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All rings are associative and have a unit.

1 The ring of integers

1.1 The integral closure

Definition 1.1. An algebraic number field K is a finite extension of Q.
Example. K = Q[v5] = Q[z]/(x? — 5).

Remark 1.2. Let L/K be a finite extension of fields and let a € L. Then ¢, : K[z] —

L,p(x) — p(a) defines a K-algebra homomorphism with image K [a] (the minimal K -subalgebra
of L that contains a). Since K|x| is a principal ideal domain, the kernel of €, is generated

by a monic polynomial Kern(e,) = (ua(x)). The image of €, is an integral domain, so

pa(x) € Klz| irreducible. This uniquely determined monic irreducible polynomial g is called

the minimal polynomial of a over K.

Example. a = %5 € Q[vV5] = ptq = 2% — 2 — 1 is the minimal polynomial of a over Q.

Definition 1.3. If B is a ring and A a subring of the center Z(B) := {b € B | bx =
xb for all x € B}, then B is called an A-algebra.
If B is an A-algebra then b € B is called integral over A, if there isn € N and ay,...,a, € A
such that

(%) b4+ a b 4.+ au_1b+a, =0.

B is called integral over A, if any element of B is integral over A.
Theorem 1.4. Let B be an A-algebra and b € B. The following are equivalent
(a) b is integral over A.

(b) The smallest A-subalgebra a A[b] of B, that contains b is a finitely generated A-module.

(c) b is contained in some A-subalgebra of B, that is a finitely generated A-module.

)
(¢c) = (a): Let R = (by,...,by)a < B be some A-subalgebra of B that contains b. Assume
wlog that 1 € R. Then there are (not necessarily unique) a;; € A such that

bbi =Y ayb; for all 1 <i,j < n.

Jj=1

Let f = det(zl, — (ai;)) € Alz] be the characteristic polynomial of (a;;) € A™*™. Then
f € A[X] is monic and f((a;;)) = 0 € A™*". Therefore f(b)b; = 0 for all 1 < i < n, so
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f(b)1 = f(b) =0, and hence b is integral over A. O

Example.
(a) a:= %5 € Q[v/5] is integral over Z.
(b) 1 € Q is not integral over Z.

Theorem 1.5. Let B be a commutative A-algebra and
Inta(B) := {b € B | b integral over A}.
Then Int4(B) is a subring of B called the integral closure of A in B.

Proof. We need to show that Int4(B) is a ring, so closed under multiplication and addition.
Let by, by € Int4(B) and

Alb] = (c1,. -y en)a, Albe) = (dy,...,dpn)a.
Since ¢;d; = d;c; for all 4,5 and 1 € A[by] N Albs] we get
A[bl,bg] C <Cidj ’ 1 S 1 S n,l S] S m)A.

This is a subring of B that is a finitely generated A-module and contains by +bg, by —bo, b1by. [

Theorem 1.6. Let C' be a commutative ring, A < B < C. If C is integral over B and B is
integral over A, then C' is integral over A.

Proof. Let ¢ € C. Since C' is integral over B there are n € N and by,...,b, € B such that
A 4+bi "+ 4 b, ¢+ b, =0.

Put R := A[by,...,by]. Since B is integral over A this ring R is a finitely generated A-module.
Moreover ¢ € Rc|] and R|c| is a finitely generated R-module. So also R]c] is a finitely gener-
ated A-module. and hence c is integral over A. O

Definition 1.7. Let A be an integral domain with field of fraction K := Quot(A).
Inta(K) :={z € K | x is integral over A}

is called the integral closure of A in K.
If A=1Inty(K), then A is called integrally closed.

Example. Z is integrally closed.
Z[\/2] is integrally closed.
Z[/5] is not integrally closed.

Theorem 1.8. Let L O K be a finite field extension and A C K integrally closed with
K = Quot(A). The for any b € L:
b is integral over A, if and only if jwx € Alx].
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Proof. <= clear.
=: Let b € L be integral over A. Then there are n € N and a4, ..., a, € A such that

P4 a1+ . +a,1b+a, =0.

Put p(z) = 2" +a12" ' 4 ... + an_1x + a, € Alz] and L := Zer fx(p) be the spitting field of
p, Then all zeros b € L of p are integral over A. The minimal polynomial j 5 of b over K
divides p, so also the zeros of ju, x are integral over A. The coefficients of 1,  are polynomials
in the zeros, so also integral over A. Since these lie in K, they indeed lie in Int4(K) = A. So
Mp Kk € A[l’] ]

Corollary 1.9. Let K be an algebraic number field. Then the ring of integers
ZK = IntK(Z) = {(1, e K ’ Ha,Q € Z[QL’]}
Any Z-basis of Zy is called an integral basis of K.

Example. For K = Q[v/2] we obtain Z = Z[v/2] and (1,1/2) is a Z-basis of K.
If K =Q[V5], then Zy = Z[(1 ++/5)/2] and (1, (14 +/5)/2) is a Z-basis of K.
In the exercise you prove the more general statement: Let 1 # d € Z be square free and

K = Q[V/d], then o := %& is integral over Z if and only if d =4 1. In this case (1, «) is an

integral basis of K, in all other cases (1, \/c_i) is an integral basis.

1.2 Norm, Trace and Discriminant.

Remark 1.10. Let L/ K be a extension of fields of finite degree [L : K| := dimg (L) = n < oo.
(a) Any a € L induces a K -linear map
mult, € Endg(L); x — ax.

In particular this endomorphism has a trace, determinant, characteristic polynomial
Xa.K = Xmuit, and minimal polynomial [ i = Mmuit,, -

(b) The map mult: L — Endg (L) is an injective homomorphism of K -algebras.

(¢c) The map Sp/k : L — K, o — trace (mult)) is a K-linear map, called the trace of L
over K.

(d) The map Np )i : L — K, a — det(mult,) is multiplicative, i.e. Np k(o) = Npjx(o)Nr/k(5)
for all o, B € L. In particular it defines a group homomorphism Np;x : L* — K* be-
tween the multiplicative groups L* and K* = (K \ {0},-) of the fields.

(e) Let o« € L. Then o x € K[X] is an irreducible polynomial of degree d := [K(«a) :

K] :=dimg(K(«)) dividing n and Xox = NZ,/;‘

(f) If Xaog = X" —a X" '+ ...+ (=1)" a1 X + (—1)"a, € K[X], then Np/k(a) = a,
and Sp (o) = ay.
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Proof. Exercise. U

Theorem 1.11. Assume that L/ K is a finite separable extension and letoy,...,o00: L — K
be the distinct K -algebra homomorphisms of L into the algebraic closure K of K (son = [L :
K]). Then for all « € L

(@) Xax = [[i) (X — 0i()).

(b) /;(OTK = szl(X — ;) where {o1(a),...,on(a)} = {a1,...,aq} has order d = [K(«) :

(¢) Spyx(a) =370, o).

(d) Nijk(a) =T, oi(a).

Proof. (¢) and (d) follow from (a) using Remark 1.10 (f) above.
Tosee (b) let d := [K(«) : K]. Since L/ K is separable, also the subfield K («) is separable over
K, 80 flox = Hle(X —qy) for d distinct a; € K. The d distinct K-algebra homomorphisms
©1,- .., pq from K(a) into K correspond to the d possible images ¢;(a) = a; € K of a.
In particular this proves (a) and (b) if L = K(«).
For the more general statement we use the following:
Fact.! Any K-algebra homomorphism 7 : E — K of some algebraic extension E of K into
the algebraic closure K extends to an automorphism 7 € Autg(K).
Let ¢; be such an extension of p; for all j = 1,...,d and let {7y,...,7,/a} = Homp() (L, K).
Then

{o1,...,on} ={pjom |1<j5<d 1<i<n/d}
In particular each ¢; can be extended in exactly n/d ways to a K-homomorphism @; o 7; :
L—K,1<i<n/d.
This implies that . x = ,uZ/ & and also (a) and (b) follow. O

Corollary 1.12. Let K C L C M be a tower of separable field extensions of finite degree.
Then

SM/K = SL/K © SM/L and NM/K = NL/K © NM/L

Proof. Let m := [M : K], £ := [L : K] and n := [M : L]. Then m = {n. Define an equivalence
relation on {o71,...,0,} = Homg (M, K) by

oj~0; < (05)L = (0i)1

As we have seen in the last proof each equivalence class A; contains exactly n elements.
Therefore for any o € M

m l
Sy () = Zai(a) = Z > o(a).

1(1.33) of the script of the Algebra lecture
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Wlog we assume that A; = [0;]. Then
D 0(0) = Soyno1)(03(0)) = 75(Saaya (@),

O'GAJ'

Therefore Sy i (a) = Z§:1 0;(Smyr(a)) = (Sp/k © Smyp)(a). Similarly for the norm. O

Definition 1.13. Let L/K be a separable extension and let B := (aq,...,a,) be a K-basis
of L.
(a) The Trace-Bilinear-Form S : L x L — K, S(o, ) := Sp/x(af) is a symmetric
K -bilinear form.
(b) The discriminant of B is the determinant of the Gram matriz of B, d(B) := det(S(o, ;)i ;).
Remark 1.14. If {oy,...,0,} = Homg (L, K) then d(B) = det((0i(;))i ;)%

Proof. Sy x(cviaj) =Y p_y on(i)ow(a;) = [(or()ir)” (0k(0s)ix)]ij so (S (cuaj)) = ATA

Example. If K = Q and L = Q[v/d] then B := (1,V/d) is a K-basis of L and d(B) =
1 v\’

1 —Vd

Theorem 1.15. Let L/K be a separable extension an let B := (aq,...,a,) be a K-basis of
L. Then the trace bilinear form is a non-degenerate symmetric K-bilinear form. In particular
d(B) # 0.

Proof. Choose a primitive element « € L, so L = K(«) and By := (1, q, ..., « is another
K-basis of L. By the transformation rule for Gram matrices, d(B) = d(Bj)a? where a € K*

is the determinant of the base change matrix between B and B;. So it is enough to show
that d(B;) # 0. By the remark above d(B;) = d(A)? where

2~(2d):det(

nfl)

1 o1(a) o1(a)?

. 1 oy(a) oy3(a)? ... oy«
A= (o)) n1im1,m = Do " . ( | cel (
1 ou(a) on(a)* ... op(a)™ !

and {oy,...,0,} = Homg(L,K). By Vandermonde det(A) = [[ic;(0j(a) = oi(a)), so

d(Bi1) = ([I;;(05(a) —0i()))? # 0, since the different embeddings of L into K have different
values on the primitive element a. O

Definition 1.16. Let K be an algebraic number field and B := (aq,...,ay) be an integral
basis of K (i.e. a Z-basis of the ring of integers Zy ). Then the discriminant of K is
More general let A= (51,...,Bn)z be a free Z-module of full rank in K. Then

dA = d((ﬂla R 7571))

is called the discriminant of A.
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Remark 1.17. di and d4 are well defined, which means that they do not dependent on the
choice of the integral basis B.

If A C A C K are two finitely generated Z-modules of full rank in K, then by the main
theorem on finitely generated Z-modules (elementary divisor theorem) the index

a:=[A: A]:=|A/A| < o
and dy = ad 4.

Example. K = Q[V/d], 0,1 # d € Z square-free. Integral basis, Gram matrix, discrimi-
nant.

1.2.1 An algorithm to determine an integral basis of a number field.

Definition 1.18. Let V = R" be an n-dimensional real vector space and ® : V xV — R a
non-degenerate symmetric bilinear form.

(a) A lattice in V is the set of all integral linear combinations of an R-basis of V.
L= (B)z={> aib;|a; €Z}
i=1

for some basis B = (by,...,b,) of V. Any such Z-basis B of L is called a basis of L and
the determinant of the Gram matriz of B with respect to ® s called the determinant
of L.

(b) For a lattice L := (B)y the set L¥ :={x € V | ®(x, L) C Z} is called the dual lattice
of L (wrt ®).

(c) L is called integral (wrt ®), if L C L*.

Remark. L7 is a lattice in V, the dual basis B* of any lattice basis B of L is a lattice basis
of L#. The base change matrix between B and B* is the Gram matrix Mp(®) = (®(b;, b;))
of B. In particular det(Mp(®)) = [L# : L] = |L#/L| for any integral lattice L.

Theorem 1.19. Let K be an algebraic number field, O C Zy a full Z-lattice in K. Then
(O, Sk/q) is an integral lattice and

O

which yields an algorithm to compute Zk .

Corollary. The ring of integers Zx in an algebraic number field is finitely generated, so
any algebraic number field has an integral basis.
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1.3 Dedekind domains.
Example. Let K = Q[v/—5]. Then Zg = Z[y/—5] and
21=3-7=(142V-5)- (1 —2V/-5)

has no unique factorization.

Note that the factors above are irreducible but not prime.

Reason: The ideals 3Zy = @sp%, T2k = 9194, (1+2v/—=5)Zk = p3p7, and (1 —2y/=5)Zy =
@45 are not prime ideals, where

o3 = (3,1 +2V=5), ph = (3,1 —2vV=5), pr = (7,1+2V=5), ¢, = (7,1 — 2y/=5)

and so 21Zy = psp5079~ is a unique product of prime ideals.
A ring with a unique prime ideal factorisation is called a Dedekind ring:

Definition 1.20. A Noetherian, integrally closed, integral domain in which all non-zero
prime ideals are maximal ideals is called a Dedekind domain.

Example. Z[z] is not a Dedekind domain, because () is a prime ideal (the quotient is
isomorphic to Z) but not maximal, since Z is not a field.

Theorem 1.21. Let K be a number field. Then Zy is a Dedekind domain.

Proof. Clearly Zy is integrally closed and an integral domain.

We first show that Z g is Noetherian, i.e. any ideal of Z g is finitely generated. Let 0 # A<Zg
be an ideal and choose 0 # a € A. If B := (by,...,b,) is an integral basis of K, then
aB = (aby,...,ab,) € A" is also a Q-basis of K. The lattice (aB)z C A C (B)z = Zg
has finite index in Zjg. Therefore also A has finite index in Zy and, by the main theorem
on finitely generated Z-modules, A is finitely generated as a Z-module and hence also as a
Z -module.

The above consideration also applies to non-zero prime ideals 0 # p <Z of Zg, in particular
any such prime ideal has finite index in Zg. Therefore Zg /p is a finite integral domain, so
a field, which means that @ is a maximal ideal. O

Lemma 1.22. Any finite integral domain R is a field.

Proof. Let 0 # a € R, then mult, : R — R is injective (the kernel is 0, since R is an integral
domain) and hence surjective (since R is finite). In particular there is some x € R such that
mult, (z) = 1. O

Definition 1.23. Let R be a commutative ring and A, B < R. Then

A+B:={a+blacAbeB}YIR, AB:={) abi|necN,a €Ab cByIR
i=1
If A C B we say that B divides A. The greatest common divisor
geT(A, B) := (A, B) = A+ B

is the ideal generated by A and B.
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From now on let R be a Dedekind domain and K = Quot(R).

Main theorem 1.24. Any ideal 0 # [ <R in R has a unique factorization into prime ideals,
I =p1...90s 5 €Ny, p; <R prime ideals .
For the proof we need two lemmata:

Lemma 1.25. If 0 # I < R then there are non-zero prime ideals @1, ..., 0s I R such that
1. s g I.

Proof. Let M = { I<R| 1'7& 0, and fqr all .prime ideals g1, ..., ps the product L We
- ©1 ... Qs 1s not contained in

need to show that M = (). Assume that M # (). Since any ascending chain of ideals
in R is finite, the set M contains some maximal element A € M. Then A is not a prime
ideal, hence there are by, by € R such that

biby € ./4, b1 € ./4, by Q A.

Let A; := (b;) +.A. Then A; 2 A but A; Ay C A. Since A is maximal in M, both A4; contain
a product of prime ideals, hence also A4;.45 and therefore A, a contradiction. O

Lemma 1.26. Let 0 # o < R be a prime ideal and put
o l:={rcK|zpCR}
Then for any non zero ideal 0 # A < R the ideal Ap~" properly contains A.

Proof. We first show that p~! # R: Choose some 0 # a € p and let s € N be minimal with the
property that there are non-zero prime ideals gy, ..., ps in R such that p;...ps C (a) C p.
(These exist since R is Noetherian.)

Claim. There is some i such that g; C .

Otherwise there are a; € @; \ p for all i = 1,...,s, but a;...as € ©1...ps C p which
contradicts the fact that p is a prime ideal.

Assume wlog that p; C p. Since R is a Dedekind domain, the non-zero prime ideal @; is
maximal. Therefore p = ;.

By the minimality of s we have that @s...ps Z (a) so there is some b € s ... o, such that
a~'b € R. On the other hand

atbp=atbp, Catpr... 0 Ca(a)=R

soatbe p '\ R

Now choose some nonzero ideal A < R and assume that Ap~' = A. Let A= (ay,...,a,)r
(observe that A is finitely generated, since R is Noetherian). Then for any z € p~! and
any i we have za; = ) 7 | w505 for some matrix (z;;) = X € R"". Therefore the vector
(aq,...,0,)" is in the kernel of (xI, — X) € K™, so the determinant of this matrix is 0.
But then x is a zero of some monic polynomial with coefficients in R, so z € Intg(R) = R,
since R is integrally closed. This holds for any z € ! contradicting the fact that o= ¢ R. O
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Corollary 1.27. For any non-zero prime ideal 0 # o < R the product pp~' = R.

Proof. p C pp~!' C R. Since R is a Dedekind domain, g is a maximal ideal, so pp~! = R. (I

Proof of the main Theorem 1.24
Existence. Let M := {A<QR |0 # A# R, A+# 1 ...p, for all prime ideals p;,...,ps and all s €
N}. We need to show that M = (). If M # (), then M contains some maximal element, say
A. Since maximal ideals are prime ideals, the ideal A is not a maximal ideal. There is some
maximal ideal p < R that contains A, so A C o C R and hence A C Ap™' C pp~ ! = R.
Now A # o was maximal in M, so there are prime-ideals g, ..., ps such that

Apfl:pl...ps:}l:pl...psp

a contradiction.

Uniqueness. (this is analogues to the proof of uniqueness of prime factorization in Z) We
have seen in the proof of Lemma 1.26 that if a prime ideal @ divides the product of two
ideals, then it divides one of the factors

LI, Cp=1 Cporl,Cp.

So assume that

A:pl...pS:Ql...Qt

then @ divides Q; ... Q; so it divides one of the factors, say Q;. Since Q; is maximal, this
implies Q1 = 1, so
@_1«4:@2...@5: QQ...Qt

Definition 1.28. A fractional ideal of R is a finitely generated R-submodule # 0 of K.

Remark 1.29. Let J be a fractional ideal of R. Then there is ¢ € K, A< R, such that
cA=J.

Proof. Let J = (aq,...,au)r, a; = % € K wit 8,7 € R. Let v := v ...7,. Then

A:=~yJ<Rand J =~y 'A. ’ 0
Theorem 1.30. The set of fractional ideal of R is an abelian group, the ideal group of R.

Proof. The group law is of course ideal multiplication, this is associative, commutative, the
unit is (1) = R and the inverse is A™' = {x € K | zI C R}. O

Corollary 1.31. Any fractional ideal A of R has a unique factorization
A=l o
with non-zero prime ideals @1, ..., ps and n; € Z.

Definition 1.32. The ideal group of R is denoted by Jr. It contains the subgroup {(c) |
c € K*} = Pg of principal fractional ideals. The quotient Clx := Jg/Pg is called the
class group of K.
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There is an exact sequence
1R B K3 I 80l —1

where ¢ is just the inclusion, ps(c) = (¢), and ¢3 is the natural epimorphism. This means
that ¢ is injective, im(p1) = ker(ps), im(ps) = Pr = ker(ys), and 3 is surjective.
If R = Zk is the ring of integers in an algebraic number field K, then

e 7 is a finitely generated abelian group

e Clk is a finite group, hx := |Clg| is called the class number of K

2 Geometry of numbers.

Definition 2.1. Let (R",(,)) be a Fuclidean space. Any Z-module generated by a basis
of R™ is called a full lattice in (R™,(,)). Let T' := (by,...,b,)z be a full lattice. Then
B = (by,...,by,) is called a basis of I" and

EB):={> Xb|0< ) <1}
=1

the fundamental parallelotope of B. The determinant of I' is det(I") := det((b;,0;))
and the covolume of I is

covol(I") := vol(R"/T") := vol(E(B)) = y/det(I).
Example. Z?: Different bases yield different F(B) but these have the same covolume.

Remark 2.2. E(B) is a fundamental domain for the action of I' on R™ by translation.
this means that

R"=| )7+ E(B)
and this union is almost disjoint, I'-translates of E(B) are either equal or intersect only in
the boundary.

Definition 2.3. Let ) # X C R™.
(a) X is called centrally symmetric, if for any x € X also its negative —z € X.
(b) X is called convex, if for any two z,y € X and any t € [0,1] also v +t(y —z) € X.

Clear: ) # X convex and centrally symmetric, then 0 € X.

Theorem 2.4. (Minkowski) Let I' C (R™,(,)) be a full lattice in Euclidean space and let
X CR” be conver and centrally symmetric. If vol(X) > 2" vol(R"/T") then I' N X # {0}.

Proof. We show that there are v; # v, € I' such that

(X +m) N (X +2) £
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Then there are x1, x5 € X such that %xl + 7 = %1‘2 + 75 and hence

1
§($1—$2):72—71€FﬂX

is a nonzero vector. Note that %(:cl — xg) is the midpoint of the line between z; and —z5 and
therefore in X.
So assume that the I" -translates of the set 1X = {1z | z € X} are disjoint,

1 1
(§X+’Yl)ﬂ(§X+’72):®f0r au’yl?’é’}/QGF

But then also the intersection with the fundamental parallelotope

(%X +7))N(EB)N (%X + 7)) =0 for all v # v, € T so

I(RY/T) = vol(E(B)) > 5 o vol(E(B) 1 (1 +7) =
Zvervol((E( ) —7) ﬂ% ) = Vol( X) = 2lnvol(X)

which contradicts the assumption. U

(E(B)N

Example. The bound is tight: Take I' = Z? and
X ::{( il > € R? | |r1] < 1 and |zo] < 1}.
2

Then vol(X) = vol(X) = 2%, covol(I') = 1 and X NT = {0}.
We now apply this to number fields K. For this aim we need to embed K into some
euclidean space.

Remark 2.5. Let K be an algebraic number field of degree [K : Q] =: n. Let
o1,...,0n: K —>QcCC

be the n distinct embeddings of K into the algebraic closure Q of Q which we embed into the
field of complex numbers. This yields an embedding

The Galois group of C over R Gal(C/R) = (7) = Cy acts on K¢ via
(Toys s Ton) = Wors -+ s Yo, ) With Yo, = T

Hered;: K — C,5,(z) == 0;(z). We call 0 : K — C real, if o =7 and complex if 0 # 7.
Let
Kg = FiX(j(K@) = {(l’a) € K¢ | Ty = QJ_U}

Then j(K) C Kg.
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Example. K = Q[X]/(X?—2) = Q[v/2]. Let o € K with a® = 2. Then « is a primitive
element of K and the embeddings of K into C are given by
01104'—>\3/§(€R), oy (3V/2, 03:0_2104&—>C§\3/§.

Then o, is real, 0o and o3 are complex and the action of the complex conjugation on K¢ is

(x,y,2) = (7,7,7).
Therefore we obtain Kg = {(a,b+ic,b —ic) | a,b,c € R}.
Remark 2.6. The mappings

N : K¢ — C, N(xla--‘va>:H?:1xi
S:Ke—C, S(xy,...,m,)=>"

extend norm and trace, in the sense that for any o € K

n n

Nijg(a) = [ oi(@) = N(j(e), Ssela Zm (@))-

=1

Remark 2.7. Let p1,...,p. : K — R C C be the real places of K and 01,07,...,04,05 :
K — C the complex places of K, son =[K : Q] =1+ 2s. Then

m: Kg — R, (Tpys e s Ty Ty Ty -+ s Ty Ts) > (Tprs vy Ty R(20,), B2y )5 -+, R(20, ), S(26,))

is a R-linear isomorphism that maps the restriction of the standard inner product (x,y) :=
S xy; on K¢ to the canonical metric (Minkowski metric)

r+2s

leyl +2 Z TjYj-

Proof. Wlog r =0,s =1, so Kg = {(z,%) | z € C}. Then
((z,7), (y,9)) = 27 + Ty = 2(R(z)R(y) + (2)3(y))-

4

In the following we will treat all lattices in Kg as lattices in (R"*2¢ (,)) with respect to
the positive definite Minkowski metric.

Theorem 2.8. If 0 # A QZk is an ideal in Zg then I' := j(A) is a full lattice in Ky with

covolume
covol(T') = \/|dk||Zk | Al
In particular det(j(Zk)) = |dk| is the absolute value of the discriminant of K.
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Proof. Let B = (ay,...,a;,) be an integral basis of A. and let A := (0;(y))}';=; € C™".
Then the Gram matrix of B with respect to the trace bilinear form S is

Mpg(S) = A" A.
So dy = det(Mp(S)) = det(A)? = [Zy : A?dk. On the other hand

n

((G0a), G ies = (O oul@i)Talan) ey = A7 A

(=1

and therefore vol(Kz/T') = \/det(A" A) = | det(A)| = /|dx|[Zx : Al. O

Definition 2.9. For any nonzero integral ideal 0 # A < Zjy we define the norm of A to be
N(A) = [Zk : A].

Clearly for a € Zg this is the usual norm Ng/q(a) = N((a)).
Remark 2.10. For any two nonzero integral ideals A, B we have
N(AB) = N(A)N(B)
so N defines a group homomorphism
N Jg = Rog, N(pY" -+ 90°) == N(p1)™ -+ N(ps)™.

Proof. Since A, B have a factorisation into prime ideals it is enough to show the multiplica-
tivity in the following two cases

(a) ged(A,B) = 1: But then AB = AN B and by Chinese Remainder Theorem Zy /AB =
Zi | A X Zg /B has order

N(AB) = |Zx | AB| = |Zx | Al|Zx /B] = N(A)N(B).

(b) powers of prime ideals N(p™) = N(p)". For any prime ideal 0 # o < Zg, the ideals of
Zy /" are precisely o'/p™ with 0 < i < n. This yields a composition series

Zk 2929 2D...2p" ' Dp"

where all composition factors @'/p'™ are isomorphic to Zg/p. More precisely for any
p € g\ p* multiplication by p yields an isomorphism between Zy/p and p/p? etc. So

Zi /| = lp/e*| = ... =" /9" = N(p) and |Zk /p"| = [Ii; [0 /9| = N(p)™ O

3 Finiteness of the ideal class group.

Remark 3.1. For any n € N there are only finitely many integral Zx-ideals I < Zy with
norm N(I) < n. Here a fractional Zg-ideal is called integral, if it is contained in Zk, hence
if it is an ideal in the usual sense.
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Proof. Let I < Zg be an ideal with norm N(I) = |Zg/I| = n. Then nZyx C I C Zk and
I /nZy is one of the finitely many subgroups of the finite abelian group Zg /nZy = Z/nZ%Y,
O

General assumption:
K is a number field of degree [K : Q] = r + 2s = n,

01,0050, K >RCC,0041,...0/16,001501 = Opils---,0pios =0p15: K —C

the real resp. complex embeddings of K into C. These are also called the places of K.

Theorem 3.2. Let 0 # A < Zy be an ideal. For anyi € {1,...,r+ s} let ¢; = ¢,, € Rog
such that ¢,1; = Cryspi for all 1 <i <s (c,, = c5) and

r+2s 9 s

[Je> (-) dx|N(A).

i=1 T
Then there is some 0 # a € A such that |o;(a)| < ¢,, for all 1 < i < n. In particular any
integral ideal contains an element 0 # a € A, such that [Nk g(a)| < (2)° /|dx|N(A).

Proof. Let X = {(x1,...,2,) € Kg | |2;] < ¢; forall 1 < ¢ < n}. Then X and its image
m(X) is convex and centrally symmetric, where m : Kg — R""25,

(-Tla sy Tpy L1y - - 7$T+87£UT‘+5+17 s axr+2s) — (.2?1, s Ly %(337»4_1), %<xr+1)> BRI g%(xr-&-s)a %(xr—i-s))

=Lr41yeeey Lr+s

and R is endowed with the positive definite bilinear form (z,y) := >__, z;y;+2 235:1 Ty iYri
With respect to this metric, the volume of m(X) is

vol(m(X)) = vol{ (1, ..., 2y) € R | |ay| < ¢jal g, +al,,, < i forall1<i<r1<j<s}=

(Il 2e) T2, 2mc?, = 2tsms [T o > 2705 (2)° /]dk| N (A) = 2742 vol(R"/T") where

j=1
I' = j(A). By Minkowski’s lattice point theorem there is some non-zero element in m(X) N

m(j(A)) =m(X Nj(A)). -

Theorem 3.3. Recall that the class group of K is Cli := Ji / Pk is the group of equivalence
classes of fractional Zg-ideals in K, where two ideals A and B are called equivalent, if they
differ by a principal ideal, so if there is 0 # x € K such that (z)A = B.

(a) Any ideal class [A] € Clg contains an integral ideal Ay € [A], A1 < Zg such that
2 S
N(.Al) S MK = (;) \ ‘dK’

(b) The class number of K, hy := | Clg | is finite.
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Proof. (a) implies (b) since there are only finitely many integral ideals of norm < M.

To see (a), let A <Zj an integral representative of the ideal class. By Theorem 3.2 there is
some 0 # a € A, such that |N(a)| < MgN(A). Let A; := (a)A™!. Then A; is integral, in
the class of A" and N(A;) = |N(a)|N(A)™! < M. O

Example: K = Q[\/g], dg = 5,7 =25 =0, 50 Mg = v/5 < 3 and any ideal class
contains some integral ideal of norm 1 or 2.

Norm 1 Then the ideal is (1) = Z and therefore principal.

Norm 2 If N(I) =2, I QZy, then 2Zy C I C Zg. The ring Zy /27y = Foz]/(2* +x—1) = Fy
has no nontrivial ideals, so there are no ideals of norm 2 (note that N(2Zy) = 4).

So we have seen that Zx = Z| is a principal ideal domain.
Example: K = Q[V15], dx = 60, r = 2,5 = 0, so Mg = 2v/15 < 8 and we have to
consider all integral ideals of norm 2,3,4,5,7.

Norm 2 @, = (2,1 + +/15) is the unique ideal of norm 2. (Zg/2Zx =2 Fo[X]/(X? — 15) =
Fo[X]/(X+1)? has a unique non-trivial ideal). gy is not a principal ideal since otherwise
Z[/15] contains an element a = x + yv/5 of norm N(a) = x? — 15y> = +2. Then
2% =5 £2 which is a contradiction.

Norm 3 3 = (3,v/15) but pop3 = (3 + V/15) is a principal ideal.
Norm 4 2Zx = p3.
Norm 5 5 = (5,v/15) but p3p5 = (1v/15) is a principal ideal.

Norm 7 g7 = (7,1 + V15), @b = (7,1 — +/15). These ideals satisfy prp, = (1 + +/15) and
pro2 = (1 - V15).

So in total Clg = ([pa]) = Cb.

1+\/5]
2

Example: K = Q[v5], O = Z[\V5], dp =20, 7 =2,5 =0, s0o Mp = 2/5 <5

Norm 2 @y = (2,14 /5) = 2Z is the unique ideal of norm 2 in O. Note that p3 = 2¢p, so @9
is not invertible as an O-ideal.

Norm 3 no ideal of norm 3 as X? — 5 is irreducible in F3[X].

Norm 4 Let X <O be of index 4. Then Zx X 1Zk is of index 4 or 8 and hence Zx X = 2Zx = (5.
So we have 2p, C X C g, and need to enumerate all such O-modules. Now @, & 72
with basis B = (2,14 v/5) and we compute

a-(31)

So all submodules of py/2py are O-ideals; these are
20, (1+V5)0, (1 —V5)0

and hence all isomorphic to O.
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Remark 3.4. Since any ideal is a product of prime ideals, the class group is generated by
the classes of prime ideals p; < Zy such that N(p;) < Mg. Note that the norm of the prime
ideal g is a power of the prime p with pZ = o N 7Z.

Remark 3.5. What is known about class numbers? Not much.

If K =Q[Vd] (d <0, d e Z square free) is an imaginary quadratic number field then hyx = 1
if and only if d € {—1,—-2,-3,—7,—11,—19, —43, —67, —163}.

One conjectures that there are infinitely many real quadratic number fields K (sor =2,s =0)
for which hx = 1, but one cannot even prove that there are infinitely many number fields
(without restricting the degree) with class number 1.

4 Dirichlet’s theorem

We start with some preliminary technical remarks on lattices. Let V = (R™,(,)) always
denote the Euclidean space of dimension n.

Lemma 4.1. A subgroup I' <V is a lattice (i.e. there are R-linear independent elements
(U1, ..., Um) € V™ such that T = (vy, ..., vy)z) if and only if T is discrete, which means that
for all v € I" there is some € > 0 such that B(y) NT" = {v}.

Proof. Let Vy := (I')gr and B := (71, ...,7m) € I'™ a basis of Vj. Put I'g := (71,...,%m)z-
Then Ty is a lattice. We prove that I'/T'y is finite, because then T is finitely generated and
by the main theorem on f.g. abelian groups it is free of the same rank as I'.

Let E(B) be the fundamental parallelotope defined by B, then vol(E(B)) is finite and
Vo = Uyer,E(B) + 7. Since E(B) is compact and I' is discrete, there are only finitely
many points in E(B)NI = {z,...,z,}. But then I' = U} 2, +I'y and hence |I'/Ty| < a. O

Lemma 4.2. Let I' <V be a lattice. Then T is a full lattice (i.e. contains a basis of V'), if
and only if ' has finite covolume in V', if and only if there is some bounded set M C V' such
that V- = Uyer M + 7.

Proof. If T is a full lattice, and B a lattice basis of I, then M := E(B) is such a bounded
set.

On the other hand assume that I" has not full rank in V' and choose some v € V' \ (I')g. If
V = UyerM + v for some bounded set M, then for any n € N there is some a,, € M such
that nv = a, + v, for some v, € I'. Since M is bounded, lim,, %an =0, so

1 1 1 1
v=—(a,+v,) = lim —a, + lim —v, = lim —y, € ()
n n—oo M n—oo M, n—oo M,
because subspaces are closed. U

We now want to apply these basic facts on lattices to study the unit group Zj, of the ring
of integers in some algebraic number field.
Recall that the places o1, ...,0,,9, of K define an embedding

j: K= Kpg={(z1,.. %, y1,- -, Ys; U1, -- -, Us) | zi € R,y; € C}
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and that we identified Kr via the mapping m with R"*2* where

m: KR — Rr+257 (3717 ey Ty Y1y - 7y57m7 e a%) = (1'1, cee 7$T7%(y1)7g(y1)7 o 7%<y8)7%<y8))

Note that j is a ring homomorphism so it defines a group homomorphism j : K* — Kj.
Define the logarithm

O Kgy = R™ Uy, w1, Ys, Ut -5 Us) o= (log(|z1]), - .., log(Jo,|), log(|ya]?), - . ., log(lys|*)).

Then 7 is again a group homomorphism from the multiplicative group Ky to the additive
group of the vector space R"*%,

Theorem 4.3. Let A\ := /(o j:Z5 — R"™™. Then X\ is a group homomorphism with
ker(\) = ux ={z € K | 2* =1 for some a € N}
the group of roots of unity in K. Let ' := \N(Z3,) < R"s.

Proof. It is clear that X\ is a group homomorphism. The image of A is a subgroup of the
additive group of a vector space, hence torsion free, so all elements of Zj, that have finite
order lie in the kernel of A and therefore puyx C ker(\). To see equality let © € Zj}, be such
that A(x) = 0. Then

j(fﬁ) € X = {(xlw"’x?“?ylv"'uys) S KR ’ ‘:C’L| = 1,’%‘2 = 1}

So j(ker(\)) is contained in a bounded subset of Kg. On the other hand j(x) € j(Zk) =: A
is contained in the lattice j(Zy) = (j(b1),...,7(by))z for any integral basis (b1, ..., b,) of K.
But AN X is always finite, so ker()) is finite and hence a torsion group, so contained in pix. O

Remark 4.4. Since the norm is multiplicative Zj = {x € Zk | Ngjo(x) = £1}. Note that if
& € Li satisfies N jg(x) = 1 then o= € Z[x] can be obtained from the minimal polynomial

of x.
Let Ux :=={z € K | N(x) = £1}.
Then N(Zy) € MUx) = H := {(ar, ..., a,5) € R | Y a; = 0} = R

Theorem 4.5. Let I := \N(Z}) <R, Then T < H :={(ay,...,a,4,) ER™* | X0 a; =
0} 2 R 4s a full lattice in H.

Proof. We have to show that I' is a full lattice in H. It is clear that I' < H is a subgroup.
We first show that I' is discrete. To this aim we show that for any ¢ > 0 the set

Xe = {(am) € R™™ | |a,,| < ¢ for all m}
meets [' in only finitely many points. But

K’l(XC) ={(T1, . T Y1,y Ysy Ups -5 Tg) € K | e7¢ <z <efe ¢ < |yl-\2 < e}
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is bounded and therefore contains only finitely many points of the lattice A = j(Zk) C j(Z3).
Therefore also |[I' N X,| < oo.
We now show that I' has finite covolume in H: Choose ¢1,...,¢.,dq,...,ds € Ryg such that

ﬁczﬁdg =:C > Mkg.

i=1 =1

Let X = {(21,.. ., %0 Y1, -, Yss 1y - - - Us) € Kr | |2i] < ¢, ly;1? < d3}. Then X C Kg is a
bounded set.

Since there are only finitely many ideals of a given norm in Zg there are aq,...,ay €
Zx \ {0} such that for any element o € Zy with |N(«)| < C there is some unit u € Zj, and
some 1 < ¢ < N such that o = uoy;.

Let U:={y € K} | N(y) = £1} < K. Then ¢{(U) = H and U is the full preimage of H

under ¢. Put
N

T:=Un|JXj").
i=1
We then claim that U = Ucez: Tj(e).
Let y € U. Then Xy ' = {z € Kg | |2;] < ¢/} where ¢ = ¢;|y;| ™. Since [[; |yi| = N(y) =1
also [[.¢; = [, = C. By Minkowski’s theorem there is some 0 # a € Zg such that
jla) € Xy, so j(a) = xzy~" for some x € X. This means that |Ng,q(a)| < C so there is
some u € Zj and some i € {1,..., N} such that @ = uc;. Then

y=wj(a)”" = ajlar) ()™ € Tj(u™).

Corollary 4.6. Lett:=r+s— 1. Then there are €1,...,€ € Z} and p € px such that
Ly = () X (€1, €) =2 Clupe) x Z'7
The ¢; are called fundamental units of K.
Example. K = Z[\/5], Zx = Z[*£5] then Zj = (—1) x (15),

Definition 4.7. A subset I' C K is called an lattice in K, if there is some Q-basis B of K
such that T' = (B).
A subset O C K s called an order in K, if O is a subring of K that is a lattice.

Example. If I' C K is a lattice then
Ol) ={ze K |z2I' CT}
is an order in K.
Clearly any order O is consists of integral elements and hence is contained in the unique

maximal order Zg of K. Since O also contains a basis of K, the index |Zg /O] is finite.
Moreover O* = {x € O | N(z) = £1}.
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Theorem 4.8. If O is an order in K, then O* < Zj; is a subgroup of finite index.

Proof. The same proof as above proves that also O* has t = r + s — 1 fundamental units. [J

The Regulator

Definition 4.9. Let K be a number field and o; (1 < i < r+ s) a complete set of pairwise
non- conjugate embeddings of K in C. Then the regulator of a set {€1,€,...,€6,15 1} of
r+ s —1 elements in K* of norm +1 is defined as
Reg(ey, €2, ..., €r45-1) = det(n; log |0i<€j)|):,]+'§1~

Here the integer n; € {1,2} equals 1 if 0; is a real embedding and 2 otherwise. The regulator
Reg(R) of an order R in K is the requlator of a system of fundamental units for R*. We
put Reg(R) = 1 if R* is finite, i.e., if R is either Z or an imaginary quadratic order. The
regulator of K is R(K) =Reg(Z).

By the Dirichlet unit theorem, regulators of orders do not vanish. Unlike the discriminant
of the order, which is an integer, the regulator of an order is a positive real number that is
usually transcendental as it is an expression in terms of logarithms of algebraic numbers.

A few formulas relating regulator R(K), class number h(K'), number of roots of unity
\pr| = w(K) and discriminant |d(K)|. We keep the notation [K : Q] =n = r + 2s.

Theorem 4.10. Let (x(z) ==Y, ﬁ denote the Dedekind zeta function of K, where the
sum is over all non-zero integral ideals of Zy. Then (x has an analytic continuation to C
with a simple pole at z = 1.

(a) Tim, o 2~ 0+ D¢ (2) == h(K)R(K)w(K).

w(K)\/ld(F)]”

Ni(z) _ 2r(2m)* h(K)R(K)

(K )/ )] where Nk (x) denotes the number of integral ideals

(¢) lim, o

of Zx of norm < .

5 Quadratic number fields

Let K = Q[Vd], d € Z, d # 1,0 square-free be a quadratic number-field (i.e. an extension of

\/C_Z dE42,3

Q of degree 2). Then Zy = Z[w| with w :=< |, 2 d=,1
> =

. Note that dgx =d if d =4 1
and dg = 4d otherwise, in particular dg is either 0 or 1 modulo 4.

Theorem 5.1. Let I' be a full lattice in K.
(a) There is some m € Q and v € K such that T' = (m, m~)z.
(b) Let a,b,c € Z, ged(a,b,c) =1, a > 0, such that ay*+by+c=0. Then ay = h+kw € Zg
and
OI):={reK |2 CT'} = (1,a7)z = (1, kw)z.
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Proof. (a) Is just the Hermite normal form for integral matrices: If I' = («, #)z, then there
are r,y € Q such that 1 = za + yfS. Choose m € Q such that u := mx and v := my both lie
in Z and ged(u,v) = 1. Then there are 7, s € Z such that 1 = us — rv. Put

_ra+sf

v , then I' = (m, m~)z.

(b) Clearly O({m,mv)z) = O((1,17)z), so wlog assume that m = 1. Then O(I") contains a~,
since both, ay and ay? = —by — c lie in T'. On the other hand let x + yy =: § € O(T'). Then
r+yy€el,soxz,yeZandyye O), so yy? € ' implying that y is divisible by a. O

Corollary 5.2. Let O be an order in K. Then O = Oy := (1, fw) for some f € N. This
number f is called the conductor (Fiihrer) of O.
We have fZx C Oy C Zg and d(Oy) = f2d.

Remark 5.3. Let (0) = Gal(K/Q) (so o(v/d) = —v/d). Then for all a € K we have
o(a) = Skjg(a) — a and in particular any order O in K satisfies 0(O) = O.

Definition 5.4. Let O C K be an order. Then
M(O) :={T C K | T is a lattice ,O(T) = O}

Theorem 5.5. M(O) is a group with respect to the usual multiplication of ideals. If T' =
(m,mvy)z € M(O) where y € K,m € Q,a,b,c € Z are as in Theorem 5.1 (b), then we define
N() = mTQ and the inverse of I is T=' = N(I') 1o (T).

Proof. Clearly ideal multiplication is associative, commutative, etc.

The unit element in M(O) is O.

We first show that the elements in M(O) have an inverse:

Let I' = (m,m7y) € M(O). Since O(c(I')) = o(O(I')) = O, also the conjugate o(I') is in
M(O). Moreover

Lo(l) =m*(1,7,0(7),v0(7)) = N(D){a, ay, a0 (y), avo (7))

where a,b,c are as in Theorem 5.1 (b). Then ay* + by + ¢ = 0 so b = ay + ac(y) and
¢ = ayo(y). In particular

I'o(I') = N(I'){a, b, c,ay) = N(I')O.

We now show that the product of two elements of M(O) is again in M(O):
Let I'1, Ty € M(O). Then O C O(I'1T'9) by the associativity of ideal multiplication. Moreover

O = (T4Ty)(T'Ty 1) = N(Iy) ' N(Ty) " H(M4T3)a(Ty)o(T)

so O(I''Ty) C O(0) = 0. O
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Definition 5.6. Let O be an order in K = Q[/d].

(a) e(O) := [Zj; : OF.

(b)) Ky :={a € K* | N(a) > 0}, n(O) := [K*: (K;0%)].

(c) Cl(O) := M(0)/{aO | a € K*} is called the class group of O.

(d) Clp(O) := M(0)/{aO | a € K;} is called the ray class group of O.

Remark 5.7. (a) If d <0 then K, = K*, n(O) = 1.

(b) If d > 0 then O* = (—1) x (¢) and n(O) = 1 if and only if Nxg(e) = —1. Otherwise
n(0) = 2.

(c) The kernel of the map Cly(O) — Cl(O) has order n(O).

(d) Every class [I']g € Clg(O) has a representative of the form I' = (1,~) with v = x + yw,
z,y €Q, y>0. Such a v € K is called admissible.

Theorem 5.8. Let v1,72 € K be admissible and put T'; := (1,v;). Assume that O(T'y) =
O(I'g). Then

kyy + 4
my. +n’

[Fl]O = [FQ]O € Clo(O) ~ JA = ( 7];; f; ) € SLQ(Z), such that Yo =

Proof. =: Let [I'1]g = [['2]o. Then there is some a € K, N(a) > 0 and A = ( 7]:; f; ) €
GL2(Z) such that

()= () ow (070 ) =l 75 )

Taking the determinant we obtain

(%) 72 —a(y2) = det(A)N(a) (11 — a(n))-

Since y; and 7, are admissible, the coefficient of V/d is positive on both sides and hence
det(A) > 0 (note that N(a) > 0 by assumption), so A € SLy(Z). Moreover

Y2 k:a’yl + 1674 . ]{5’71 + 14

WZT:mcwl—i—om_m%an'

«<: Put @ := —L—. Then
my1+n

«

al'y = (o, am) = (4 ( “n )> = (y5,1) =T,

Because of (x) and det(A) = 1 we obtain N(«) > 0. O

Definition 5.9. Let I' := (1,7) € M(O), v € K admissible and let a,b,c € Z, a > 0,
ged(a, b, c¢) = 1 such that ay® + by +c=0. Then

E, =F,(X,Y):= ﬁ(){ YY) (X —o(7)Y) = aX? +bXY +cY?

is called the binary quadratic form defined by 7.
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Then Theorem 5.8 immediately implies

Theorem 5.10. Let I'; = (1,,;) € M(O), v; admissible i = 1,2. Then
C1]o = 2o € Cly(0O) & FA = < 7]; f; ) € SLy(Z) such that F,,(nX—tY,—mX+kY)=F,,(X,Y).

Proof. Put N; := N(I';). Then
N1 Fy (nX =LY, —mX+kY) = (nX =LY )=y (—mX+kY))(nX =Y )—0o () (—mX+kY)) =

k l k 14
_Ly)(X_M

(n+my)(n +mo(y))(X my +n mo(y1) +n

Y) = N F,(X,Y).

Definition 5.11. Let F = F, ;. = aX? + bXY + c¢Y? be a binary quadratic form.
(a) disc(F) := —4ac + b*> = — det ( 2ba 2bc
(b) Two forms F .. and Fyye are called properly equivalent, if there is some A € SLy(Z),

such ; oy
2a v  2a
A ( b 2c ) AT = ( voo2c ) '

(c¢) For any D € 7Z we define

) 15 called the discriminant of F.

Q(D) :={F.p. | a,b,c € Z,ged(a,b,c) =1,a > 0, —4ac + b* = D}/ SLy(Z)
to be the set of proper equivalence classes of binary quadratic forms of discriminant D.

Theorem 5.12. Cly(Oy) is in bijection with Q(f*dk) by mapping [(1,7)]o to [F,] (where
is admissible).

Proof. We first show that the map is well defined: If T' = (1,~) and ay?® + by + ¢ = 0 with
a,b,c € Z, a > 0, ged(a,b,c) =1 then O(I") = (1, ay) has discrimimant

_ 2 —b _ 2
d(O(T")) = det ( b B — 9ac > = —4dac+b”.

Now the inverse bijection is given by assigning to F' := F, ;. the admissible root v of F(X,1).
Then F(X,Y) = a(X — 7Y )(X —o(7)Y) with v € Q[\/disc(F)] = Q[v/ f?dk] = K. O

5.1 Imaginary quadratic number fields.

Theorem 5.13. Let D = f%dx < 0. Then
R(D) :={F,p.| a>0,—dact+b’ = D,a,b,c € Z,gcd(a,b,c) =1,[b| <a<c, andb>0ifa=c or|b =a}

is a system of representatives for Q(D).
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Proof. Let Fyp. € [Fape € Q(D) such that a is minimal. Then a < ¢ since

(5 o) (5 2) (03 )=(5 )

Let k := |%%]. Then

10 2a b 1 kY 2a b+ 2ak
E o1 b 2c 0 1) \ b+2ak 2(ak®+bk+c)

with ¥/ = b+ 2ak € [—a,a], ¢ = ak® + bk + c and F,y » € R(D).
On the other hand any two forms in Q(D) are inequivalent under the action of SLs(Z) (ex-
ercise). d

Remark 5.14. If F, ;. € R(D) then a < /|D|/3 because |D| = 4ac — b* > 4a* — a* = 3a®.

Example. D = —47, then a < 1/47/3 < 4, so a = 1,2,3. Moreover —47 = —4ac+ b?, so
b is odd.

2 1
a=1: (1 24).

_ 9. 4 1 4 -1
“==\112)\ -1 12 )
6 1 6 -1
03 (1 8),(_1 . )
Let w = A7 V2’47. Then w? — w + 12 = 0 and the corresponding ideals are

Lk = <17w>7 2 = <27 —O’(W)), @/2 = <27w>7 3 = <37 _U(w»? @é, = <37w>'
The class group has order 5, so Clg = (p9) = Cs.
Remark 5.15. The integral ideal {a,a7) € [(1,7)]o has norm N with a | N | a*.

The 2-rank of the class group.

This works similarly also for real quadratic number-fields, but we restrict to imaginary
quadratic fields. So let d € Z be squarefree, d > 0, K = Q[v/—d| with ring of integers
Zy = Z[v/—d| and discriminant dx = 4d if —d = 2,3 (mod 4) resp. Zx = Z[%jd] and
discriminant dx = d if —d =1 (mod 4).

Let a := /—d resp. o := %jd denote a generator of Zy and f its minimal polynomial.
Let o denote the non-trivial Galois automorphism of K, so a(\/—_d) = —v/—d.

Lemma 5.16. A prime p is a divisor of dg, if and only if there is a prime ideal o I Zg
such that ©* = pZy. (We say that p is ramified in K.)

Proof. Let p be a prime. Then the prime ideals dividing p correspond to the maximal ide-
als of Zg /pZi = F,[z]/(f). This is a uniserial ring, iff f has a double zero mod p which
is equivalent to p dividing di. (Treat 2 separately, for odd primes, one may replace f by
X? + d where this is obvious). O
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Theorem 5.17. CI(K)/CI(K)? = Qy(CUK)) = {[I] | [[]* = 1} = CI " where g is the
number of distinct prime divisors of dx. More precisely for each prime divisor p; of dg let
©; be the prime ideal dividing p;Zy. Then

Q(CUK)) = ([p;] | i =1,...,9) and { Z;:::gzi\/g Z :;l:,z(m(:éoj)zl)

where we assumed in the last case that g = 27.

It is clear that all ramified prime ideals p have order at most 2 in the class group since
©* = pZ is principal. We need to show that
(a) Any class of order 2 contains an ideal A such that A = o(A).
(b) Any such o-invariant ideal is equivalent (in the class group) to a product of ramified
prime ideals.
(c) There is no other relation between the classes of the ramified prime ideals.

Lemma 5.18. (Hilbert 90) Let a € K such that N(a) = ao(a) = 1. Then there is some

be K such that a = @

Proof. If a = —1 then put b = v/—d. Otherwise let b := (14 a)~*. Then

o(b) l1+a (14+a)a (1—i—a)a:

b 1+o0(a) (I+o@))a a+1
]

Lemma 5.19. Let A be a fractional ideal such that 0(A) = A. Then A= rQ wherer € Qs
and Q is a (possibly empty) product of distinct ramified prime ideals.

Proof. By the uniqueness of the prime ideal decomposition it is enough to show this for prime
ideals . The non-trivial Galois automorphism ¢ acts on the zeros of f mod p. If f has a
double zero mod p then o fixes the prime ideal p dividing p (these are the ramified primes).
If f is irreducible mod p, then pZy is a prime ideal.

If f is a product of two distinct linear polynomials then ¢ interchanges the two zeros of f
modulo p and p = po(p) is a product of two distinct prime ideals. O

Lemma 5.20. Let A<Zg. Then Ac(A) = N(A)Zk.
Proof. Again it is enough to show this for prime ideals where we did this in the last proof. [J

The above lemma shows that for any ideal A the inverse [A] ™! = [0(A)] in the class group

of K. In particular [A] = [0(.A)] if and only if [A] has order 1 or 2 in the class group.

Lemma 5.21. If [A] = [0(A)] then this class contains a o-invariant ideal.
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Proof. In this case there is some r € K* such that o(A) = Ar. Then N((r)) = N(A)"IN(c(A)) =
1 and therefore |[N(r)| = 1 But the norm form is positive definite, so N(r) = 1 and there is
some b € K* with r = (b) Put

Then B € [A] satisfies
o(B)=0(A)o(b) = Ara(b) = Ab =B

g

To see the last point (c¢), we need to show that no other product of distinct ramified prime
ideals is principal. For simplicity we only deal with the case —d = 1,2 modulo 4 and show
that in this case for any proper divisor 1 < m < d of d the ring Zy does not contain an
element of norm m. If z,y € Z then the norm of z + yv/—d is 2 + y*d = m then (since
0 < m < d) y? needs to be 0, so m = z? is a square which is a contradiction. In the case
—d = 1 modulo 4 we also have integral elements (x + yv/d)/2 where z and y are both odd.
The norm of this element is }l(xQ +9%d) so (x* +y*d) = 4m, which is only possible if y = +1,
then 22 = 4m —d = m(4 — %) and % = 3. But this contradicts the fact that d and hence
also m is squarefree, in particular m is not a square.

6 Ramification.
Let Q C K C L be a tower of algebraic number fields and Z C Zy C Zj, the corresponding
ring of integers.

Definition 6.1. Let 0 # p < Zk be a prime ideal. Then
0Ly, = @1 - o
for prime ideals p; I Zy and ey, ..., e, € N. Fach @; defines a field extension
Fo =2 Zk/p = Z1/p;i = F,

of degree f;, since p = p; N Zk for alli. Then e; is called the ramification index of ©; and
fi is the inertia degree of ;.

Example. K =Q, L =Q[v-T7], a := %ﬂ
ramified prime: (v/-7)2=7Zp, e=2, f =1.
inert prime: (3) =3Zy,e=1, f =2.

decomposed prime: 2Z; = (a)(1 —a),e; =es =1, f1 = fo = 1.

Theorem 6.2. Let Q C K C L and 0 # o JZk be a prime ideal with pZ; = ©7" --- o for
prime ideals p; <Zj, and inertia degrees f; = [(Zr/9i) : (Zk/p)|. Theny ;_e;fi =n=[L:
K].

Proof. By the Chinese remainder theorem

ZL/9L, = P ZL/p}"
=1
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Put k :=Zk/p. Then Z/pZy, is a vector space over k and

dimy(Zy/pZy) = Y dimp(Z/gf') = Y eifs.
i=1 i=1
So we need to show that dimg(Z./pZL) =n = [L: K].
To this aim let wy, ..., w, € Z, such that (wy,...,w,,) is a k-basis of Z; /pZ;.
Claim: (wy,...,wy,) is a K-basis of L.
linearly independent: Assume that a; € K not all = 0 are such that Z:il a;w; = 0. Wlog
we may assume that all a; € Zg. Let A := (ay, ..., a,)<Z and choose some a € A1\ A 1.
Let b; := aa;. Then > " biw; = 0 with b; € Zg not all b; € p. Reducing this modulo p we
obtain a linear dependence of the tw; which is a contradiction.
generating system: This follows essentially from Nakayama’s Lemma: Let
M = (wi,...,wm)z, <Zp and N :=Z /M.
Then Zy, = M + pZp, so pN = (pZ + M)/M = Z/M = N. We claim that N is a torsion
module. Let N = (ay,...,a)z, with a; =377, a;;0; and a;; € p. Let d := det(A) where
A = (aij)ij=y — I € Zy®. Then d = (—1)° (mod p) and A*A = dI, for A* € Zy** the
adjoint of A. So
(05} (05} dOél

0=A1 : =A"A| : =
Qg (&P das

and therefore dN = 0, so |N| is finite. Since M is of finite index in Zj, it has the same rank
as Zp, and generates L as a vector space over K. U

6.1 How to compute inertia degree and ramification index ?

Let L = K(a) with o € Zy, f := po the minimal polynomial of a. Then O := Zgl|o] =
Zk|X]/(f(X)) is an order in L.

Definition 6.3. Let F, := {a € Z; | aZ; C Zkla|} be the largest Zy-ideal contained in
Zk|a). Then F, is called the conductor (Fihrer) of .

Theorem 6.4. Let ¢ I Zg be a prime ideal such that ged(pZy, Fo) = 1. Assume that
fa(X) = py(X)? -+ D (X)) € Zi [p[X]. Then ¢; := (p,pi(a))) IZy (1 < i <7) are the
prime ideals dividing ©Zjy, and

P = @' -9 fii=[2ofgi Lic /o] = deg(ps).
Proof. Let O := Zk|a]. Then
Ly, = Fo+ 9Ly €O+ @ly, C 7y

and hence O/pO = Z1/oZ; = k[ X]/(f,(X)) with k = Zg/p. The ideals in this ring can
be read off from the factorization of fi,(X) € k[X]. O
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Corollary 6.5. There are only finitely many prime ideals o I Zy for which there is a prime
ideal p; <7y, such that ? | 9Zr. (For short: Zy, contains only finitely many ramified primes.)

Proof. Since F, has only finitely many divisors, we may assume that @ is prime to F,. Then
the polynomial i, (X) € k[X] has multiple factors, iff

ged(fz, (X)), 7L, (X) # 1 < p divides disc(pa) = H(ozi — ;) € Lg.

1<J

where «; are the roots of pu, in the algebraic closure of K. But this ideal has only finitely
many prime divisors. U

Example: Let f:= X%+ 2X? —5X? - 6X — 1€ Q[X], L =Q[X]/(f(X)),a=X € L,
S0 fto = f. Then Z[a] is of index 3 in Zy. d; = 1600, disc(f) = 14400 = 9d..

f (mod2) (X?+X+1)? (2)=p3 e=f=2

[ (mod3) (X +2)*(X*+X+2)

[ (modb) (X%+ X +2)? (5) = p? e=f=2

f o (mod7) (X2+4)(X?+2X+5) (=pph e1=ex=1,f1=fo=2

6.2 Hilbert’s theory of ramification for Galois extensions.

Let L O K be algebraic number fields and assume that L/K is Galois. Let G := Gal(L/K)
denote the Galois group.

Remark 6.6. For any o0 € G we have 0(Zy) = Zy. If p <IZy, is a prime ideal, then also
o(p) <Zy, is a prime ideal and p N Zk = o(p) N L.

Theorem 6.7. The Galois group acts transitively on the set of prime ideals of Zy, that contain
a giwen prime ideal © of Zk:

OZy, = 7t .. v = forall 1 <i <r there is 0; € G,0:(p1) = ©i-

Proof. Assume that gy # o(py) for all 0 € G. By the Chinese remainder theorem there is
some x € Zj, such that

=0 (mod ), z=1 (mod o(p;)) for all 0 € G.

Then Ny (z) = [[,cq0() € p2NZg = p.
On the other had o(x) & @, forall 0 € G, so Np/k(x) € 91NZk = o which is a contradiction.
O

Corollary 6.8. ¢, =...=e¢,=:¢, fi=...= f, = f and [L: K] =n =ref.
e is called the ramification index of p, e = er/k(p) = er/k(p;) for all 7.
[ is called the inertia degree of o, f = fr/k(9) = fr/x(p:) for all i.
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Definition 6.9. Let ¢ IZj be a prime ideal in Zy. Then
Gy ={oeG|a(p)=p}

is called the decomposition group of ¢ and Z, := Fixg, (L) = {z € L | o(z) =
x for all 0 € G} is called the decomposition field of p.

Theorem 6.10. Let p 7y, be a prime ideal in Zy, and let oz == pNZ,, Z = Z,.
(1) pzZL = °.

(2) friz(9) = frix(p), ersz(p) = eryx(p) = e.

(3) ezix(9z) = fz/x(pz) = 1.

Proof. (1) G, = Gal(L/Z), so the set of all prime ideals of Zj, that contain g is {o(p) | o €
Got = {p}.

(2) Let r := [G : Gy] and let {p = p1,..., .} be the set of prime ideals of Z;, that con-
tain P := o N Zg. Then ref = |G| = [L : K] where e = ey/k(p), [ = fo/x(p). So

ef =G| = eryz(p) fr/z(p). Clearly erz(p) < er/x(p) and fr/z(p) < fr/x(p) from which
one obtains (2).

(3) er/x(p) = erjz(p)ez/x(pz) and fr(p) = friz(9) fz/x(9z)- O

Theorem 6.11. Let k(p) :=Zr/p and k := Zg /P with P = p N Zk. Then k(p)/k(P) is a
normal extension and G, — Gal(k(p)/k(P)) is surjective.

Proof. We first note that k = k(pz) = Zz/pz so we may assume that Z, = K and G, = G.
Choose a € Zj, such that @ := o + p € k(p) is a primitive element, let f 1= pox € Zg[X]
and G := par € k[X]. Then g divides f € k[X]. Since L/K is normal, all roots of f lie in
Zr, so f € Zy[X] is a product of linear factors, and hence also f and therefore g € k(p)[X]
is a product of linear factors, so k(p)/k is normal.

Now let @; € k(p) be a zero of g. Then there is o € Zy with f(«;) = 0 such that @ = a3 +g.
This yields the existence of some o € G = G, such that o(a) = «;. This element o maps
onto the Galois automorphism of k(p) that maps @ to @;. O

Definition 6.12.
1 =1, — G, — Gal(k(p)/k) =1

1s a short exact sequence. In particular the inertia group of o is

I, ={ceG,|ox)=x (mod p) forallz € Z1} IG,,.
The fized field T,, := Fix () is called the inertia field of p.
Corollary 6.13. T,,/Z,, is a Galois extension with Galois group

Gal(T,,/Z,) = Gal(k(p)/k) = Gy /I, = Cy.
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)
Gal(L/T,) = I, Cy =Gy/l,= Gal(T,/Z,) G, =Gal(L/Z)

Example. L = Q[v/2, (3], K = Q, Gal(L/Q) = Ss.
Prime ideal decompositions:
571 = psphel with f; = 2. Put Z := Q[v/2]. Then 5Zy = pspi with f = 1, f' = 2, wlog
@5 = psZy, then Z = Z,,,, G, = Gal(L/Z) = Cy and T,,; = L.
For the prime 2 we obtain 27, = @3 = (v/2)*, T}, = Q[G3], Z,, =Q, G,, =G, e =3, f = 2.

L

7 Cyclotomic fields.

Definition 7.1. The cyclotomic polynomials are defined recursively by

B(X) = (X = 1), 8, (X) = (X" = 1)/ [ @u(X)

dln,1<d<n
The roots of ®,, are the primitive n-th root of unity.
Remark 7.2. In the Algebra class we have seen the following facts:
(a) ©,(X) € Q[X] is an irreducible polynomial with integral coefficients.
() 0(X) = TTaczmzy- (X — ¢4 where ¢, is any primitive nth root of unity.

(c) deg(®n(X)) = p(n) = |Z/nZ*|.

(d) Q[¢,] = K, is a Galois extension of Q with Gal(K,/Q) = (Z/nZ)* with explicit
isomorphism mapping a € (Z/nZ)* to o4 : (Gu = (). Ky is called the n-th cyclotomic
field.

(e) If n =pi*---p% is a product of powers of distinct primes then
Ky =Ky Ko, Go=[] ¢
i=1

Remark 7.3. (cyclotomic units)

(q) Assume that n = p® is a prime power and let i,j € N such that p)ij. Then (1—{2)/(1—
&) € ZiGI"

(b) Assume that n is divisible by at least two distinct primes. Then (1 — (,) € Z[(,]* and

HjEZ/nZ*(l - C%) =1

Proof. Exercise. U

Theorem 7.4. If n = p® is a prime power then Ly, = Z[(,] and d(K,) = fpp" " (ap—a=1),
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Proof. Let )
O = Z[] = (1, ur- ., I D) 2 ZX] /(@4 (X)).

Then g := (1 — ¢,) < O is a Galois invariant ideal of norm

N o1 =) =[]0 =¢) = @.(1) = p.
pXj

Note that @, (X) = (X7 —1)/(X?"' =1) = (Y?=1)/(Y =1) = Y?" ' 4 VYP 24 4V +1 with
Y = X*""'. By comparing norms we obtain p¢ = pO with d = [K,, : Q] = ¢(n) = p**(p—1).
So the unique maximal ideal dividing pO is a principal ideal, hence O = O(J,(0)) is p-
maximal. But the determinant of O is the discriminant of ®,, which is not divisible by any
prime ¢ # p, since the n-th roots of unity are pairwise distinct modulo ¢. Therefore O is also
(-maximal for all primes ¢ # p and hence a maximal order (Exercise 4, Sheet 2).

In particular we know that O = Zg, and that the discriminant of K, is a power of p.
Put ¢ := (,. Then

d0)=d@,)= [ - = [] @) =Nk o® Q).

i#jEL/poT* i€Z/paTr

Note that 7, (X) = dix HieZ/paZ* (X =) = ZiGZ/p“Z* Hj;éi(X — ¢’). To compute &,(¢) we

differentiate the equation (X*"" —1)®,(X) = (X*" — 1) to obtain

a—1

PUIXPT, (X)) 4+ (XY — D)@ (X)) = pt XL

Evaluating at ¢ we obtain (¢*" " — 1)@ (¢) = p¢?"~! since @,(¢) = 0. Now «a := " lis a
primitive pth root of unity and hence Ng()/g(a — 1) = %p, so

where s = p* Y ap —a —1). O

Theorem 7.5. Let n = pi" ---pi € N. Then Zg, = Z[(,] and d(K,) = [[;_, d(K,=) "
This follows from the next more general Lemma.

Lemma 7.6. Let K, K’ be number fields of degree n = [K : Q|, n’' := [K': Q] and discrimi-
nants d := d(K) and d' := d(K'). Assume that ged(d,d') =1 and L := KK’ has degree nn’
over Q. If B := (wy,...,wy,) and B' = (vy,...,v,) are integral bases of K resp. K', then
BB := (ww; |1 <i<mn,1<j<n') is an integral basis of Z;, and d(L) = d" (d')".

Proof. (a) BB is a Q-basis of L: It is a generating set by definition of L and these elements
are linearly independent since we assumed that [L : Q] = nn'.
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(b) To compute d(BB) let o1,...,0, : K = C resp. ¢1,...,py : K' — C be the distinct
embeddings. Then o;¢; : L — C are the embeddings of L and

d(BB) = det(M)?, where M = (o;0;(winr)) i), 060y = (03 (wi) 25 (00)) (1.5, -

This matrix M is easily seen to be the Kronecker product M = A® A" with A = (0;(w))ix
and A’ = (¢;(v;));;. Hence d(BB) = d” (d')" as claimed.

(c) BB is an integral basis. Basis is clear, also that the elements of BB are integral. So it
remains to show that (BB)z = Zp. Let a = Z” a;;wv; € Zy, with a;; € Q. We need to
show that all a;; € Z. Let A’ be as above and put

n

a:=(p1(),...,on(@)" b= (Bi,...,B)", where B; = Zaijwi.

i=1
Then a = A’b and d'b = det(A")b = (A’)*a. Since all entries are integers, the vector d'b only

has integral entries, so d’' Y, a;;w; € Zgk which implies that d'a;; € Z for all 4, j. Similarly
we obtain da;; € Z for all 4, j and hence a;; € Z since d and d’ are co-prime. Il

We now investigate the ramification indices and inertia degrees of primes in K.

Theorem 7.7. Let p be a prime, m € N not divisible by p and put n = p*m € N. Let
f € N be minimal such that p’ = 1 (mod m). Then the ramification index of p in K, is
e = p(p?) = pV(p — 1) and the inertia degree of p in K, is f. Moreover f divides p(m)
and

pZ[CH] = (@1 e pfr)67 fKn/@(@z) = f

where v = p(m)/ f.

Proof. We need to factorise ®,,(X) € F,[X]. If {a; | 1 < i < (p?)} is the set of primitive
p®-th roots of unity and {5; | 1 <i < ¢(m)} is the set of primitive m-th roots of unity then

{iB; |1 <i<e(p*),1<j<p(m)}

is the set of primitive n-th root of unity and

®,(X) = H(X —if5) = H(X - Bj)¢(pa) =, @ (X)".
i,j J

The m-th roots of unity are distinct mod p and F,; contains a primitive m-th root of unity,

iff m | p/ — 1. So all irreducible factors of ®,,(X) € F,[X] have degree f. O

Example. Let n := 45 = 3%5. Then Gal(K,,/Q) = Cs x Cy, K,, = KoK and 3Z[(,] = ¢S
is totally ramified in Ky and inert in K5. So e3 = 6, f3 = 4. So the decomposition field is
Z3 = Q, the inertia field is T3 = Q|(5].

Since 3/5 — 1 the prime 5Z[(,] = 2 with e = 4, f5 = 6. So the decomposition field is
Zs = Q, the inertia field is T5 = Q[(3].

To compute the inertia degree of 2, we need to find the minimal f = f, for which 2/ —1is a
multiple of 45. 2* —1 =15, so f =3 -4 =12 and 2Z[(,,] = p2¢5. The decomposition field of
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2 is Q[v/—15).
For the prime 11 one finds that 45 | 11 — 1 and hence fi; = 6 and 11Z[(,] = o1} 071971
Since 3% =, 1, the prime ideals over 11 are

P11 = (3 - C57 11)a plll = (3 - C52a 11)7 @,1/1 = (3 - Cgv 11)7 Kgllﬂl = (3 - C§7 11)
The decomposition field of 11 is Z;; = Q|(5].

Corollary 7.8. Let n be either odd or a multiple of 4. Then p is ramified in Z[(,] if and
only if p | n.

7.1 Quadratic Reciprocity.

Theorem 7.9. Let { and p be odd primes and put ¢* := (=1)="Y/20. Then p is (totally)
decomposed in Q[v/0*], if and only if pZ[C,] is a product of an even number of prime ideals.

Proof. Since K, has a subfield L of degree 2 over Q and ¢ is the only prime that ramifies in
Ky, this is also the only prime that ramifies in this unique quadratic subfield, so L = Q[\/f_*]
Now assume that pZ; = @1¢» is a product of two prime ideals in L and let o € Gal(K,/Q) =:
G be such that o(p;) = po. Then o yields a bijection between the set of prime ideals of Z[(/]
that contain @ and the ones that contain s, in particular the number of prime ideals of
Z[(] that contain p is even.

To see the opposite direction let p be a prime ideal of Z[(,] such that p NZ = pZ and let
G, = Stabg(p) be its decomposition group. Since by assumption || is even, the index
G : Gl is even. Now G is cyclic, so the unique quadratic subfield L of K, is contained in
the decomposition field L C Z, = Fix(G,). Putting Pz := p N Z, then fz, o(Pz) = 1 so
also fr/o(PzNL) = 1. But p does not divide the discriminant of L, so it is not ramified, and
therefore totally decomposed in L. U

Definition 7.10. Let 2 # p be a prime, a € Z such that pJa.

(g) __{ 1 if a =, 2* for some x € Z

P —1  otherwise.

is called the Legendre symbol of a at p.

Remark 7.11. (a) (]-]) —1 & (a+pZ) € (Z/pL*)? & a® /2 =, 1.

() () =(3)
(c) Let a € Z\{0,1} be squarefree and K := Q[y/a]. Then (%) =1 pZi = p192 is totally

decomposed.

Theorem 7.12. (Gauss reciprocity)
(a) Let € and p be distinct odd primes. Then

()
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(b) () = (~nr-vr
(¢) (2) = (~)F-DE.

Proof. (b) is clear.
To see (c) we compute in Z[i]. Here (1 +4)% = 2i. And

2
1+ =, 1+ =1 +4)((1+0)})P D2 =, (1 44)20 V20072 = (1 44) (];) P72

s0 (1 +1) (;) =02 = 1 4 i(—1)0-D/2,

If (p —1)/2 is even, then this reads as (1+ 1) (%) (—=1)P=Y/* = (1 +4). Dividing both sides

by (14 i) we obtain (;2)) =, (—1)P-0/4,

If (p—1)/2is odd, then we have (1+4) (%) (=) (=1)®P+D/* = 1—j and hence (%) (=4)i(=1)P+D/A =,
1 because 1 =4. So (%) =, (—1)P+0/4,

These two congruences may be summarised as in (c).
(a) Let ¢* := (—1)“"1/2¢ be as in Theorem 7.9. We show that

(5)-0
(- (5)- () () -cmml)

We have <%> = 1 iff p is decomposed in Q[v/¢*] < p splits in Q[¢,] into an even number of

prime ideals. Now pZ[(,] = g1 - - - ps with s = &1 and f minimal such that p/ =, 1. So s is

f
even <

Then

f|€_Tl<:)pg;1 Egl@(%)zl

8 Discrete valuation rings.

Definition 8.1. (a) A discrete valuation ring R is a local principal ideal domain (com-
mutative, without zero divisors) which is not a field.

(b) Let K be a field. A discrete valuation of K is a mapping v : K — Z U {0} such that
(o) There is some x € K* such that v(z) # 0.

(i) v(z) =00 < x =0,

(i1) v(zy) = v(z) + v(y) for all x,y € K*.

(111) v(z + y) > min{v(z),v(y)} for all x,y € K.

Clear: v(1) =0, v(z™') = —v(z), v: K* — (Z,+) is a group homomorphism.
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Remark 8.2. v(z +y) = min{v(z),v(y)} if v(z) # v(y).

Proof. First note that v({) = 0 for any ¢ € K such that (" = 1 for some n. In particular
v(—1) =0 and v(—y) = v(y).
Assume that v(z) < v(y). Then

v(z) =v(z+y—y) =min{v(z +y),v(y)} = minfv(z), v(y)} = v(z).
We therefore have equality everywhere and v(x + y) = v(x) (note that v(y) > v(x) by as-
sumption). O

Example 8.3. Let R be a Dedekind domain K := Quot(R) and 0 # o < R a prime ideal.
Then the localisation of R at ¢ s

i
f%wz{EGK!%yERw€@}

Then R, is a discrete valuation ring with mazimal ideal pR(,) = mR, for any element
TEp\ P

The prime ideal o also defines a valuation v = v, : K* — Z by putting v(z) = n € Z>q if
©" | 2R but o"™ JzR and v(§) = v(z) —v(y) for all z,z,y € R. Then R, = {z € K |
v(xz) > 0}.

Proposition 8.4. (a) Let R be a discrete valuation ring with mazimal ideal p = TR # {0}.
Then K := Quot(R) =U;cz @ R* U {0} and the mapping v : K — Z U {oco},v(n'R*) =
i,v(0) := 00 is a discrete valuation of K.

(b) If v : K — Z U {0} is a discrete valuation, then R := {x € K | v(z) > 0} is a discrete
valuation ring with mazimal ideal {x € K | v(z) > 1} = o = 7R for any 7 € K with
v(m) > 1 minimal.

Proof. (a) Since R is a local ring the units are R* = R\ p. Any element a € R is either
a unit (a € R*) or a multiple of 7 and then a; := 77 'a € R. Also a; is either a unit or a
multiple of m. Continuing like this, we may write any non zero element of R in a unique way
as a = 7"u with v € R* and n € Z>¢. Similarly any element 0 # r = ¢ € Quot(R) = K can
be written as m'w with w € R* and ¢ € Z in a unique way. Therefore v is well defined. It
clearly satisfies (0), (i) and (ii). So it remains to show the strong triangular inequality. Let
rem R, yem R, i,j€Z,i>j Thenz+y € R and sov(x+y) > j = min{v(z),v(y)}.
(b) We prove that Risaring: 0 € R, 1 € R,a,b€ R=ab€ Rand a+b € R.

The unit group of Ris R* = {z € K | v(z) > 0and —v(x) > 0} = {z € K | v(z) = 0}.
In particular p is the unique maximal ideal of R. Choose m € p such that v(7) is minimal.
Then for any z € p we have v(z) > v(7) and hence zr~! € R. So p = 7R is a principal
ideal. 4

Remark 8.5. Let R be a discrete valuation ring and v € K = Quot(R). Then either x € R
orz~' € p. In particular K = RU{z™' |0 # z € p}.

Theorem 8.6. A Noetherian integral domain R is a Dedekind domain if and only if all
localizations R,y of R at mnon-zero prime ideals are discrete valuation rings.

Proof. (Exercise) 0
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8.1 Completion

Remark 8.7. Let v: K — Z U {oo} be a discrete valuation and s € (0,1). Then v defines
an ultra-metric
d: K x K — Rsg,d(z,y) = s"@Y

where s := 0. This means that d satisfies the following three axioms:
(i) d(a,b) = 0 if and only if a = b.

(i1) d(a,b) = d(b,a) for all a,b € K.

(1) d(a,c) < max{d(a,b),d(b,c)} for all a,b,c € K.

Definition 8.8. A metric space (M,d) is called complete, if any Cauchy sequence in M
converges towards a limit in M.

Theorem 8.9. Let v: K — ZU {0} be a discrete valuation of the field K. Put R the ring
of all Cauchy sequences in K and N the ideal of all sequences in K that converge to 0. Then
N <R is a mazimal ideal and hence K := R/N is a field. The valuation v extends to a
valuation v of K and K is complete. The mapping ¢ : K < K,a + (a,a,a,a...) + N is
injective and the image is dense in K. The field K is called the completion of K. It is
unique up to isomorphism.

Proof. See the lecture Computeralgebra. O

Theorem 8.10. Let v : K — Z U {oo} be a discrete valuation of the field K with valuation
ring R and mazximal ideal mR. Define

S = lim R/T('ZR = {(ao, ay, .. ) | a; € R/ﬂ'iJrlR, a; + 7TiR = Clifl}.
—

Then S is an integral domain and ¢ : R — S,a > (a+7R,a+m*R,...) is a ring monomor-
phism. The valuation v extends uniquely to a valuation v of S, v(ag, ay,...,) =1 if a; # 0,
a;_1 = 0. S is complete with respect to this valuation and K := Quot(S) is the completion

of K.

Proof. S is a ring with componentwise operations since the projections a + 'R+ a+ 7 'R
are ring homomorphisms.

¢ is injective because (-, 7R = {0}.

It is clear that v is a valuation that extends the valuation of R (exercise).

To see the completeness of S let (x,,),>0 be a Cauchy sequence in S, so lim v(z,—x,) = 00
- n,Mm—>00

or more concrete that for all £ > 0 there is some N (k) € N such that v(x, — z,,,) > k for all
n,m > N(k). Wlog assume that (N(n)),>o is monotone increasing. Put @ = (zn()k)k>0-
Then x € S since

k k
INgk T T R=Tpp + T R=2Tpp1 = TNR-1)k-1

for all n > N(k). Similarly one shows that v(x — z,,) — oo for n — oo so z is the limit of
the Cauchy sequence. O

For an example see the lecture Computeralgebra, where we introduced the p-adic numbers
Qp, the completion of Q at the p-adic valuation v,.
Example. The completion of K = Q[(3] at prime ideals over 2,3, 7.
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8.2 Hensel’s Lemma

Theorem 8.11. Let K be a discrete valuated complete field with valuation v, valuation ring
R. Let f € R[X] be a polynomial and ag € R such that

v(f(ao)) > 2v(f'(ao))

Then there is some a € R such that f(a) = 0. More precisely the sequence

f(an) cR

n

converges towards some a € R such that f(a) =0 and v(a — ag) > v(f(ag)) — v(f'(ap)) > 0.

Proof. (see also Computeralgebra) Note that f(t + z) = f(t) + fi(t)z + fo(t)z* + ..., for
fi(t) € R[t], fi(t) = f'(t). Define by := —JJ,:,(@;)). Then v (J{,((CZL%))> = v(f(ag)) — v(f'(ag)) >
v(f'(ap)) >0, s0 a; € R.

Moreover v(f(ag + by)) > min{v(fi(ag)by) | i > 2}, since f(ag) + fi(ag) - by = 0. Therefore
o(F(ar) > 20(by) > v(f(ao)). Now f/(t+1) = /(1) +2ft) +. .. implies v(f(ar)— f'(an)) >
v(bo) = v(f"(ao)), so v(f'(ar)) = v(f'(ao)).

This shows that f(a;) converges to 0 v(f(a;)) — 00).

We now show that (a;) is a Cauchy sequence:

V(apy1 — an) = v(by) = v (— f(a")) = v(f(a,)) —v(f'(an)) — oo, because that first sum-

f'(an)
mand is strictly monotonously increasing (in Z) and the second summand is constant. So if
m > n: v(am —ap) = v((am — am-1) + (@m-1 —@m—2) + ...+ (@ps1 — ay)) > min{v(a; —a;—1) |
n < i < m} — oo which means that (a;) is a Cauchy sequence. O

To prove a more general version of Hensel’s lemma, we need the fact that finite dimensional
vector spaces over complete fields are complete.

Theorem 8.12. (Hensel’s Lemma, more general version) Let (K,v) be a complete discrete
valuated field with valuation ring R and mazimal ideal TR. Put F := R/mR and ~: R[X] —
F[X] the natural epimorphism. Let f € R[X] be monic such that f = hogo with gcd(hg, go) =
1. Then there are h(X), g(X) € R[X] such that h = hy, § = go and f = gh.

Proof. We use the fact that v can be extended to a complete valuation on the finite dimen-
sional K-algebra A := K[X]|/(f) and that also this algebra is complete, so that we may use
the usual Hensel procedure to lift zeros of polynomials in A. (see Skript of Computeralgebra).
For a more elementary proof I refer to the exercises (see also Neukirch, Kapitel II, (4.6)).
By Chinese remainder theorem F[X]/(f) = F[X]/(ho) ® F[X]/(g0). Let e,e’ :== 1 —e be the
idempotents in F[z]/(f) corresponding to this decomposition and let ey € A := R[X]/(f) be
a preimage of e, so ¢y = e.

We want to lift eg to an idempotent in A. From this we obtain the required factorisation of
f in R[X] again by Chinese remainder theorem.

We apply the usual Newton-Hensel Iteration to p(X) = X% — X.
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We have p(eg) € A and p'(eg) =2e — 1 € A\ 7A.
Put e,41 = e, — plen)/p(en) modulo 72" A to achieve that 2 — e, € 72" A. Modulo 72" A
we compute

(2¢, —1)> =4e2 —4de, +1=1 (mod 72" A).

Define the sequence (e,) € AN by
eny1 i=en = (€2 —e,)(2e, — 1) = e, + k, = 32 — 2¢2

where k,, = (€2 — e,)(1 — 2e,).
Claim: For all n € Ny we have €2 — ¢, € 7" A and (2¢,, —1)? — 1 € 72" A.
Proof: This is true for n = 0. If it holds for n then

eiﬂ—enﬂ = (en+k‘n)2—(en~|—kn) = ei—Qenk‘n+k‘Z—en—kn = (ei—en)(1+(26n—1)(1—26n))+k‘2 €

From this computation we obtain that (e,),cn is a Cauchy sequence since also k, € 7" A.
Now K ® A is a finite dimensional vector space over the complete field K and hence again
complete (say with respect to the maximum norm, w(> ;X ) := min{v(a;)}, but all norms
are equivalent) and therefore (e,) converges to some ey, € A with €2, = e,,. For this idem-
potent one gets A = e, oA @ (1 — ex)A.

To obtain the factorization of the polynomial f, let eo, = a(z)+(f) € A, for some a(x) € R|x],
then g := ggT(a, f) and h := % are the required factors of f in R[z]. O

As an exercise you prove a little bit more general version that the previous theorem holds
also for primitive polymonials in f € R[X], i.e. it suffices that one of the coefficients of f is
a unit in R.

Example. Factorise p(z) = 27 — 1 in Zs[z].

In Z[x] we compute p(z) = (x — 1) f(x) with f(z) = 25+ 2° + 2* + 2% + 22 + 2 + 1. Since Fyg
contains a Tth root of unity we obtain

f = hogo € Fylz] with hg = 2® + 2%+ 1, gy = 2® + o + 1.
With the Euclidean algorithm one computes
1 = ged(ho, go) = xgo + (1 4+ z)hg also e = xgo.
Put ey := 2! + 2% + © € Zy[z] then €2 — e; =; —2(z* + 22 + z + 1). Put
ey i= 3¢ — 2 = —z* — 2* — 2 — 10(modulo f)

then
e5 — ey = 4(5x + 5% + bx + 27).
Put
e3 1= 3e5 — 2e5 = 595z + 59522 4 5952 + 2178(modulo f)

Since we only need e3 modulo 16 we may reduce coefficients modulo 16 and work with
es = 3x* + 322 + 32 + 2. Then
e; — ez =5 —16.

2n+1

A.
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Put
es 1= 3e5 — 2e3 = 992 + 992% + 99z + 50(modulo f)

Then € — ey =; —17152 = 2%67. So by accident we have
6% — ey, =5 ay € 22n_IZQ
and obtain

eni1 = 32 —2e2 = —2(e2 —e,)e, + b =5 (€2 —en) + (1 — 2a,)e, =f an + (1 — 2a,)ey,

n

: : ; - 443 2 2 —
from which we obtain the recursion (a := a,) an41 = 4a;, — 3a;, since e;_ | — e 11 =5

(a+(1-2a)e,)*—(a+(1-2a)e,) = a*—a+2a(1—2a)e,—2a(1—2a)e’+(1—2a)(e2 —e,) = 4a*—3a>.

8.3 Extension of valuations.

Lemma 8.13. Let (K,v) be a complete discrete valuated field and f(X) = agX" +a; X" ' +
ot a1 X + a, € K[X] irreducible. Then v(a;) > min{v(aop),v(a,)} for all0 < i < n.

Proof. Let ¢t := min{v(a;) | 0 < i < n} and assume that t < min{v(ag),v(a,)}. Let
r be maximal such that v(a,) = t. Then r # 0 and r # n and g(X) := a ' f(X) =

bo X" + by X" 1+ ...+ b, 1 X +0b, € RIX]|,b, =1, b.41,...,b, € TR and also g(X) € R[X]
is irreducible.

The reduction of g modulo 7 is

§=X"(1+b X +.. . +bX') € R/TR[X]

~
go ho

with ged(go, ho) = 1. This contradicts the general version of Hensel’s lemma for primitive
polynomials. O

Theorem 8.14. Let K be a complete discrete valuated field and L/K finite extension of
degree n = [L : K] Then there is a unique discrete valuation w : L — +Z.U {oo} that extends
the valuation of K. This valuation is given by w(c) := Lo(Np k() for all « € L and L is
complete.

Proof. Let R := R, C K be the valuation ring of K and O := Intg(L) the integral closure of
Rin L. So

O ={a € L | 3f € R[X] monic, such that f(a) =0} ={a € L | u, € R[X]}.

We claim that O = {a € L | Ny/x(a) € R} = {a € L | w(a) > 0}.
If a € L, then p, € K[X] monic and irreducible, so by Lemma 8.13

ta € RIX] < 114(0) € R Npjk(a) € R.
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We now show that the map w above is a discrete valuation of L (it clearly extends the
valuation of K). The conditions (o), (i), (ii) are clearly fulfilled by the multiplicativity of the
norm. To show the strong triangle inequality let we need to show that for all o, 5 € L

w(a+ B) = minfw(a), w(B)}

This is clear if one of them is 0, so assume that both are nonzero and that w(a) > w(f).
Then by (ii) w(§) > 0 and hence § € O. But then also 5+ 1€ O and therefore w(% +1) =
w(a+ B) —w(B) > 0 which proves (iii).

So we have established the existence.

For the uniqueness we need the following Lemma

Lemma 8.15. Let f(X) = X"+a, X" '+...+a, € K[X] irreducible. Then v(ay) > Lv(a,)
foralll <k <n.

Proof. Let L be the splitting field of f and w : L — R U {oo} be the extension of v to L
constructed above. If f(X) =[] (X — ;) € L[X], then w(8;) = 2v(a,) for all i. The

coefficient aj, is a homogeneous polynomial in the §; of degree k, so

o) = w(a) > kw(B) = o(a).

Now assume that there is a second (different) extension w’ of the valuation v and choose
a € L such that w(a) # w'(a). Wlog we may assume that w(a) < w'(a) (otherwise replace
a by a™t). Let pg == X™ +a X™ ' 4+ ...+ a, € K[X], then w(a) = Lv(a,) and all
coefficients satisfy v(ax) > £v(a,) = kw(a). Then

w'(apa™ ) = (m — k)w'(a) + v(a) > mw(a) = v(ay,) forall k =0,...,m — 1.
But a,, = —a,_ 1 — ... —a;a™ ' — o™ and therefore
W (@) = v(ay) > min{w (a@™ ) | k=0,...,m —1} > v(a)
a contradiction. U

Definition 8.16. Let (K,v) be complete, R = R, k = R/mR the residue field. Let L/K be
a finite extension, w : L* — R the extension of v, O = R,, the valuation ring with mazimal
ideal O and residue field { = O/pO. Then k <, v(K*) < w(L*).

[0 : k| = f= f(w/v) is called the inertia degree and

[w(L*) : v(K*)] =: e := e(w/v) the ramification index of w over v.

Theorem 8.17. In the situation of the definition above we have 7O = p°O and [L : K| =ef.

Proof. Clearly w(L*) < %Z, so w(L*) = %Z for some divisor e of n and any element o € L
with w(p) = L is a prime element of O. So 71O = E*O with z = w(w)/w(p) = e.

e

To see that [L : K| = ef we construct a K-basis if L. Let (by,...,bs) € O such that their
images form a k-basis of /. We claim that

(p'b; | 0<i<e—1,1<j<f)isa K-basis of L.
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These elements are linearly independent: Assume that there are a;; € K such that ), . a;;0'D;
0 such that not all a;; are zero. Put s; := Zj a;;b;. Then not all s; are 0 (choose a;; € R
and not all in 7R and use the fact that the b; form a basis of O/pO) and if s; # 0 then
w(s;) € v(K*).

From the fact that Zf;é sip' = 0 and w(s;p") # w(s;p’) for all i # j for which Sis # 0 we
obtain that the nonzero summands have distinct valuations and therefore w(} i, s;p") =
min{w(s;p') | 0 <i < e— 1} < oo a contradiction.

Generating set: Put M = (p'b; |0 <i<e—1,1<j < f)p. We claim that M = O and
hence (p'b; |0 <i<e—1,1<j < f)is an integral basis of L.

Clearly M + 70O = O so

O=M+70=M+7(M+70)=M+7°0=...=M+7"0 for all n € N.

So M is dense in O, R complete and M finitely generated R-module, so also M is complete
and so M = O. ]

9 p-adic number fields

Definition 9.1. A p-adic number field is a finite extension of Q,.

Note that any p-adic number field K is a complete discrete valuated field. We assume in
the following that K is a p-adic number field with valuation w extending v, and valuation
ring R and prime element 7. The inertia degree is denoted by f and the ramification index
by e. So

d=ef =[K:Q)),Fx := R/TR=F,,pR =7°R.

Theorem 9.2. Let K be a p-adic number field with valuation ring R and prime element 7.
Then
K* = (1) X {pig_1) x UY = () x R*

where ¢ = |R/7R|, pg-1 = {2 € K | 207 =1} 2 Cyy, (m) = {7* | k € Z} 2 Z and
UMY =1+ 7R =ker(R* — (R/7)*).

Proof. It suffices to show that C;,_y = p,—1 C K*. The polynomial X7 ! — 1 splits com-
pletely in ¢ — 1 distinct linear factors in the residue field Fx = R/mR. By Hensels lemma this
implies that all zeros of X971 —1 € R[X] already lie in R, so R* contains all ¢g—1 roots of 1. [J

We now aim to obtain an analogue of Dirichlet’s unit theorem for the structure of the
unit group of R.

Theorem 9.3. There is a unique continous group homomorphism log : K* — K such that
log(p) = 0 and log(1 + z) :x—x;%—%—... forall1 +2 € UM,

Proof. Since (K, +) has no torsion, we have log(s,—1) = {0} for any group homomorphism
log. To show that the series for log(1 + x) converges note that for 1 +z € U®" we have
w(xz) > 0 and so

w(;n) = nw(x) — vy(n) — oo for n — oo
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because nw(x) grows linearly in n but v,(n) only logarithmically. Therefore (%)neN tends to
zero which is (because of the nice properties of an ultra metric) equivalent to the convergence
of the series. The homomorphism property follows from the identity of formal power series

log((1+2)(14y)) =log(l+ x) + log(1 + vy).
Any a € K* can be written uniquely as
a =71 ¢(a) a
~
Elg—1 ev®

To define log(m) we first note that the prime element 7 is not unique, but we have the
equation p = 7°(p)p and then put log(m) := ’71 log(p) and hence

log(a) = ew(a) log(m) + log(&).

This defines a continous group homomorphism with log(p) = 0.
To see the uniqueness let A : K* — K be a second logarithm such that )\‘U(l) = log|U(1) and
A(p) = 0. Then A(py—1) = {0} and

0= Ap) =eX(m) + A(p) = eA(m) + log(p) implies A(7) = log(m).

On U™ the logarithm has a continous inverse, the exponential:

e

Theorem 9.4. For any n >
p—1

=: m the mappings

exp : ™R — U™, xr—>1+m+%2+%:’+...:zzof.—:
log: U™ — "R, 14z Y2

i=1"7
are mutually tnverse continuous group isomorphisms.

Proof. Let w be the unique contiuation of the p-adic valuation v, to K and v := ew be the
corresponding normed valuation, so v(p) = e, v(7) = 1. v

(a) log is well defined: We need to show that for v(z) > n and i € N also v(%) > n.

For ¢ = p®’ we have v(i) = ev,(i) = ea. For a > 0 (and hence ¢ > 1) we obtain

v(i)  a a 1 a 1

i—1 pi'—1 " p*—1 p—1pst4p24. .. +1" p—1

i—1
p—1

e

hence v, (i) < —<- as above. Therefore
p—1

and so v(i) = ev,(i) < m(i — 1) with m =

U(x—,)zin—m(i—1):(n—m)i+m2nsincei21,n>m.
i

(b) exp is convergent and maps 7R into U™,
Let i = ag+pay + ... +p"a, with 0 < a; <p, s; := Zgzoai > 1. Then
71— S;

vp(i) = P = o(i!) = -

1(1’ —s;) =m(i — ;)
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and so v(f—, = w(x)—m(i—s;) = i(v(z) —m)+s;m > and therefore exp(z) is convergent.

Moreover for ¢ > 1

)
p—1

> v(@)

v(=) = iv(x)—m(i—s;) = —1)v(2)—(i—s;))m > —1 - >

(=) = wv(z)=m(i—s;) = v(z)+(i—Dv(z)=(i=s)m = v(z)+(i—1)(v(z)—m) =
si>1 v(x)>n>m

so exp(7m"R) C U™,

Now expolog = id and logoexp = id since this is an identity of formal power series and

hence correct, whenever the series converge. U

Theorem 9.5. As a Z,-module the group UD =14+ 7R < R* is canonically isomorphic to
UWY = 7./p°7 x Zz where Z/p"7 = {x € R | 2¥" = 1} torsion of UV
as a Z, module.

Proof. We first obtain the (continous) Z,-module structure of U(1):
The group UM is an abelian group and hence a Z-module. Let U® := 1+ 7'R < UM, Then

UM >U® > and UY /UMD =~ (R/7R, +)

since (1 + m'a)(1 + 7'b) = 1 + 7*(a + b) + 7%ab. So the mapping (1 + 7'a)U+Y s a + 7R
defines a group isomorphism U® /U+YD =~ (R/7R, +). Now R/7R is a F, = Z/pZ-module,
so UMW /UMY is a 7 /p"Z-module and therefore

UD =1limUW /U s a Z,, = lim Z/p"Z module.
— —

More precisely the Z,-action of z = (2;)ien € Zy, z; € Z/p'Z on UW is given by

zx(l4+2):=1+2):= Zliglo(l + )%

For any z € 7R the mapping z + (1 +)?,Z, — U is continous: If z = 2’ (mod p"), then
(1+2)*=(1+2)" (mod UM+Y).

To obtain the rank of the Z,-module UM note that for n > m = ]ﬁ the mapping log :
U™ — 7"R is a continous group homomorphism and also a Z,-module homomorphism,
since log((1+2)%) = zlog(14x). So U™ = "R = 7 as Z,-module. Since [UV) : UM] < oo
we have U = Zg @ T with T finite. Torsion in K™ are roots of unity, and the roots of unity
in UM are those that map to 1 mod 7 and hence these are the p-power roots of unity. [

Remark 9.6. K* 2 Z® Z/(q — 1)Z & Z/p"Z & ZI[DK:Q”] as Zy-module. Any Z,-module
generating system of K* is called a topological generating system.

Example. (Proofs as exercise !!)
(a) Let p > 2 be an odd prime. Then Z = Z/(p — 1)Z & Z,, with Z, = UV = (1 + p)z, .
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e

ezl,p—1>1s,0n:1>p_1
(b) For p = 2 there are 2-power roots of 1 in Z} and

works here.

Zs = (=1) x U® = (=1) x (1 +4)z, 2 7Z/27. 7,

(c) Let K = Q5[v2],50 f =2, e =1, R = Zs[v/2]. Then K* = (5) x {(54) x UM with
UM = (log(1 4 5),log(1 + 5v/2)) = 5R = (5, 5V/2)

indeed UM = (145,14 5v/2),.
(d) Let K = Qs[v/5],50 f =1, e =2, -% < 1 and therefore

p—1

K* = <\/5> X <§4> X <1+\/g’1+5>25'

(e) LetK:Qg[\/g],sole,e:Zp%lzland
K* = (V3) x (=1) x U

but we only know U® = (143, 1+3+/3)z, from the theory. UM /U = {1,14++/3,1-+/3} =
(14 /3) = Cy with (14 /3)? =1+3v3+ 3\/32 + \/53 =1+ 6v/3 modulo U®, so
U0 = (14 V3,1 43)

(f) Let K = Q3[v/=3],50 f=1,e=2, - =1 and

K* = (vV=3) x (=1) x UV

but we only know U® = (1 + 3,1+ 3v/=3)z, from the theory. UM /U® = {1,1+/=3,1 —

V=3} = (1++v/=3) 2 ;. But now (1++/-3)% =1 +3v/=3+3v/=3 +/=3" = —8 50 here
U(l) = Cg X U(Z)

Corollary 9.7. Forn € N we have
(a) [K7: (K*)"] = Zpd“p(”)!un(f()\~
(b) [R*+ (B)"] = p™»™|pn (X))

As Exercise: explicit examples with n = 2 and n = 3.

9.1 Unramified extensions

Definition 9.8. Let K be a p-adic number field with valuation ring Ok, prime element Ty,
residue field O /O =: Fx of characteristic p, discrete valuation vk such that v (K*) =
Z. Let L/K be a finite extension of K, with valuation ring Op, prime element wp, residue
field O /w0 =: Fy, of characteristic p, discrete valuation vy, such that (UL)‘K = vg.

(a) e(L/K) := vp(mr)™" = [vp(L*) : v, (K*)] is called the ramification index of L over
K.
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(b) f(L/K) = [Fy, : Fk| is called the inertia degree of L over K.
(¢) L/K is called unramified, if e(L/K) = 1.

(d) L/K is called purely ramified, if f(L/K) = 1.

(e) L/K is called tamely ramified, if pfe(L/K).

(f) L/K is called wildly ramified, if p | e(L/K).

Theorem 9.9. Let L/K be a finite extension of p-adic fields, q == |Fx|, ¢/ := |Fy|. Then
there is a unique subfield K < T < L such that T/K is unramified and [T : K| = f = [Fr :
Fgl. T := Tyk is called the inertia field of L/K. The field T = Zerfx (X7 — X) is a
Galois extension of K with Galois group Gal(T/K) = Gal(Fr/Fk) = Cy. Any unramified
subfield K < M < L with e(M/K) =1 is contained in T.

Proof. By Hensel’s Lemma all roots of unity in the residue field Fp, lift to roots of unity in
L and hence T := Zerf (X o _ X ) < L. This extension has degree f over K and is totally
unramified. Totally unramified subfields of L are generated by certain ¢/ — 1 roots of unity
(not necessarily primitive) and hence contained in 7. O

Theorem 9.10. Let K be a p-adic number field, |Fx| = q. For any f € N there is a
unique unramified extension L =T, of K of degree f. This is a galois extension given as

L = Zerf (X7 — X) and Galois group = Cy. The restriction map
a: Gal(L/K) = Gal(Fr/Fg) = (Frobg), o — 00, mod 70y,

1 a group isomorphism. The preimage Fr~0bq of Frob, is a generator of Gal(L/K) and called
the Frobeniusautomorphism of L over K.

Proof. Clear. The lifting of the Galois automorphisms is proven similarly as in the number
field case. O

Theorem 9.11. If L/ K is tamely ramified and T := Ty, denotes the inertia field of L/ K,
then there is some prime element mp € T' such that L = T'[¢/7r].

Proof. Assume wlog that K = T and let w be an extension of vgx to L. Then [w(L*) :
vg(K*)] = e = [L : K] and for any prime element 7, of L we have w(r;) = +. Note that
any prime element 7, generates L. We have 7§ = mye for some unit € € O} . Since Fx = FJ,
there is some unit b € O and u € 1 + 7,0 such that € = bu, so 7¢ = (brg)u = 7u. The
polynomial f(X) := X¢—wu € Or[X] has a zero modulo 7, (take 1). Since e is prime to the
characteristic of Fp, the derivative f/(X) = eX®! satisfies f/(1) = e € O}. By Hensel, we
may hence lift 1 to a zero 8 € O} of f(X), so 8¢ = u. Then 7}, := 737! satisfies (7})¢ = 7.
It is a zero of the Eisenstein polynomial (X¢ — 7 ) = pir and hence L = K|[n}]. O
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Remark 9.12. The compositum of tamely ramified extensions is again tamely ramified and
hence any extension L/K contains a mazimal tamely ramified subfield Vi, k.

L > Viyxk =2 Tyyx > K
N N =

oo M
with f = f(L/K), e =e(L/K) = p“e.

So the tamely ramified extensions of K with ramification index e and inertia degree f
correspond to OF/(O7)® = (ug—1)/(pg_,) where T' is the unramified extension of degree f of
K and q = p/, p=|Fk|.

Examples K = Qs:

Extensions of degree 2: Qs[v/2] (f=2,e=1), Qs[v/5], Qs[v/10].
Extensions of degree 3 Qs[C124] (f=3,e=1), Qs[v/5] since Z/(Z:)* = 1.
Exercise: Classify all extensions of degree 4 of Q5.

10 Different and discriminant

Let K be a p-adic number field with valuation ring O, prime element 7x and residue field
Fx = Ok /mxOk. Let L/K be a finite extension.

Definition 10.1. Sy k : L — K,z + trace(mult,) is called the trace of L over K.
S:LxL— K,S(x,y) = Sr/k(xy) is called the trace bilinear form.

OZ ={z e L|S(x,a) € Ok for all o € OL} is called the inverse different of L/K.
O7 is a fractional Op-ideal in L, so Of =180y for somed € Z, d < 0.
The different of L/K is D(L/K) := n;°Oy and the discriminant of L/K is the norm

D(L/K) = Nyy(D(L/K)) = {Nyjxc(a) | a € D(L/K)} = 7 "Oxc < O
Theorem 10.2. If L/K is unramified then D(L/K) = Oy, D(L/K) = Ok.

Proof. Let B := (by,...,b,) € O} be a lift of some Fi-basis of Fy. Since the trace bilinear
form of I}, over F is non degenerate, the determinant of the Gram matrix of B with respect
to S is not a multiple of 7, and hence in Oj. Therefore Oy = Of. O

Theorem 10.3. Let K C L C M. Then
D(M/K)=D(M/L)D(L/K).

Proof. Let OF := D(L/K)™" = 7¢Oy, OF, := D(M/K)™" = 75,04, and D(M/L)™" =
74,0n. For z € M we compute Syr/x(20n) = S1/k(Smyr(200)O01) so

z € D(M/K)_l = SM/K(ZOM) C OK = SM/L<ZOM) C D(L/K)_l = W%OL
= SM/L(ZTI'ZGOM) C O & Zﬂ';a < D(M/L)_l = 77?\4OM &z e W%TI’?VIOM

So 76,0y = m4i7wb O = WEQ'E(M/L)OM. d
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Corollary 10.4. Let T := Ty k. Then D(L/K) =D(L/T).

Theorem 10.5. Assume that Or, = Ok|a] for some o € L and let f := """ ja; X" € Ok[X]
denote the minimal polynomial of o over K. Then D(L/K) = f'(a)Oy.

Proof. Write

X
JX) bo+ b X+ ...+ b, 1 X"t e L[X].
X —«
Then b,_; = o ' +a, 10" 2+.. . +a, ;41 € O for all i and (b, ..., b, 1) is also an Og-basis
of Op. Then we claim that the dual basis of (1,c,...,a" 1) is given by f, (bo, ooy by1) to
deduce that Of = ﬁOL, from which we obtain the theorem. If oy, ..., «,, are the roots of
f then

=X"for0<r<n-1

f(X)
SL/K( af’ ZX—OQ ()

as the difference is a polynomial of degree < n — 1 with zeros ay, ..., «a,. Comparing coeffi-

cients we find that ;
SL/K(f/(jOO o) = Oij-

for 0 <i4,5 <n-—1. O

Corollary 10.6. Let L/K be a totally ramified extension, [L : K| = e(L/K) =: e and let w
denote the normalized valuation of L. Then D(L/K) = 750y, with s = e — 1 if p does not
dwvide e and

e<s<e—1+4we), if p divides e.

Proof. We have O = Og[ry] for any prime element 7, of L. Moreover w(m;) = 1 and
w(K*) = eZ. Let f := 3 _,a;X" be the minimal polynomial of 7, over K. Then f is an
Eisenstein Polynomial, i.e. a. = 1, w(ag) = w(Nr k(7)) = e and the irreducibility of f
allows to apply Lemma 8.15 to deduce that w(a;) > e for all 0 < i < e. Theorem 10.5 says
that s = w(f' (7)) with

fl(r) = a1+ 2a9mp, + ...+ (e — Va5 %+ ent L.

The w-valuations of the summands lie in different congruence classes modulo eZ and hence
w(f'(my)) is the minimum of these valuations. If w(e) = 0 (i.e. the tamely ramified case)
then this minimum is e — 1. Otherwise this minimum s satisfies e < s <e — 1+ w(e). O

Corollary 10.7. If L/K is ramified of degree ef = n, e = [L/Ty k] then D(L/K) = n5'Op,
if L/K is tame. If L/ K is wildely ramified, then D(L/K) = w50, withe < s < e—14w(e)
where w : L* — 7 is the normalized valuation of L.

Proof. Because of Corollary 10.4 we may assume that K = T}k and L/K is totally ramified
of degree e. O
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Corollary 10.8. L/K is ramified if and only if D(L/K) # Ok.

(1). Q3(v/3)/Qjs is tamely ramified and vs(D(Zs[v/3]/Zs)) = v3(12Z3) = 1.
(ii). Q9(V/3)/Qy is wildly ramified and vy(D(Zy[V/3]/Z2)) = v4(12Z5) = 2.
(iii). Q2(v/2)/Qy is wildly ramified and vy(D(Zy[v/2]/Zs)) = v2(87Z) = 3.

10.1 Cyclotomic p-adic fields
Theorem 10.9. Let m > 1 and ¢ := (ym. Then

(a) Q,[C1/Q, is totally ramified of degree e = [Q,[C] : Q)] = ¢(p™) = (p — 1)p™".
(b) Gal(Qy[¢]/Q,) = (Z/p"Z)".
(c) m:=(C—1) is a prime element of Q,[¢] with norm N(w) = p.
(d) vp(D(Q,[C]/Qp)) = p™H(mp —m — 1).
(¢) D(Q,[C]/Qy) = 7 ZLy[(] with s = p™ = (mp —m — 1) = w(e) + e —p"~".
(f) UD = () x (L+7" | 2<i<p™,plifallsi#p™)
Proof. ¢ is a zero of
h(X) = X®- 0" L xe-20m  e QX

Put g(X) := h(X +1). Then g(7) = h(¢) =0, g(0) = h(1) =p. As

m m—1

—1) = (X - 1) (mod pZ,[X))

the polynom g is an Eisenstein polynomial and hence irreducible. We hence conclude (a) and
(c). Also (b) follows from the irreducibility of h, as the zeros of h are exactly the powers *
witha € {1,...,p™} not divisible by p. The valuation ring of Q,[(] is Z,[r| = Z,|(], so we may
compute the discriminant as D(Q,[¢]/Q,) = h(¢)Z,[¢]. Now h(X) = (X" —1)/(X?"" 1)

SO
1 —1
h/ X)= —— mXpm—l o m—lXpm —lh X
(%) = i (p p (x)

and h'(¢) = z:,gf: Now 7 := Cpm_l is a primitive p-th root of unity, so NQp[n]/Qp(n —~1)=p
Therefore v,(N(h'(¢)) = p™ Hp — I)m — p™ ! =

m—1

and hence No,(q/q,(n — 1) = p”
P mp —m - 1)

To conclude the last statement note that D(Q,[¢]/Q,) = 7°Z,[¢] with s = p™ ! (mp—m —1)
by (d). Now e = p™ — p™ ! so w(e) = (m — Nw(p) = (m — 1)(p™ — p™ ') and

wle)+e—p" = (m—-1E" —p" ) +p" —p" T =" =mp™ —mp™ Tt —p
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Corollary 10.10. Let n = p™k € N such that p does not divide k and (, be a primitive n-th
root of unity..

(a) Z,Cy) is the valuation ring of Q,[C).

(b) T :=T(Q,[C]/Q,) = Q2] is the maximal unramified subfield.
(¢) f=IT:Q,) is the order of p in (Z/KZ)*.

(d) e(Qy[i]/Qp) = (p— 1)p™ .

(e) V(Q,[¢]/Q,) = Q,[¢2" "] is the mazimal tamely ramified subfield.

11 Application to algebraic number fields

11.1 Completion and field extensions

Let (K,v) be a discretely valuated field with completion K,. Then v : K, — Z U {co} has
a unique extension to a valuation ¥ of the algebraic closure K,. Now let L /K be a finite
extension. Any embedding 7 : L — K, defines a valuation w, = v o 7 of L that extends v.

Theorem 11.1. All extensions of v to L are oﬁhe form w, =vor1. We have that w, = w,
if and only if T = o0 o T for some o € Autk, (K,) (then we say that T and 7' are conjugate
over K, ).

Proof. Let w be an extension of v to L with corresponding completion L,; view w as the
valutaion of L, extending v : K, = Z U co. As L,, is an algebraic extension of K, and the
uniqueness of extension of valuations for complete fields, we have w = v o 7 for all embed-
dings 7 € Homg, (L., K,). Any other such embedding is of the form oo as in the theorem. [J

Assume that L/K is separable with primitive element o € L, so L = K(«). Let f :=
fa,x € K[X] denote the minimal polynomial of . Then f = g;--- g, € K,[X].

Corollary 11.2. The valuations {w,...,w,} of L that extend v are in bijection with the
irreducible factors of f € K,[X]. For a € L we have

L ®K Kq_} == @Lwi, NL/K<(I) = HNLwi/Kv(a’)? cmd SL/K<(I) = ZSLwi/Kv(a)'
=1 =1 =1

Proof. Any K-linear embedding of L into K is uniquely determined by mapping a to some
zero 3 of f. Two such embeddings are conjugate over K, if and only if these zeros are zeros
of the same irreducible factor g;. Clearly

Lok K, = K[ X]/((f(X)) = EBKU[X]/(%(X)) = @Lwi'

The characteristic polynomial of any a € L is the product of the characteristic polynomials
of the corresponding elements a; € L,, where (ay,...,a,) denotes the image of a ® 1 under
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the above isomorphism. From this we obtain the equations for norm and trace. O

Let K be an algebraic number field with ring of integers R. Any prime ideal P < R of R
defines a valuation
vp: K* =7, vp(a) :=max{a € Z | a € P*}
with valuation ring R(p) := {§ € K = Quot(R) | b ¢ P}. The completion Kp of K at vp is
a p-adic number field, where pZ = P N7Z. If P(R) denotes the set of all maximal ideals of
R, then
(R)

PeP

Remark 11.3. Let P < R be a mazimal ideal of R. Then
PZj =i ... .00

for pairwise distinct prime ideals @; < Zj, and the inequivalent valuations of L that extend
v = vp are

1 1
wy = —v e, Wy = — V.
el 919 ) e, o

Then e; is the ramification index of L, over K, and f; == [Z/p; : Zx/P] the inertia degree
of Ly, over K,. As [L,, : K,| = e;f; we re-obtain the formula

T s

[L:K] =) [Ly : K]=) efi

i=1 =1

11.2 A review of Hilbert’s ramification theory

Let L O K be algebraic number fields and assume that L/K is Galois. Let G := Gal(L/K)
denote the Galois group. Let P be a prime ideal of Zg. Then G acts transitively on the set
of prime ideals of Z; that contain P and as in Section 6.2

PZy = (o1 r)".

Let p := p; and put
Gp:={oeGlalp) =}
the decomposition group of p and 7 := Z, := Fixg (L) :=={r € L | o(z) =z for all 0 € G}
the decomposition field of .
Denote by oz := pNZ. Then pzZ; = ¢°, fr/z(p) = fr/x(p), er/z(p) = eryx(p) = e
and ez /k(pz) = fz/x(pz) = 1.

Corollary 11.4. Let v := v, : Z — Z U {oco} denote the pz-adic valuation of Z. Then

w = 1% is the unique extension of v to L.

e

I, :={0c € G, | o(x) =z (mod p) for all x € Z.} the inertia group with fixed field
T, := Fix(I,). Then T,/Z, is a Galois extension with Galois group C.
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Definition 11.5. For s € Ny we put

Gy =Gi(p):={0€G,|o(x)=x (mod p**") for allz € Z1}
the higher decomposition groups.
Remark 11.6. Gy = I, and G, <G, for all s.

Let L, denote the completion of L at v, Z,, the completion of Z at v,,,. Let R be the
valuation ring of L, andw be a prime element of R.

Remark 11.7. Gal(L,/Z,,) = G,. The completion T of T, at oz is the mazimal unramified
subfield and L, = T'[r] is totally ramified over T

Recall that R* > UM > U@ > .. >U® =1+ 71'R.
Theorem 11.8. Let s > 1. Then there is an injective group homomorphism
G,/Gysr = UG U 606G o(m)n tUGY,

In particular G is the unique Sylow p-subgroup of G, and the fized field of G is the unique
tamely ramified subfield of L]Z.

Proof. As L, = T'[r] any element in ¢ € G, is uniquely determined by o(w). If o € G then
o(z) = r (mod 7°*1) for all x € R. In particular o(7) = 7 (mod 7**!) so o(m)7~! € U®).
The set {0 € G, | o(m)m™t € UV} = G,y Now let 0,7 € G,. Then

(o(r(m)))n~" = (o(r(m)7(m) ) (r(m)n ™)
and the homomorphism property follows from the fact that
(O’(T(TF))T(TI’)71>U(S+1) = o(m)r~tUttY,
To see this write o(7) = 7+ zm*t 7(7) = 7r+y7r5+1 Then o(7(7)) = o(7) + o(y)o (7))t =
T+ (x4 o(y))ms™ + 27r%t2 and a( (7)) (m) 1
(m+(z+o(y)) e P 42m ) (r4yr* T ™ = (14 (240 (y)) w5+ 2m ) (14+yr®) ™ = 1+ (20 (y)—y)7°)

modulo UC*Y. Now o(y) = y (mod 7°) in particular o(m)7 ' = 1 + 27° = o(7(7))7(7) "}
(mod UG+D). O

11.3 Local properties
Let R be a Dedekind domain and K = Quot(R). For a prime ideal p the localization of R
at o is
Ry ={- €K |s¢p).
This is the discrete valuation ring with respect of the p-adic valuation of K,
ve: K = ZU{x},vy(a) =i aR=p'A

for some fractional ideal A “prime to p”. We also denote by K, the completion of K at g
with complete discrete valuation ring R,,.

Let V' be a K-vector space and L an R-lattice in V. The localization of L is R, L and
an R(y)-lattice in V. The completion of L at p is R,L.
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Definition 11.9. A property is called a local property, if it holds for an R-module M if
and only if it holds for all the localisations R,M if and only if it holds for all completions
R,M for all prime ideals o of R.

Equality of lattices is a local property:

Theorem 11.10. Let R be a Dedekind domain with field of fractions K. Let V' be a finite
dimensional K -vector space and let L, M be two R-lattices in V. Then the following are
equivalent:

(1) L= M.

(2) L) := Rip)L = My, for all mazimal ideals p < R.

(3) R, ® L =R, ® M for all maximal ideals p < R.

Note that a lattice is an R-submodule of V' that is finitely generated and contains a basis
of V. In particular if L and M are R-submodules of V' such that L < M and Ann(M /L) # {0}
then if one of L or M is a lattice then so is the other.
Proof. (1) = (2) = (3) is clear.
To see that (3) implies (1) we use contraposition:
So assume that L # M, wlog L € M and let ¢ € L \ M. Multiply ¢ with some element of
R to achieve that ¢ ¢ M but pf C M for some maximal ideal p of R. Then ¢ ¢ R, ® M so
R,® L # R, ® M for this prime ideal p < R. O

Theorem 11.11. Let R be a Dedekind domain, V a K -vectorspace and L some R-lattice in
V.

(a) For any R-lattice M in'V we have M, = L, for all but finitely may maximal ideals g
of R.

(b) Let X(p) be R,)-lattices in V' for all mazimal ideals o of R such that X (p) = L) for
all but finitely may p. Then M := (), X(p) is a lattice in' V' such that M) = X(p) for all
0.

(c) Let L, denote the completion L, := R, ® L which is an R-lattice in V, == K, V.
Then

() L=V (0, L,). A

(1t) Let X(p) be an Ry-lattice in Vi, for all maximal ideals p of R such that X (p) = L, for
all but finitely may p. Then M :=V N, X(p) is a lattice in V such that M, = X(p) for
all .

(d) Let o be some maximal ideal in R. Then there are bijections

{M < L|L/M is p-torsion} — {M < Ly | M full lattice} — {M < L, | M full lattice}
M — M,y — M, with iverse mapping M,y — L0 M, and similarly Mg — L0 M.

Proof. (a) Y := L+ M/L N M is an R-module of finite length. Let A := Anng(Y’). Then
A < R and for all prime ideals p with A € o we have L, = M.
(b) For all but finitely many g we have X (p) = L(,). For the other (finitely many) maximal
ideals p with have

X(p) N L) € X(9), L) € X(p) + L)
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As both are R,)-lattices in V', we have that Ann((X(p) + L))/ (X (p) N L)) = e for
some a, € Zxq. S0
LONMCMLCL+M

and Ann((L + M)/(L N M)) =[] " is a finite product of prime ideals and hence an ideal
in R. As L is a lattice, so is M.

(c) follows from (b) by noting that V' N L, = Ly,

(d) Is a consequence of (b) and (c). O

11.4 The discriminant of an algebraic number field

Corollary 11.12. Let M :=Z;, R =Zk PZ; = o7 ... 9% as before. Then
Rp @ D(M/R) = HD (M., /Rp)

and
D(M/R)= [] MND(M,/Roar).

pEP(M)

In particular one may read of the p-component of D(M/R) from D(M,/Ronr)-
From Corollary 10.7 we now get:

Corollary 11.13. Let L/K be an extension of algebraic number fields and o a prime ideal
of Zr,. Then o ramifies in L/K if and only if p divides D(L/K). Let p° be the maximal
p-power dividing D(L/K) and e be the ramification index of o in L/K. Then

(i) If e & o (so g is tamely ramified) then s = e — 1.
(it) If e € p (so p is wildly ramified) then e < s < e — 14 v,(e).

As an application of the Geometry of Numbers we obtain explicit bounds on the discrim-
inant:

Theorem 11.14. (see Neukirch Satz III (2.14)) Using Ezercise 2 on Sheet 4 one can prove

that |dg|'/? > %%”/2 where n = [K : Q|. In particular there are no unramified extensions of
degree n > 1 of Q.

Theorem 11.15. Let S be a finite set of prime ideals of the algebraic number field K. Then
there are only finitely many extensions L/ K of given degree n = [L : K| that are unramified
outside of S.
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