or).

TC{1,.0.n},|T|<k

S(n=kk) is an absolutely irreducible S,-submodule of M®~**)  Therefore the S,-invariant
symmetric bilinear forms on S™ %% are rational multiples of the restriction Fj, of I (2):
k

Young’s rule says that the QS,-module M™~4) is the direct sum of all S"*F with k < I.
Hence by classical Frobenius reciprocity the fixed space of S; x S,_; on S™~%*) is one-dimensional,
say spanned by some v # 0. To apply orthogonal Frobenius reciprocity it suffices to calculate the
length of v:

Theorem 20.1. Let 1 < k <1< 2. Then there is v € S"™M% with vg = v for all g € S; x S,y

satisfying B
Fi(v,v) = a(l, k) == <n +]1_ k) (n; l) (li) :

To prove this theorem we need 2 lemmata on binomial coefficients.

() Y)

Jj=0

Lemma 20.2.

Proof. First assume | = k. Then the left hand side ist

i(n— —j> i(n—Qk—k]) (n—2l<:k+k:+1>:<n+;—k>'

Jj=0 Jj=0
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To show the statement in the general case let d(I,!+ 1) denote the difference of the left hand sides
for [ and [ + 1. Then

£ )-

é(n;i;])((l—l;Jrj)_(l—k;jJrl) +g( k+]+1>(n;i;i;1>

since ”_,i_g._l) = ("kljj) ("kijzll) The difference in brackets is (l ];+j) (l kJ;jH) = (ljlfl”).
If one substitutes the summation index ¢ = j + 1 in the second sum, one finds
k . k41 . .
n—l—j l—k+] l—k+i\(n—1—1
d(l,1 =0.
=2 () GRG0
Hence the left hand side is independent of [ and the lemma follows. a

Lemma 20.3. Let k <1< 3. For0<i<k define

Then ,
T+
—1l—k b\ /1 —
Zai(n +9,C+)<, x)zOforallOSxSx—l—bSk-

, r+b—1 1—x
1=

Proof. Let A := H”b( —I—k+j) be the product of the numerator of the first binomial coefficient

with the numerator of a; and let B := H;:S(l — 7)7! be quotient of the numerator of the second
binomial coefficient with the denominator of a;. Then the sum in the lemma simplifies to

z+b

1 b
BAZ (i —x)l(b+ 2 —1)! ) gEZ )!:0’ -

j=0

Proof of Theorem 20.1:
The orbits of S;xS,,_; = Stabs, ({1,...,1}) on the k-element subsets T of {1, ..., n} are parametrised
by |[TN{l,...,1}]. For 0 < j < klet v; € M(" %% be the sum over all k-element subsets of
{1,...,n} that intersect {1,...,l} in j elements. Then (vy, ..., vx) is a basis of the fixed space of
S; x S,_; on M=k For the standard scalar product one finds

Iy (vi, v5) = 0y <Z:j) (D

Let a; be as in Lemma 20.3, T" be a (k—b)-element subset of {1,...,n} and z := |T'N{1,...,l}|.

Then . ,
z+
n—Il—k+x+b\/l—zx
ooy ey =3 e LT () =0

=0 1=
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by Lemma 20.3. Therefore

k
Z a;v; € S(n_k’k).
1=0

Now

e I I AT d(n—1— (k=) (1—1)
%:CJ>EE l—jj :*_U((n—x—my( u)‘

Substituting 7 = k& — ¢, the length of Zf:o a;v; becomes

s (), )-

i (n = DU =k + ))*((n = 1= )’
= gln =1 =k =) —k+DI)2((n—1— k)2

(n—1)! l—k+an—l—ﬁ!
k)! Z -

(n—1— M —1—k)!
(n— D) k'ﬁi n—l—j l—k+j
nn—Z—m o\ k- i)
By Lemma 20.2 this equals a(l, k). O

Orthogonal Frobenius reciprocity (Theorem 19.1) now allows to deduce from Theorem 20.1 the
following recursion formula for the rational isometry class of Fj,.

Corollary 20.4. For 0 <[,k < % and 0 # a € Q let [aF}] respectively [I( )] denote the class of
aF}, respectively I( ) in the Witt group W (Q). Then
l

where a(l, k) is as in Theorem 20.1.

Remark 20.5. In principle this method can also be used to obtain the rational isometry classes
of the other irreducible orthogonal S, -modules using Theorem 19./. However the combinatorics to
determine explicit bases for the fixed space of the corresponding Young subgroups on these modules
gets much more involved so one cannot hope to get formulas for arbitrary n.



Chapter 6

Ausgewahlte ﬂbungsaufgaben.

Aufgabe 1.
Sei (E,b) ein freier bilinearer A-Modul vom Rang n € N und Gg € A™*" eine Gram-Matrix
von (E,b). Dann gilt:

(i). det(GEg) ist kein Nullteiler < die Abbildung bg : E — E*,x — (y — b(x,y)) ist injektiv.
(ii). det(Gg) € A* < die Abbildung by ist bijektiv.
(iii). Sei A ein Korper und (F,b) nicht ausgeartet. Dann ist (£, b) regulér.

Aufgabe 2.

Sei A ein Integritdtsbereich, K = Quot(A) und (V,b) ein reguldrer bilinearer K-Vektorraum
der Dimension n. Ein (volles) A-Gitter in V' ist ein A-Teilmodul L <V fiir den es zwei K-Basen
(e1,...,e,) und (f1,..., fn) gibt, so dass

Ay @...®Ae, CLCAf1®...DAf,.
(i). Ist A Noethersch, so ist L endlich erzeugt.
(ii

(iii

).
). L¥ :={x € V | b(z, L) C A} ist ein Gitter (das sogenannte duale Gitter zu L).

). Gib einen Isomorphismus ¢ : L# — L* = Homa(L, A) an.

(iv). (L,brxz) ist reguldrer bilinearer Modul < L = L#.

Ab jetzt sei A =7 und b(L, L) C Z. L heit dann ein ganzes Z-Gitter und es ist L C L#.

(5) L*/L2Z/d\Z® - D ZL/d,Z, wo dy,...,d, die Invariantenteiler einer Gram-Matrix von L
sind.

(6) Bestimme zunichst den Isomorphietyp von L# /L, und dann Erzeuger von L# fiir folgende
Z-Gitter:

(a) L=1,:=2Z"= (e1,...,¢e,)
(b) L=A,_1:=(e1 —e,eg—€3,...,6p1 —€,) CZ"flir2<neN
(C) L=D,:= <An717enfl+en>gzn

(7) Fir welche n € N sind I,,, A,,_; bzw. D,, nicht ausgeartet, fiir welche n € N sind sie regulér?
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Aufgabe 3. Sei A ein kommutativer Ring, E ein A-Modul und seien S, F' < F Untermoduln.
Zusatzlich sei F' endlich erzeugt und projektiv, und bp : S — F* ein Isomorphismus.

(i). Zeige: F ist reflexiv, d.h. F = F**.
Hinweis: zeige dies zunachst fiir endlich erzeugte freie Moduln.

(ii). Beweise Lemma 2.12: bg : F' — S* ist ein Isomorphismus.
Hinweis: bp induziert einen Isomorphismus b}, : (F*)* — S*.

Aufgabe 4. Sei R Noetherscher Integrititsbereich mit Quotientenkérper K, L = L# ein
R-Gitter im reguldren K-Vektorraum (V,b), U < V mit (U, b) regulér.

(i). Fir X :=UNList (XH)#/ X+ > X#/X.
(ii). Wir definieren das gerade unimodulare Z-Gitter Eg von Rang 8 und zwei seiner Teilgitter:

Eg := <D8é% Z?:l €i>
E7 = {Zis:l ae; € B | a7 = ag} = {z € Eg | b(z, e7 — e5) = 0}
EG = {Zizl a;e; € Eg | g = a7 = CLS} = <66 —ér,er — €8>l

Zeige: Bs = B, B /E; = /27 und E¥ /B¢ = Z/37.

(iii). Berechne Ef und E7 .

Aufgabe 5. Auf V = F? definiere die symmetrische Bilinearform b(z,y) := > | ;y;. Einen
Teilraum C' < V nennt man auch Code. C heit selbstdual, falls C = C+ und selbstorthogonal,
falls C' C C*. Das Gewicht eines ¢ € V ist wt(c) := #{i € {1,...,n} | ¢; # 0}. Ein Code C
heit gerade bzw. doppelt gerade, falls wt(c) € 27Z bzw. wt(c) € 4Z fir alle ¢ € C. Bezeichne
1:=(1,...,1) eV, E:=1

e (V,b) ist nicht ausgeartet.

Ist C' C C4, soist wt(C') C 2Z und deshalb ist C' C 1+ = {c € V | wt(c) gerade }.

Ist C doppelt gerade, dann ist C' selbstorthogonal.

Enthélt (V,b) einen doppelt geraden selbstdualen Code, dann ist n € 47Z.

q: E:=1t = Fy,q(c) = %(C) + 27 ist eine quadratische Form mit b, = bjpxE.

Ist n gerade, dann E+ = (1), und (F, q) ist semiregulir wenn n ¢ 47.

Ist n ungerade, dann ist (E, q) regular and (V,b) = E D(1).
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e Schreibe n = 8m + a mit m € Ny, a € {1,2,3,4,5,6,7,8}. Dann ist (E,q) = H(F,)*" D A

mit!
({0} =1
1] 2
N(IFy) a=3
Lo | NE)ON a4 1)
H(F2) D N(F2) a=5
H(F2)* O[1] 6
]I—]I(IF‘Q)2 DON(Fy) a=7
(H(F2)* ©[0] a=38

e Doppelt gerade selbstduale Codes existieren in V' genau dann wenn n € 8Z.

Aufgabe 6.
Beweise das Gegenbeispiel aus Bemerkung 4.24 und zeige damit, dass der Satz von Witt nicht
fiir regulare quadratische Z-Moduln gilt:

Dis O H(Z) = Es @ Es @ H(Z)
16

Hinweis: Um diese Isometrie zu konstruieren, schreibe Dyg = (Dyg, v = % Yoy €) und H(Z) =
(e, f) mit q(ae + bf) = ab. In Dyg @ H(Z) erzeugt das offensichtliche Teilgitter Dg zusammen mit
v+ e — f ein Teilgitter L, welches isometrisch ist zu Eg. Finde eine hyperbolische Ebene X in Lt
(erzeugt von einem Vektor von Lénge 0 und einem anderen Vektor, der mit ihm inneres Produkt 1
hat). Identifiziere dann (X @ L)+ mit der zweiten Kopie von Eg.

Aufgabe 7.

Sei R ein diskreter Bewertungsring mit maximalem Ideal 7R, und K := Quot(R).

(). Zeige: ein R-Gitter L im reguldren bilinearen K-Vektorraum (V,b) besitzt eine Jordan-
Zerlequng, d.h. eine Zerlegung

L= (La> 7raba) @(LaJrla 7ra+1ba+l) @ te @(Lcﬂcba

fiir gewisse a < ¢ € Z, so dass die (L;, b;) fir a < i < ¢ jeweils entweder Rang 0 haben oder
regulire bilineare R-Gitter sind. Die dim(L;) und det(b;) € (R/7R)*/((R/mR)*)? sind durch
L eindeutig bestimmt.

Zeige weiter: fir R = Z, mit p # 2 sind die (L;, 7'b;) bis auf Isometrie eindeutig durch L
festgelegt. Fiir R = Zo gilt dies zumindest dann, wenn alle b; gerade Gitter sind.

(ii). Beschreibe einen Algorithmus JordanDecomposition(A, p), der zu einem Z,)-Gitter mit
Gram-Matrix A eine Jordan-Zerlegung berechnet. Implementiere diesen Algorithmus dann
in MAGMA®.

(Achtung: hier meinen wir wirklich Z,, nicht Z,!)

(iii). Zeige, evtl. unter Zuhilfenahme dieses Algorithmus:

1Untersuche die Fille n = 1, ...9 konkret und unterscheide dann zwischen n = £+ 8 gerade und ungerade. Bette
FE, isometrisch in F,, ein, so dass das Ej- — Eﬂ; und schreibe so F, = E; D H(F2)4.
2unter http://magma.maths.usyd.edu.au/calc/ kann man MAGMA-Programme ausfithren


http://magma.maths.usyd.edu.au/calc/
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(a) Die Z,-Gitter mit Gram-Matrizen

8 1 (2!
1 8) "My 32

sind fiir alle Primzahlen p isometrisch. Zeige weiter: Aufgefasst als Gitter iiber Z sind
sie aber nicht isometrisch.

(b) Das Zo-Gitter L mit Gram-Matrix

S = N

1
2
0

N O O

hat zwei essentiell verschiedene Jordan-Zerlegungen (Lo, by) O (L1, 2b1) und (Ly, by) D (L}, 20))
mit (Lo, by) % (Lg, b)-

Aufgabe 8.

Sei L ein gerades Z-Gitter im reguléren bilinearen Q-Vektorraum (V, b). Sei (Lo, by) O (L1, pb)
eine p-Jordan-Zerlegung von L mit p # 2. Weiter gelte dim(Ly) > 0 und & := dim(L;) > 0 und
L# /L ist eine nicht triviale elementar abelsche p-Gruppe.

Zeige: sign(RL) =2e —2 — (p— 1)k mod 8, wo € = 1 falls det(b;) = (Z})?, und € = —1 sonst.

Hinweis: GauB-Summen. Es geniigt, die GauB-Summe I'(L) mit dem anisotropen Vertreter
von L# /L in WQ(p) zu berechnen (drei Falle).

Es darf benutzt werden, dass

1 2L 1, p=1mod4
FOSCRE}
\/ﬁazo !

, p=3mod4

Aufgabe 9.
Sei R ein diskreter Bewertungsring mit maximalem Ideal mR. Sei ¢(x1,...,z,) eine quadratis-
che Form tiiber R. Zeige:

(i). Sei 0 # t € R. Es existiert genau dann eine Losung von ¢(z1,...,x,) = t, wenn t =
72*y fiir ein k € Z,u € R und eine primitive Darstellung (z,...,z,) fir u existiert (d.i.
q(z1,...,2,) =umit z; € R fiir alle 1 <i <nund x; € 7R fiir mindestens ein 1 <i < n).

ii). Die quadratische Form q(z1, z5) = 27 + 22 iiber Z, stellt genau dann u € Z, primitiv dar
(ii) q q(1, 1+ p g p P :
wenn einer der folgenden Félle erfiillt ist:
(a) p=1mod 4
(b) p=3mod4 und p fu, dh. u € Z;
(¢) p=2und u=1,2,5mod 8 (Hinweis: eine solche Darstellung fur u liefert 2 = u—a3 =

1 mod 8. Lifte nach Zy, um zu zeigen dass die Bedingung hinreichend ist.)

(iti). Die quadratische Form ¢(zy,xy,x3) = S, 22 iiber Z, stellt genau dann u € Z primitiv

dar, wenn einer der folgenden Falle erfiillt ist:

(a) p#2
(b) p =2 und u = 1,2,3,5,6 mod 8 (Hinweis: benutze Teil (2), um zu zeigen dass die
Bedingung hinreichend ist.)
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(iv). Die quadratische Form q(z1, 2, 3, 24) = 24 x? iiber Z, stellt genau dann v € Z} primitiv

=11
dar, wenn u % 0 mod 8.

(v). Die quadratische Form q(z1,xq, x3, 24, x5) = Z?=1 x? iiber Zy stellt jedes u € Zj primitiv
dar.

Aufgabe 10.

Sei A ein kommutativer Ring. Sei (E,q) ein freier quadratischer A-Modul vom Rang 2 mit
Basis (eg, e3).

Dann gilt:

(i). Ist E reguldr und ist g(e;) = 1, dann ist C(E,q) = A?*2

(ii). Fiir die quadratische Form n : C(E) — A,z — T gilt

o=t 2]

ac

(iii). Sei ¢ : C(E,q) — C(E,q) definiert wie in (9.8). Dann ist = = ¢ o ¢(—id) eine kanonische
Involution auf C(E, ¢) im Sinne von (9.18). Es gilt

(C(E7q>’n) = (Chn) @(CO’n> = <E7 _Q) @(C07n)

(iv). Falls es ein e € E gibt mit a := ¢(e) € A*, dann ist (Cy,an) = (E,q).

(v). Ist B+ = {0}, dann gilt Co(E,q) = {x € C(E,q) | zy = yx forally € Co(F,q)}, und
Z(C) = A.

Hinweise: siehe Beispiel (9.22). Fiir Teil (1) betrachte den C := C(FE, ¢)-invarianten Teilmodul
(1 —e)C < C, um einen expliziten Isomorphismus anzugeben.

Aufgabe 11.

Sein € 8 und 1 := (1,...,1) € F3. Setze V := 11/(1) und ¢ : V — Fy,q(xz + (1)) :=
wi(

TSC)+2Z. Sei U < V ein maximal isotroper Teilraum. Dann gilt nach Aufgabe 5, dass V = H(»~2)/2

ist und somit dim(U) = 252,

(i). U ist das Bild eines selbstdualen doppelt-geraden Codes Cp in Fj unter der Projektion
1+ = V.

(ii). Die Abbildung D : O(V,q) — Z/27Z, g + (—1)m/UN9) ist ein Homomorphismus mit
Kern SO(V, q).
Insbesondere gilt Stabov,q)(U) € SO(V, q).

(iii). Die symmetrische Gruppe S, operiert durch Permutation der Eintrage auf Fj, ldsst 1 fest

und bettet somit natiirlich in O(V, q) ein. Zeige, dass die Einschrankung von D auf S,, das
Signum ist.

(iv). Folgere: fiir einen selbstdualen doppelt-geraden Code C' < F} gilt Aut(C) < A, < S,.
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Aufgabe 12.

Bestimme die Clifford Invariante und die Diskriminante fiir die regularen anisotropen quadratis-
chen Raume iiber Q,. Stelle das Ergebnis als Tabelle dar.

Begriinde kurz, dass C([1,d]) = Q2**.

Zeige, dass alle auftretenden zentralen Q,-Divisionsalgebren entweder Q, oder Q, = ¢(,) sind.

Aufgabe 13.
Sei L < (V,q) ein gerades Z-Gitter, und p eine Primzahl mit p fdet(L). Sei

N(L) :={M < (V,q) | M gerades Z — Gitter, [L: LN M] =[M : LN M] = p}.
Ein Element M € N(L) heit dann (gerader) p-Nachbar von L.
Zeige:
(i). Ist M € N(L), dann liegen M und L im selben Geschlecht.

(ii). Fir y € L\pL mit p* | q(y) ist L, := {l € L | b(y,l) € pZ} ein Teilgitter von Index p in L
und M := L, + (%) ein p-Nachbar von L.

(iii). Ist M € N(L), dann gibt es ein y € L\pL, so dass p*|q(y) und M = <Ly, ]ljy> =: LW,

(iv). Die Abbildung (y + pL) — L® ist eine Bijektion zwischen den isotropen eindimensionalen
Teilrdumen in (L/pL,q) und N(L).
Aufgabe 14.
Sei K ein Korper mit char(K) # 2. Seien (V,q) und (W, ¢’) regulére bilineare Raume iiber K.
(i). Durch b : (VW) x (Ve W) - K, (v®w,v @ w) — by(v,v) - by(w,w") wird eine
Bilinearform auf V ® W definiert.
Q: VoW — K,v®w+— q(v)d(w) definiert eine quadratische Form mit by = b.

(ii). Mit der Multiplikation ® und der Addition @ wird W (K) zu einem Ring.

(iii). Die Signatur ist ein Ringisomorphismus W(R) — Z.

(iv). e: W(K) = Z/2Z, [(V, q)] — dim(V) mod 2 ist ein Ringhomomorphismus mit Kern W, (K).
(v). Bezeichne d(V) :=d(V,q) := (—1)( ) det(V, q) die Diskriminante von (V, ¢). Dann ist

d(V ® W) _ d(v>d1m W)d(W)dlm(V).

(vi). Esist ¢(V @ W) = ¢(V)3mW) (W) dimV) (q(V), d(W))dim(V) dim(W)—=1,

Nun bezeichne BW(K) := Bry(K) x Z/2Z x K*/(K*)?> den Brauer-Wall-Ring von K. Die
Addition in BW(K) ist definiert durch

(€1,0,dy) + (¢9,0,d2) = (c1¢2(dy, d3), 0, dyds)
(€1,0,d1) + (co, 1,dy) = (c1e2(dy, —da), 1, d1d3)
(c1,1,dy) + (co,1,do) = (c1¢2(dq, d), 0, —dyd>)
und die Multiplikation durch
(c1,e1,d1)(ca, e9,dy) = (525! (dy, dy) 2™ eeq, dS2d5H).

(7) Zeige: wg : W(K) — BW(K) : (V,q) — ([¢(V,q)],dim(V) + 2Z,d(V, q)) ist ein Ringhomo-

morphismus.

Gebe fiir K = Q, die Bilder der Elemente aus W (K) unter wx explizit an.



Chapter 7

Losungen zu den ﬁbungsaufgaben.

von David Lorch

Aufgabe 1.

(ii) (Matthias Kiinzer) Wir schreiben M = (m; ;); ;. Sei M’ die Adjunkte von M, die an Position
(i,7) den Eintrag (—1)"*7 det M;,; hat, wobei M;; aus M durch Streichen der jten Zeile und der
iten Spalte hervorgeht. Nach der Cramerschen Regel ist M'M = MM’ = det M - I,,.

(1)

Ist f nun ein Automorphismus, so sei g ein Inverses, und N die beschreibende Matrix von g.
Es folgt M N =1, und daraus (det M)(det N) = det(MN) = 1.

Ist umgekehrt det M invertierbar, so ist (det M)~1M’ die inverse Matrix zu M, und also die
beschreibende Matrix des inversen Endomorphismus.

Ist det M kein Nullteiler, so folgt f’ur v € A™ aus vM = 0, da”s vMM’' = (det M) - v = 0,
und also v = 0. Somit ist f : v +— vM injektiv.

Ist umgekehrt det M ein Nullteiler, so sei x € A mit x # 0 und z(det M) = 0 gew”ahlt. Sei
r € [1,n] minimal mit zdet X = 0 f’ur jede r x r-Untermatrix X von M, die also aus M
durch Streichen von n — r beliebigen Zeilen und n — r beliebigen Spalten hervorgeht.

Ist r =1, soist xM = 0, und z.B. (z,0,...,0) # 0 ein Vektor, der von M annulliert wird
und so die Injektivit”at von f widerlegt.

Sei nun r > 2 angenommen. Sei Y eine (r — 1) X (r — 1)-Untermatrix von M mit z det Y # 0.
W7”ahle die Eintr’age in einer in Y nicht auftretenden Zeile in den Spaltenpositionen von
Y, um Y zu einer Untermatrix Y’ € A"~V von M zu erg’anzen. F’ur i € [I,n] sei
Y@y € A der aus den Eintr”agen von M der iten Spalte und der Zeilenpositionen von Y’
gebildete Spaltenvektor. Sei Y(’Z) € A™" die um die Spalte y;) rechts erg”anzte Matrix Y.
Diese Matrix hat nun entweder eine Spalte doppelt, oder aber ist bis auf Permutation eine
Untermatrix von M. Nach Wahl von r ist daher stets x - det Y(’Z) =0.

Eine Entwicklung von Y(’z) nach der eben angef’ugten letzten Spalte liefert d; := det Y{;) =
Y sey Mz e, fur gewisse ¢, € A, wobei Z die Menge der in Y auftretenden Zeilenpositionen
bezeichne. Dabei gibt es ein ¢t € Z mit ¢, = +detY, und also z¢; # 0. Nun ist aber
xd; = 0 stets, und also ) _,(xc.)m.; = 0 stets, was eine nichttriviale Linearkombination
der Nullzeile aus den Zeilen von M darstellt, wie zur Widerlegung der Injektivit”at von f
erforderlich.
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(3) Sei z.B. A=7Z/(4), n =1 und f die Multiplikation mit 2. Dann ist det M = 2 # 0, aber f
ist wegen f(2) = 0 nicht injektiv.

Aufgabe 3.

(i). Wir nehmen zunéchst an dass F' e.e. und frei ist. Ein ¢ € F* = Hom(F,A) ist dann
eindeutig festgelegt durch die ¢(e;). Also ist F* frei auf den E = (e],...,€}), definiert
durch ef(e;) = d;;. Analog ist F** frei auf E** := (ef*,...,e:*). Der Homomorphismus

Y F — F* f— (g g(f)) bildet die Basis E von F' auf die Basis E** von F** ab, ist
also ein Isomorphismus.

Ist nun F e.e. und projektiv, dann ist F' direkter Summand eines endlich erzeugten freien
Moduls. Man betrachte etwa den Epimorphismus 7 : A® — F, wo E = (ey, ..., ¢e,) ein Erzeu-
gendensystem von [ ist: da F' projektiv, spaltet die kurze exakte Sequenz 0 < ker(w) —
RE - F —0,d.h. RE 2 F & RE/i(ker()).

Es existiert also ein endlich erzeugter freier Modul G, so dass FOF' = G = G** = F*@(F')*
ist. Die Einschréankung dieses Isomorphismus auf F' liefert die Reflexivitat. (F” ist endlich
erzeugt als Quotient von G, und projektiv als direkter Summand von G.)

(ii). Lemma 2.11 in der Vorlesung.

Aufgabe 4.

(i). Wir benutzen eine Aussage aus der Vorlesung Gitter und Codes tiber das subdirekte Produkt
von Gittern:

Sei V= U; @ Uy, m; € End(V) die Projektionen auf U;. Sei L ein volles Gitter in V', so
dass L; :== L N U; ein volles Gitter in U; ist (¢ = 1,2). (dann ist U; = KL; und L; ist reines
Teilgitter in L.) Setze L, := Lm;. Dann ist L; < L} (i = 1,2) und es gilt:

Ly/Li 2 Ly/Ly = L/(Ly & Ly) = (L} & L3)/L.

Beweis.

Klar ist L) /L1 = (L} & L9) /(L1 & Lo) = (L} & L) /(Ly @ LS).
Wir betrachten zunéchst die Projektion m : L — L. Gefolgt vom natiirlichen Epimorphis-
mus L] — L} /L liefert sie eine surjektive Abbildung 77 : L — L} /L. Sei

Ky :=%ker(m) ={l € L | lm € L}.

Fir ¢ = 21 + x5 € L mit x; € U; ist {my = 1 € Ly = U; N L genau dann wenn z; € L und
somit x9 = (—x1 € LNU; = Ly liegt. Also ist K1 = L1® Ly und nach dem Homomorphiesatz
gilt

Ly/L; = Bild(7) & L/ ker(71) = L/(Ly & Ly).
Ebenso erhélt man L /Ly = L/(Ly® Ly). Fiir die letzte Isomorphie zeigen wir, dass L)+ L =
L} & Lj,. Denn dann ist nach dem Noetherschen Isomorphiesatz

(Ly & Ly)/L = (Ly + L)/L = Ly /(Ly N L) = Ly /Ly

Nach Definition ist L)+ L = (L}, L). Esist x; € L} genau dann wenn z; € U; und es gibt ein
€ L, xy € Uy mit £ = x1 + 5 (dann notwendigerweise x5 € L}). Alsoist L) + L C L} @ L},
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Umgekehrt liegt natiirlich L) € L] + L und obige Rechnung zeigt auch L), C L} + L und
damit L} + L = L @ L. O

Nun zum Beweis der Aufgabe. Wir wenden obiges Lemma an auf U, := KX, U, := Uit =
KXt L =X =UNL, Ly = X+ =U,N L. Damit bleibt zu zeigen, dass L, = 7 (L) = X#
und L = (L) = (X )7,

Dazu sei z € X und | € L, dann ist (x,1) = (z,m(l)) € Z und daher 7(L) C X#. Sei
B’ := (by,...,by) eine Gitterbasis von X. Weil U reguldr ist, ist X ein reines Teilgitter
von L. Deshalb kann B’ zu einer Gitterbasis B = (b,...,b,) von L erginzt werden. Da L
unimodular ist (L = L#), ist auch die duale Basis B* = (b;"),...,b,") eine Gitterbasis von
L, und (by11", ..., b,*) eine Gitterbasis von X*. Es folgt, dass X# = (m, ("), ..., m(b*)) C
m(L).

Aufgabe 7.

(i).

(iii).

Existenz der Zerlegung: Induktion nach n := dim(L). Fiir n = 0 ist nichts zu zeigen.

Sei nun n > 0, und sei A = (a;j)1<ij<n eine Gram-Matrix von L bzgl. einer Basis B =
(by,...,b,). Wahle einen Eintrag a;; aus A mit der unter den Eintrdgen von A minimal
auftretenden m-Bewertung r.

(a) r > 0: dann fahre fort mit 7' A.

(b) 7 =0und i = j: OE sei ¢ = j = 1. Durch simultane Zeilen- und Spaltenumformungen
kann die erste Zeile und Spalte von A ausgeraumt werden. Fertig mit Induktion.

(¢) r=0und i # j: OE seii=1,j =2. Falls 2 € R*, ist nach der simultanen Zeilen- und
Spaltenumformung 0} := b; + by aber v,(b}) = 0, fahre fort wie in Fall (b). Andernfalls
ist der 2 x 2-Minor (a; ;)1<; j<2 invertierbar, da v, (a1a2e —aly) = 0. Also ist jedes Tupel
(x,y) Linearkombination von (a1, a12) und (a2, ass), d.h. die ersten beiden Zeilen und
Spalten konnen durch simultane Zeilen- und Spaltenumformungen ausgeraumt werden
und man ist fertig mit Induktion.

Zu den Eindeutigkeitsaussagen fiir R = Z,: angenommen, es existieren zwei Zerlegungen
D (L, 7'b;) und D(L;, 7). Es geniigt, (Lo,by) = (Lj, b)) zu zeigen und dann mit dem
reskalierten Gitter (L, 7%0;) @ -+ D (L., 7¢7'b,) fortzusetzen. Dann ist det(L) + 7R =
det(Lo)+7mR = det(L'y)+n R, und auch die Dimensionen von Ly bzw. L’y miissen offenbar gle-
ich sein. ber F, lassen sich die beiden Zerlegungen nun schreiben als (L, b) = (Lo, by) O Q =2
(L, b)) O Q mit Q := {l+7R € L:b(l,1) € TR}. Also (Lo, by) = (L,0)/Q = (L}, ;) Da
alle auftretenden Jordan-Komponenten regulér sind (fiir p = 2 stellt das die Zusatzbedigung
sicher, dass alle L; gerade Gitter sind), existieren die zugehorigen quadratischen F,-Moduln,
und sind ebenfalls isometrisch. Da diese als orthogonale Summanden von L auflerdem scharf
primitiv sind, liftet diese Isometrie nach Z,. Setze fort mit den um 7! reskalierten restlichen

Summanden, also mit (Ly, 7%01) D -+ - O (Le, 7 1b,).
(a) Dass die Gitter iiber Z nicht isometrisch sind, sieht man z.B., weil ihre Minima ver-
schieden sind (8 bzw. 2).

(b) Bezeichne (Lo, by) D (L1 D 2by) das bereits jordanzerlegte Gitter aus der Aufgabenstel-
lung. Durch Addieren des dritten Basisvektors zur zweiten Zeile und Spalte und an-
schliefenden Ausrdumen der dritten Zeile und Spalte erhélt man den Zs-invertierbaren
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Basiswechsel b := by, b, := by + b3, b = %bl — %bg + %bg, beziiglich dem das Gitter
Zo ® L die Gram-Matrix

(0.1)

S =N

1
4
0

Nl O O

besitzt, welches wir mit (Ly, by) O (L}, b)) bezeichnen. Aber Ly und Lj sind als Z-Gitter
nicht isometrisch, denn ihre Determinanten unterscheiden sich modulo 8 nicht um ein
Quadrat.

~—

Aufgabe 8.

Sei D := (L#/L,q), wobei g : L* /L — Q/Z,x + L — 3b(z,z) + Z.

Von D spalten wir solange hyperbolische Ebenen ab, bis ein anisotroper Rest bleibt. Falls
k = dim(L;) ungerade ist, bleibt stets ein Rest von Dimension 1, und falls k gerade ist bleibt ein
Rest von Dimension 0 oder 2.

Nur fiir diese Félle berechnen wir die Gau3-Summe. Mit dem Hinweis aus der Aufgabenstellung

1st
1, p=1mod4
P =4." ~ _ (0.2)
7, p=3mod4
Bezeichne ¢ ein Element aus F5\(F7)?. Da I'([1]) + I'([e]) = P Gl =0 (¢, ist Nullstelle des

p-ten Kreisteilungspolynoms), folgt I'([¢]) = —I'([1]). Aus der Multiplikativitdt der Gau-Summe
erhdlt man dann die Werte fiir den zweidimensionalen anisotropen Raum tiber F, (d.i. [1,¢], falls
—1 € (F;)?, also falls p = 1 mod 4, und andernfalls ist [1, 1] anisotrop). Man erhélt also folgende
Gaufl-Summen fiir die ein- und zweidimensionalen anisotropen Raume:

r | [1] [e]  (Fp,N)
p=1lmod4 |1 -1 -1
p=3mod4 |1 -1 —1

Mit der Formel von Milgram/Braun ist C;ign(RL) =T(L*#/L,q). Um die Gleichung aus der Auf-
gabenstellung zu beweisen, muss also die Determinante des reguléren bilinearen Raums (Lq, b;) =
(1,...,1,a) (mit a + pZ € {1,¢}) mit der des quadratischen Raums D = H" D A (mit A €
{0,111, [e], [(Fp2, N)]}) verglichen werden.

Ist & = dim(L;) ungerade, so muss man zum Beweis der Gleichung nach p mod 8 unterschei-
den. Denn fir p = 1 mod 4 ist —1 ein Quadrat in [F,, und fir p = £1 mod 8 ist 2 ein Quadrat
in F):

(i). Ist —1 kein Quadrat, dann ist det(H) kein Quadrat. Ist gleichzeitig k € 4Z + 3 und ist also
D = H™D[b] fiir eine ungerade Zahl m = %1 hyperbolischer Ebenen, dann unterscheiden
sich @ = det((L1,b1)) und b um ein Nichtquadrat .

(ii). Ist 2 kein Quadrat, dann unterscheidet sich die Determinante des zu (L, b;) gehorigen
quadratischen Raums um ein Nichtquadrat. Es &ndert sich also das Vorzeichen von I'(L# /L).

Fir gerades k entfallt die Unterscheidung, ob 2 ein Quadrat in F, ist, da beim bergang zum
quadratischen Raum eine gerade Anzahl von Vorfaktoren % auftritt. Es geniigt also dann die Falle
p =1 mod 4 und p = —1 mod 4 zu behandeln.

Anmerkung: Fine Herleitung der Summenformel fir I'([1]) aus der Aufgabenstellung findet sich
etwa in Ireland/Rosen, A Classical Introduction To Modern Number Theory, Proposition (6.4.3).
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Aufgabe 9.
vgl. Abschnitt 15 im Kneser.

Aufgabe 10.
vgl. Beispiel 9.22.

Aufgabe 11.

(ii) Allgemein sei V' = H™, und char(K) beliebig. Wéhle U < V mit maximal isotrop, also
q(U) = {0} und dim(U) = m.

Es sei

D:O(V) = {£1},g — (—1)3m@/ @), (0.3)

Zu zeigen: D ist Gruppenepimorphismus mit Kern SO(V'). Beweis:

(a)

(b)

Nach dem Satz von Witt operiert O(V) transitiv auf J = {U < V | ¢U) =
{0},dim(U) = m}. Haben wir gezeigt, dass D ein Homomorphismus ist, dann ist
D automatisch unabhéangig von U.

Wir definieren einen Graphen I' mit Eckenmenge J, in dem zwei Ecken U und W genau
dann durch Kanten verbunden sind, wenn dim(U/(U N W)) = 1(= dim(W /(U NW))).
Auf I' definieren wir noch d : J x J — Ny, d(U, W) := Abstand von U und W in I

Falls dim(U/(U N W)) = 1, dann existiert ein x € V mit ¢(x) = 1 und W = s,(U),

wobei s, die Spiegelung an x bezeichne:

Sei dazu e € U\UNW. Dann ist e ¢ W = W+ also existiert ein f € W mit b,(e, f) = 1.

be(z,e)
q(x)

Setze x := e + f. Dann ist s;|ynw = id|uaw, sz(€) = e — r=e—x=—f, und
analog s,(f) = —e.

Also wird U = (e, U N W) unter s, abgebildet auf (f,UNW) =W.
Es ist d(U, W) = dim(U/(U N W)): Beweis mit Induktion nach k := dim(U/(U N W)).
Fiir k£ = 1 ist der Abstand d in I" definiert als dim(U/(U N W)).

Fir £ > 1 konstruieren wir ein Wi, das in I' ndher an U liegt, ndmlich so dass
d(Wy, W) = 1und dim(U/(W,NU)) = k—1. Seidazue € U\(UNW). Dae ¢ W = W+,
ist by (e) nicht die Nullabbildung. Deshalb ist et "W = Kern(by (¢)) < W vom Index 1
in W. Der total isotrope Raum W := (et N W) + (e) liegt deshalb in J.

Esist UN (W + (e)) = UNW; und d(W,W;) = 1 nach Wahl von Wi, und aufler-
dem dim(U/(U N Wy)) = dim(U/(U NW)) — 1. Es ist darum d(U, W) < d(U, W) +
AW, W) <mdvorawss. Kk — 1 +1 = k = dim(U/(U N W)). Es ist aber auch, fiir
einen Weg (W, Wy,...,W;,U) von W iiber Wy zu U der Lange d(U,W;) + 1 in I
dim(U/(UNW)) < dim(U/(UNW,))+dim((UNW) /(UNW,NW;_1)) +- - -+ dim((UN
Win---NWa)/(UNW,NW,_in---NW;y)) =d(U, W;)+ 1. Es gilt also d(Wy, W) = k.

Angenommen es gabe einen Kreis ungerader Lange in I', dann giabe es Ecken E, F, W
in ' mit d(E,W)=d(F,W)=kund d(E, F) = 1.

i. Dann ware EN'W = FNW: betrachte dazu den quadratischen Fy-Vektorraum
X = (F+ F)/(ENF). Dieser ist isotrop, da E (und F') nach Definition von T’
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total isotrop sind. Es muss also X = H sein. Die hyperbolische Ebene hat zwei
total singulare Teilraume.

W
E+F=(EnF)*: |
- ~ (WNF)+(WnNE)
El_g\ /£+_F e .
WNE WnNF
ENF ™~ pd
WNFNE

Angenommen, ENW # FNW. Dann kann man e € (W N EN\(WNFNE),
feWnFE)\(WnFNE) wihlen. Es ist dann (e, f) C W, also ¢q({e, f)) = 0.
DaE= (e, ENF), F=(f,ENF)und E+ F = (e, f, EN F) fir gewisse z,y € V
gilt, wéren aber die drei Teilrdume (e + EN F), (f + EN F) und (e, f, EN F) alle
verschieden und total singular. Widerspruch, deshalb ist ENW = FnW.

ii. Also haben wir folgende Situation:

w ENF

’“/1

ENW=FnNW=ENnFNW

Esist by (ENF) < U* ein Teilraum der Dimension dim((ENF)/(WNENF)) = (m—
1)—(m—k) =k—1. Also dim(W/(WN(ENF)*)) = dim(W/(WN(E+F))) = k—1.
Deshalb existiert ein z € (E4+F)NW mit 2 ¢ Eund z ¢ F. Daz € W, ist ¢(z) = 0,
(z+ENF)<(E+F)/(ENF) ist isotrop, aber z ¢ FUF, und deshalb haben wir
mit den bereits oben definierten (e + E N F), (f + ENF) wieder insgesamt drei
total singulére Teilrdume von X = (E + F)/(E N F) gefunden. Widerspruch.

I kann also keine Kreise ungerader Lange haben.

(f) Fiir alle g,h € O(V) ist d(U, g(U)) + d(g(U), (g o h)(U)) = d(U,g(U)) + d(U, h(U)) =
d(U, gh(U)) mod 2:
Das folgt aus (v)., denn d(U, g(U))+d(U, h(U))+d(U, gh(U)) ist die Lange eines Kreises
inI'.
Insbesondere ist D : O(V) — {1} ein Homomorphismus. Weiter folgt aus (iii)., dass
D(s,) = —1, und dass Kern(D) die geraden Produkte von Spiegelungen sind. Wir zeigen
noch dim(U/(U N s,(U))) = 1. Dazusei z ¢ U = U*, dann ist U = (z- N U) D (e).

UNs,(U) 22t NU, und Sm(u—l—ae):u—i-ae—%ng.

Aufgabe 12

Lemma: Fiir die Clifford-Invarianten zweidimensionaler Raume tiber Q, gilt ¢([a,b]) =1 < [a, b]
stellt 1 dar.

Beweis: "<": Falls E = [a,b] den Wert 1 darstellt, existiert ein e € C(F), linear unabhéngig
zu 1, mit € = 1. Also ist (e — 1)(e + 1) = 0 und beide Faktoren sind ungleich Null, d.h. C(E) ist
nicht nullteilerfrei, also keine Divisionsalgebra. Die einzige andere zentral einfache Algebra iiber
Q, ist aber der Matrixring Q2*?, also das triviale Element der Brauergruppe. (Das funktioniert
aber auch allgemein, wie in Aufgabe 10(i) kann man aus der Operation von C(F) auf (1 —e)C(F)
einen expliziten Isomorphismus nach @§X2 konstruieren.)

7=": Falls c([a,b]) = 1, ist C(F) keine Divisionsalgebra, d.h. es gibt ein x € ¢([a,b]) mit
Norm 0. Als quadratischer Raum (wie in Beispiel 9.22(ii)) ist C(E) = [1, —a, —b, ab] (mit Basis
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(1,e1,e9,€1€9)) also isotrop. Man sieht leicht ein, dass fiir einen reguldren quadratischen Raum
(E, q) tiber einem Kérper K genau dann a € ¢(F), wenn E @ |[—a] nicht anisotrop ist. Der Raum
C(E), der durch die Basis (ej,eq,e1es) definiert sei, stellt also —1 dar, und kann deshalb als
[—1] D C(E)" geschrieben werden. Vergleich der Diskriminanten ergibt d(C(E)") = —1, d.h. der
Raum C(FE)", also auch C(FE)’, ist hyperbolisch und deshalb isotrop. Mit demselben Argument wie
oben stellt der Raum [—a, —b] also den Wert —ab dar. Es gibt also ein Tupel (z,y), fir das gilt:
—ax® — by? = —ab. Dann ist aber q(%, %) = 1.

Die reguldren anisotropen Réume iiber Q, mit Clifford-Invariante —1 = [Q,] sind also genau
diejenigen, die 1 nicht darstellen. Wir bestimmen eine Liste der regularen anisotropen quadratis-
chen Raume iiber ,, und entscheiden ob sie jeweils 1 darstellen oder nicht.

Lemma: Sei (F,q) zweidimensionaler quadratischer Raum iiber einen Korper K und nicht
ausgeartet, mit 1 € ¢(F). Dann ist ¢(F) < K*/(K*)? eine Untergruppe.

Beweis: Fiir ein a(K*)? € K*/(K*)? ist (E,q) = [1,a]. Es ist K[z]/(2* — a) ein Korper, falls
das eben gewihlte a ¢ (K*)?. Sein Galoisautomorphismus ist ¢ — —t, also Norm(z + yy/a) =
x? — ay?. Die Norm ist multiplikativ und entspricht also der quadratischen Form auf [1, —a]. Der

hyperbolische Fall (E,q) = [1,—1] ist klar. O

Lemma: Sei (E,q) zweidimensionaler quadratischer Raum {iber einem Korper K und nicht
ausgeartet, mit 1 € ¢(F). Fir A € ¢(F) stellen die quadratischen Formen auf V' und seiner
Reskalierung *V dieselben Werte dar, fiir A & ¢(E) sind die Wertemengen disjunkt.

Beweis: ¢(FE) < K*/(K*)? also x € *q(E) N q(E) = q(*E) = X - q(E) = q(E). O

Fiir die anisotropen zweidimensionalen Formen tiber Qq, die 1 darstellen: E = [a,b] stellt
mindestens zwei verschiedene Quadratklassen dar (fiir ¢ = b némlich a und 2a) und eine weitere
Quadratklasse, die man immer durch Einsetzen von (1,2) erhélt. Man sieht schnell, dass £ nicht
alle Quadratklassen darstellt. Also miissen wegen obigen Lemma genau 4 Werte angenommen
werden, und den vierten bekommt man aus der Gruppeneigenschaft. Die anisotropen zweidimen-
sionalen Formen, die 1 nicht darstellen, bekommt man durch Reskalierung.

Q;/(Q;)? sei im Folgenden vertreten durch {1,3,5,7,2,6, 10, 14} fiir p = 2, und durch {1,¢,p, pe}
fiir p #£ 2.

Ein zweidimensionaler quadratischer Raum ist genau dann hyperbolisch, wenn die Quadratk-
lasse seiner Determinante die Quadratklasse von —1 ist. Unter den Raumen, die 1 darstellen, ist
also genau [1, 7] hyperbolisch fiir p = 2, [1,1] = [1,—1] fiir p = 1 mod 4, und [1,¢] = [1,—1] fir
p =3 mod 4.

Man erhalt insgesamt folgende anisotrope Raume der Dimension 2, und die von ihnen dargestell-
ten Quadratklassen:

Fiir Qo:
¢(E) =1 | Quadratklassen | ¢(F) = —1 | Quadratklassen
[1,1] 2,10,1,5 3, 3] 6,14,3,7
1,3] 1,3,5,7 2, 6] 2.6,10, 14
1, 5] 6,14,1,5 3,7] 2,10,3,7
1,2] 2.6,1,3 5, 10] 10,14, 5,7
1, 6] 6,10,1,7 3,2] 92.14,3.5
1,100 | 10,14,1,3 5,2] 5,7,2,6
1,14  |2.14,1,7 3, 10] 6,10,3,5

Fir Q,, p > 2:
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¢(E) =1 | Quadratklassen | ¢(E) = —1 | Quadratklassen |

[17 _5] 175 [ ) —pg] b, pe
1, p] L,p e, pe] £, pe
1, pe] 1,pe e, p] £,p

Dass es in Dimension 4 nur einen einzigen anisotropen Raum gibt, ist bereits aus der Vorlesung
bekannt. Es bleiben also noch die dreidimensionalen anisotropen Réume zu bestimmen. Fiir
p > 2 sieht man aus der Tabelle fiir den zweidimensionalen Fall und der Bemerkung von oben
(dass a € q(F), genau dann wenn F (D[—a] nicht anisotrop ist), dass die vier nicht isometrischen
Reskalierungen von [p, —pe, —¢] anisotrop sind. Fiir p = 2 sieht man genauso, dass die acht
Reskalierungen von [1, 1, 1] anisotrop sind. Dass diese Rdume jeweils nicht isometrisch sind, sieht
man aus den dargestellten Quadratklassen — so stellt etwa [p, —pe, —¢| jede Quadratklasse bis auf
—det([p, —pe, —¢]) dar. Weil wir die anisotropen Rdume anderer Dimension und die Ordnung der
Witt-Gruppe bereits kennen, wissen wir, dass wir damit bis auf Isometrie alle gefunden haben.

Als Clifford-Invariante der dreidimensionalen anisotropen Raume E iiber @, erhalt man mit
(12.11)(b):

-1, p=2
c(le1,e2,€3)) =< —1, p=1mod4 (0.4)
1, p=3mod4

Aufgabe 14

1). b: VxWxVxW = K, (v,w,v,w) — by(v,v)by(w,w) ist eine K-multilineare Ab-
bildung und induziert deshalb die gewiinschte Abbildung auf (V @ W) x (V @ W). Die
zugehorige Gram-Matrix ist das Kroneckerprodukt der Gram-Matrizen von V und W, @) ist
die zugehorige quadratische Form.

(ii). Die hyperbolische Ebene H ist das neutrale Element der Multiplikation, denn fiir einen

0 a hyperbolisch. Da char(K') # 2 geniigt

eindimensionalen Raum V' = [a] ist V @ H = 0)

es, die eindimensionalen Raume zu betrachten.

Die Distributivitat von ® und () sieht man sofort aus den Eigenschaften des Kroneckerpro-
dukts.

(iii). Seien V = [1",(=1)*], W = [1”',(=1)*] € W(R). Dann erhilt man aus dem Kroneck-
erprodukt der Gram-Matrizen: [V] ® [W] = [[17"F (=1)"'*""]], also sign(V @ W) =
rr’ +ss' —rs' —r's = (r —s)(r' — s') = sign(V)sign(W). Der Rest ist klar.

(iv). dim(VeW) = dim(V) dim(W') (Kroneckerprodukt). Ferner ist die Dimension hyperbolischer
Raume gerade.

(v). Sein := dim(V), 7 := dim(W). Esist d(VaW) = (—1)("7) det(Vaw) = (=1)(%") det(V)™ det (W)
(Kroneckerprodukt!) — bleibt zu zeigen, dass (—1)<m2n) = (—1)"(7;) (—l)m@), also dass
mn(mn—1) = nm(m —1) +mn(n —1) = mn(m+n) — 2mn mod 4. Man sieht schnell, dass
diese Gleichung immer erfiillt ist.

(vi). Fiir einen quadratischen Raum (F,q) iiber K und o € K bezeichne “E den reskalierten
Raum (F, aq). Wie in Satz (12.11) bezeichne weiter m(FE) := [dimQ(E)—‘, r(E):=m(F)—1=
(dim;E)) mod 2, s(E) := (m(E)).

2
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Sei n 4 1 :=dim(V) und n := dim(W).

Einige Vorbemerkungen:

(a)

(b)

Ist v € K*, dann ist nach Satz (12.11): ¢(yW) = (v, —1)(2) (7, det(W))" =1 (=1, )" We(W).

Also ist

(7, d(W))c(W), n = dim(W) € 27

(7, (—1)(72L +T(W))C(W) — (W), sonst (0.5)

Sei V = [ay,...,a,] =: V' Dlan+1], und sei n ungerade. Dann ist (V) = r(V’),s(V) =

s(V"),m(V) =m(V'). Weiter ist ¢(V) = ¢(V') - (d(V"), aps1).

Ist n gerade, dann ist r(V) = (V') + 1, s(V) = s(V') +m(V"), m(V) = m(V') + 1 und
c(V) = (V) (det(V'), —an1)(—1, any1) V) (=1, =1)™V),

Nach (12.10) haben die Quaternionensymbole, nach (12.11) auch beliebige Clifford-

Invarianten von Raumen tiber K Ordnung 2 in der Brauer-Gruppe von K.

Ist 7 = dim(W) gerade und V =V’ Dla,11], dann gilt: dim(V’' @ W) = nn ist gerade.

Mit dem Kroneckerprodukt und (10.8)(a ) erhilt man ¢(VeW) = (V' Qlant1])@W) =
(V’ ® W@ An+1 W) _ C(V’ ® W) (( 1) 5 det(V'®@W)an41 W)

Ist n ungerade und V' wie oben, dann ist dim(V’'® W) = nn ungerade. Wir behaupten,

dass folgender Zusatz zu (10.8) gilt: Haben E; und E, beide ungerade Dimension, dann

ist C(E) = Cy(F1,q1) @ Co(Eq, q2) @ (d/(El)I’(d/(EQ)), wobei die d'(E;) wie in (10.8)(b) die

Halbdiskriminanten der mit 1 reskalierten Bilinearformen b,, sind. Also gilt dann auch

(VW) =cV' @ W)c(®tW)(d(V'®@ W),d(*+W)).

Beweis: Es bettet Co(E) ® Co(E») in C(Ey D Es) = C(E)®RC(E,) ein. Hat E) eine

Orthogonalbasis (eq,...,e,) und E, eine Orthogonalbasis (e, ..., €é5;), und setzt man

zp, =[] e € Z(C(Ey)) und z, := [[ & € Z(C(E,)), dann hat Z := C(E; ) Fy)C0(F1)LCo(E2)

eine K-Basis (1®1, 25, ®1,1® 2p,, 25, ® 2g,), die genau die Relationen von (d(El)I’(d(EQ))
erfiillt.

Nun zum Beweis der eigentlichen Aussage, mit Induktion nach n = dim (V') und n = dim(W):

Induktionsanfang: fiir n = n = 1 sind alle auftretenden Clifford-Invarianten trivial, die
Aussage ist klar.

Induktionsvoraussetzung: Sei die Aussage fiir festes n, n € N bereits bewiesen.

Induktionsschritt: Es ist lediglich der Schritt n — n 4+ 1 zu zeigen, da man die Rollen von
V und W vertauschen kann.

Sei zunéchst n = dim (W) gerade und n = dim(V') € N beliebig.

Mit der Induktionsvoraussetzung und der dritten und vierten Vorbemerkung gilt

(V@ W) = c(V)Te(W)(d(V), d(W)) (T v oWy
= (W) (V). d())e(0F gy
= (W) (V). d()((~1)F det (W), 0. d(W))
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CHAPTER 7. LOSUNGEN ZU DEN UBUNGSAUFGABEN.

(Die letzte Gleichheit gilt nach der ersten Vorbemerkung.)
Zu zeigen ist ¢(V @ W) = (W)™ (d(V),d(W)) (wieder wegen dritter Vorbemerkung).
Falls n ungerade, ist d(V') = —a,11d(V’), und da fiir gerades n gilt @) = 2 mod 2, ist:
(A(V"),d(W)((=1)% det(W)"ap.1, d(W))
= ((—1)@ det(W)(=1)d(V),d(W)) = (=d(W),d(W))(d(V),d(W)) = (d(V),d(W)),
was zu zeigen war.
Falls n gerade, ist d(V') = a,41d(V") und ebenfalls (d(V"), d(W))((—l)nTﬁ det(W)"a,41,d(W))
(=d(V)d(W), d(W)) = (d(V'), d(W).

e Sei nun 1 ungerade, und schreibe wieder V' = V' D[a,41].

Wir diirfen annehmen, dass auch n + 1 ungerade ist, da man sonst die Rollen von V
und W in der Gleichung vertauschen kann und im ersten Fall ist.

Analog zu oben folgt aus der Induktionsvoraussetzung und den Vorbemerkungen:

«(VeWw) =c(V'@W)e(W)(d(V'@ W),d(*+W))
= (V' @W)e(W)(d(V' @ W), d(W)an1)
= c(V)"e(W)"(d(V"), (W)™ e(W)(d(V' @ W), d(W)an1)
= c(V)(d(V"), dW))e(W)(d(V" @ W), d(W )an1)
= (V) (d(V"), dW))e(W)(d(V"), dW)ani1) = (V' )e(W)(d(V'), an1)

7 zeigen ist ¢(V @ W) = ¢(V)oe(W)™1(d(V), d(W)) D=L = ¢(V)e(W).

Es bleibt also zu zeigen, dass ¢(V) = c(V)(d(V"),an+1). Dies folgt mit der zweiten
Vorbemerkung.



Index

adele ring, 81

all ones vector, 15
anisotropic, 8, 85
anisotropic kernel, 21
Arf invariant, 60
automorphism group, 81

bilinear A-module, 4
bilinear group, 28
Brauer group, 60

canonical involution, 52
centraliser of B in C', 53
character, 83

Clifford algebra, 47
Clifford invariant, 61
code, 15

complete, 38
completion, 38

decomposition number, 89
determinant, 6

discrete valuation, 37
discrete valuation ring, 37
discriminant, 28
discriminant algebra, 60
doubly-even, 15

dual basis of E, 6

dual lattice, 16

dual module, 4

dual torsion-module, 84

equivalent, 81, 83
equivariant, 85
even, 25

field of p-adic numbers, 39

genus, 71
graded tensor product, 49
Gram matrix, 5

Grothendieck-Witt-group, 85

hyperbolic module, 11
hyperbolic plane, 9

involution, 84
isometric, 4, 8, 85
isometric embedding, 4
isometry, 4, 8
isotropic, 85

lattice, 16

lattice basis, 16
local, 64

local property, 64

maximal, 32
maximal lattice, 32
metabolic, 85

neighbors, 80
non degenerate, 8
non-degenerate, 5
normalized, 37

order, 84

orthogonal, 4

orthogonal B-module, 85
orthogonal group, 18

orthogonal submodule, 4
orthogonal sum, 4, 8
orthogonally indecomposable, 25

positive definite, 25
primitive, 11, 16

quadratic A-algebra, 59
quadratic A-module, 8
quadratic form, 8, 28
quadratic group, 28
quaternion algebra, 52
quaternion symbol, 62

reflection, 18
reflection subgroup, 18
regular, 5, 8, 28, 85

117



118 INDEX

representation, 83
ring of p-adic integers, 39

self-dual, 15

self-orthogonal, 15
semi-regular, 10

separable, 59

sharply primitive, 11
singular, 8

special, 59

special orthogonal group, 57
Spinor genus, 78

Spinor norm, 58

symmetric bilinear form, 4, 28

torsion-module, 84

ultra-metric, 38
unimodular, 25
universal, 13

weakly metabolic, 29

weight, 15

Witt group, 27, 29

Witt index, 20
Witt-decomposition matrix, 89
Witt-equivalent, 27, 85



	Basic notions and examples.
	Symmetric bilinear forms
	Free modules, Gram matrices and determinants.
	Free bilinear modules, some examples.
	Bilinear modules over fields.

	Quadratic forms.
	Free quadratic modules and Gram matrices.
	Hyperbolic modules.
	Quadratic forms over finite fields.
	An exercise: doubly-even self-dual codes.

	Quadratic forms over principal ideal domains.
	Orthogonal groups and Witt's theorem.
	The orthogonal group.
	Witt's theorem for fields of characteristic =2.
	Witt's theorem for arbitrary fields.
	Orthogonal groups over finite fields.
	Witt's theorem for local rings*.
	Witt's theorem for Z-lattices.

	The Witt group.
	The Witt group of finite abelian groups.
	Maximal lattices.
	Milgram-Braun formula
	The Witt group of Q.


	Quadratic forms over discrete valuation rings.
	Discrete valuation rings.
	Completion
	The p-adic numbers.
	Hensel's Lemma
	Example: The square classes in Qp*.

	Lattices over discrete valuation rings.
	The Jordan decomposition.
	Lifting isometries

	Quadratic forms over complete discrete valuated fields.
	The Witt group of Qp.


	Clifford algebras.
	Construction of the Clifford algebra.
	Some examples of Clifford algebras

	The center of the Clifford algebra.
	The Spin group and the Spinor Norm
	Invariants of elements of the Witt group
	The discriminant algebra and the Arf invariant
	The Clifford invariant
	The Witt group of Qp .
	Some explicit computations



	Local-Global Principles.
	The Theorem of Hasse and Minkowski.
	The Witt group of Q revisited.
	The quadratic reciprocity law.
	The Theorem by Hasse and Minkowski

	Integral quadratic forms.
	Hermite's inequality
	Genera of lattices.
	Unimodular lattices
	Weak approximation
	Strong approximation
	Spinor genera
	Kneser neighboring method
	The Mass formula.
	 The mass of self-dual binary codes and self-dual doubly-even binary codes



	Orthogonal representations of finite groups.
	Representations of finite groups.
	Equivariant Witt groups.
	The sequence  GW() GW(A) GWt().
	The Witt decomposition matrix.

	Clifford algebras as G-algebras.
	Examples.

	Orthogonal Frobenius reciprocity.
	Orthogonal Frobenius reciprocity.

	The Specht modules S(n-k,k).

	Ausgewählte Übungsaufgaben.
	Lösungen zu den Übungsaufgaben.

