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Abstract Let G be a finite group and ρ : G→ GL(2n, F ) be an absolutely ir-3

reducible orthogonal representation of even degree over a finite field F . Then4

ρ(G) embeds into GO+(2n, F ) or GO−(2n, F ). We describe methods to de-5

cide which case holds for ρ, and use them to determine most of the orthogonal6

discriminants of the absolutely irreducible orthogonal representations of even7

degree that are listed in the ATLAS of Finite Groups [Con+85].8

1 Introduction9

The ATLAS of Finite Groups [Con+85] and the ATLAS of Brauer Char-10

acters [Jan+95] contain the ordinary and modular character tables of finite11

simple groups, their covering groups and automorphism groups. These char-12

acters classify the absolutely irreducible representations ρ of the group G,13

the building blocks of all group homomorphisms of G into a linear group.14

Often ρ(G) lies in a smaller classical group, such as the symplectic or unitary15

group, or an orthogonal group. In even dimension n there are two possible16

orthogonal groups over a finite field F , GO+(n, F ) and GO−(n, F ).17

During the past two years, the authors compiled a list of additional data,18

the orthogonal discriminants of the even degee indicator + characters. Over19

finite fields these are O+ resp. O− according to whether ρ(G) is a subgroup20
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of GO+ or GO−. Note that these questions make sense only if one considers21

the representations over finite extensions of the prime field, contrary to the22

situation in many representation theoretical results, where one considers only23

representations over algebraically closed fields.24

The computational task is to determine the orthogonal discriminants (as25

far as possible) of absolutely irreducible representations of Atlas groups.26

The results are collected in the text file27

https://github.com/ThomasBreuer/OrthogonalDiscriminants.jl/data/odresults.json.28

The data rely on the notation and the ordering of character tables in29

the ATLAS of Finite Groups [Con+85], in the ATLAS of Brauer Characters30

[Jan+95], and in the character table library that belongs to the OSCAR sys-31

tem, as a part of the GAP system. More generally, the names of groups and32

characters as well as the notation to describe irrational values from charac-33

ter fields in characteristic zero are compatible with the functions in GAP and34

OSCAR that deal with characters and character tables.35

Section 2 introduces the notion of orthogonaly stable characters and the36

necessary facts about characters, quadratic forms, and indicators. The meth-37

ods for computing orthogonal discriminants are then described in Section 3.38

Finally, Section 4 lists some applications of our results.39

2 Theoretical Background40

2.1 Characters41

Let G be a finite group. Any group homomorphism ρ : G → GL(n,K), for42

some field K, is called a (matrix) representation of G.43

The character of ρ is defined by χρ : G→ K, g 7→ Tr(ρ(g)).44

If the characteristic of K is zero then χρ is called an ordinary character. In45

this case, two representations are equivalent if and only if they have the same46

character. The character field of the character χ is F (χ) = Q({χ(g); g ∈ G}).47

Since each matrix ρ(g) is diagonalizable, where the diagonal entries are roots48

of unity, F (χ) is contained in some cyclotomic field Q(ζN ), where ζN =49

exp(2πi/N) for some divisor N of |G|.50

If the characteristic of K is a prime p then we consider only the situation51

that K is a finite extension of its prime field Fp. The character χρ is then52

called a Frobenius character, and the character field F (χ) = Fp({χ(g); g ∈53

G}) is a finite field. Frobenius characters do in general not determine their54

representations up to equivalence.55

In order to relate representations in characteristic zero and in finite char-56

acteristic p, we define the Brauer character of a representation ρ : G →57

GL(n,K), where K is a finite extension of Fp, as a map on the set Gp′58

of those elements in G that have order coprime to p, as follows.59
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For each element g ∈ Gp′ , ρ(g) is conjugate to a diagonal matrix diag(ε1, . . . , εn).60

Let q be a power of p such that Fq contains all eigenvalues of all ρ(g) for61

g ∈ Gp′ . The multiplicative group F×q is cyclic, we first choose a genera-62

tor z and define the group isomorphism η0 : 〈ζq−1〉 → F×q by η0(ζq−1) = z.63

Then we define ηq : Z[ζq−1] → Fq as the unique ring homomorphism with64

the property ηq(ζq−1) = z. The Brauer character of ρ at g is defined as65

ϕρ(g) = η−10 (ε1) + · · ·+ η−10 (εn).66

Note that ηq(ϕρ(g)) = χρ(g), that is, the Brauer character of ρ determines67

the Frobenius character of ρ.68

Note that the Brauer character values depend on our choice of the gener-69

ator z of F×q . We want to consider many different groups and their Brauer70

characters at the same time, thus we have to choose the maps ηq compatibly71

for various powers q of p.72

An ordinary or Brauer character is called absolutely irreducible if it is73

not the sum of two characters. We denote the set of absolutely irreducible74

ordinary characters of G by Irr(G), and the set of absolutely irreducible75

Brauer characters of G in characteristic p by IBrp(G). The cardinalities of76

Irr(G) and IBrp(G) are equal to the numbers of conjugacy classes of elements77

in G and in Gp′ , respectively.78

Each character can be written uniquely as a sum of absolutely irreducible79

characters, with nonnegative integer coefficients. Moreover, the restriction of80

each ordinary character to Gp′ yields a Brauer character; this is described81

by the p-modular decomposition matrix Dp = [dχ,ϕ] of G, whose rows and82

columns are indexed by χ ∈ Irr(G) and ϕ ∈ IBrp(G), respectively, where83

χGp′ =
∑
ϕ∈IBrp(G) dχ,ϕϕ.84

If p does not divide |G| then Gp′ = G holds, in this case regarding ordinary85

characters as p-Brauer characters defines a bijection from Irr(G) to IBrp(G);86

thus after reordering IBrp(G) we have Dp = I is the unit matrix.87

Remark 1 The choice of ηq can be interpreted as the choice of a series of88

prime ideals in the cyclotomic fields Q[ζq−1], and hence of prime ideals in the89

character fields of the ordinary characters compatible with the action of the90

Galois group on Irr(G) (for more details see [NP23, Section 6]). These prime91

ideals do play a crucial role when we use the decomposition matrix to deduce92

restrictions on the orthogonal discriminants as illustrated in [NP23, Section93

7.1] and also Section 3.1.2 below.94

If the characteristic p divides the group order, then representations are not95

necessarily (equivalent to) the direct sum of irreducible representations; the96

Brauer character χ of a representation ρ only determines the composition97

factors of ρ. Choosing a composition series the matrices in ρ(G) are block98

triagonal matrices where the diagonal blocks give the action of G on the99

composition factors. In particular we get the following remark.100

Remark 2 For any a ∈ KG the characteristic polynomial of ρ(a) does not
depend on the representation ρ of G but only on its character χ. In particular
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detχ := det ◦ρ : KG→ K, a 7→ det(ρ(a))

only depends on the character χ.101

2.1.1 Some notation102

We briefly recall the most important abbreviations for character values as103

they are used in [Con+85]. For more details see [Con+85, Section 7.10].104

Character values are expressed as sums of roots of unity, e.g. zN = ζN and105

yN = ζN + ζ−1N . The superscript ∗k means the same sum where each root of106

unity is replaced by its k-th power. bN , cN , . . . usually denote irrationalities in107

the N -th cyclotomic number field that have degree 2, 3, . . . over the rationals.108

2.2 Quadratic forms109

Let K be a field and V a finite dimensional vector space over K. A quadratic
form is a map Q : V → K such that Q(av) = a2Q(v) for all v ∈ V, a ∈ K
and such that its associated polarisation

BQ : V × V → K,BQ(v, w) := Q(v + w)−Q(v)−Q(w)

is a K-bilinear form. The quadratic form is called non-degenerate, if its po-110

larisation is a non-degenerate symmetric bilinear form. As 2Q(v) = BQ(v, v)111

one recovers the quadratic form from the symmetric bilinear form BQ if112

char(K) 6= 2. This can be used to define the discriminant of the quadratic113

form as (−1)a det(BQ)(K×)2, where a = dim(V )(dim(V )−1)/2 and det(BQ)114

is the determinant of a Gram matrix of BQ. For fields of characteristic 2 the115

discriminant is replaced by the Arf invariant (see [Knu+98, page xix], [Kne02,116

Section 10]).117

2.2.1 Finite fields118

Over finite fields dimension and discriminant are separating invariants of the119

isometry classes of quadratic forms. A classification of quadratic forms over120

finite fields is well known (see [Kne02, Chapter IV]): So let K be a finite field121

and Q : V → K a non-degenerate quadratic form. If the characteristic of122

K is odd, then the space (V,BQ) has an orthogonal basis and for each even123

dimension there are exactly two isometry classes of non-degenerate quadratic124

forms according to their two possible discriminants ∈ K×/(K×)2. If the125

characteristic of K is 2, then BQ is a non-degenerate symplectic form and126

hence the dimension of any non-degenerate quadratic space is even.127
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Over any finite field there are exactly two non-degenerate quadratic spaces
of dimension 2, the hyperbolic plane

H := (〈e, f〉, Q) with Q(ae+ bf) = ab

and the norm form N := (F,NF/K) where F/K is the field extension of
degree 2. Every quadratic space of dimension 2n is an orthogonal sum of
copies of H and N. As N ⊥ N ∼= H ⊥ H there are hence two isometry
classes of such quadratic spaces of even dimension

Q+
2n :=⊥n H and Q−2n :=⊥n−1 H ⊥ N.

In odd characteristic the discriminant of Q+
2n is a square and the discriminant128

of Q−2n is a non-square.129

Definition 1 For all finite fields we denote the discriminant of Q+
2n by O+130

and the discriminant of Q−2n by O−.131

The orthogonal groups of non-degenerate quadratic spaces over a field K
with q elements are denoted by

GO+
2n(q) = O(Q+

2n), GO−2n(q) := O(Q−2n), and GO2n+1(q)

where the latter only occurs for odd q and is the orthogonal group of any
odd dimensional quadratic space (V,Q). Note that if dim(V ) = 2n+1 is odd,
then

disc(V, εQ) = εdisc(V,Q)

and O(V,Q) = O(V, εQ) for any ε ∈ K×.132

2.2.2 Hermitian forms133

Given a Galois extension L/K of degree 2 and an L-vector space V of finite134

dimension n. Restriction of scalars turns V into a K-vector space VK of135

dimension 2n. Any Hermitian form H : V × V → L defines a quadratic136

form QH : V → K, v 7→ H(v, v). The discriminant of this quadratic form137

is determined directly by the extension L/K (see [Sch85, page 350], [NP23,138

Proposition 3.12]):139

Proposition 1 Let (V,H) be a non-degenerate Hermitian L-vector space.140

(a)If char(K) 6= 2 then write L = K[
√
δ]. Then disc(QH) = δn(K×)2.141

(b)If K is a finite field then disc(QH) = O+ if n is even and disc(QH) = O−142

if n is odd.143
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2.3 The indicator of an irreducible character144

Let χ be an irreducible ordinary character or Brauer character and let145

ρ : G→ GL(V ) be an absolutely irreducible representation with character χ.146

Then the character of the contragredient representation ρ∨ : G→ GL(V ∗) is147

the complex conjugate character χ. If χ = χ then any isomorphism ϕ : V →148

V ∗ =Hom(V,K) gives rise to a G-invariant bilinear form on V defined by149

B′(v, w) := ϕ(v)(w). As the radical of an invariant form is a submodule of V150

this form B := B′ is either skew-symmetric or B(v, w) := B′(v, w)+B′(w, v)151

is a symmetric non-degenerate G-invariant bilinear form. In characteristic152

2 we need to distinguish whether B is the polarisation of a G-invariant153

quadratic form (indicator +) or not (indicator −).154

Definition 2 The indicator of χ is defined as155

◦ if χ takes non real values.156

+ if χ = 1 is the trivial character or χ is real and the form B comes from a157

G-invariant quadratic form on V .158

− if χ is real and B is not the polarisation of a G-invariant quadratic form159

on V .160

2.4 Orthogonally stable characters161

Given a representation ρ : G→ GL(V ) we put

Q(ρ) := {Q : V → K quad. form | Q(gv) = Q(v) for all g ∈ G, v ∈ V }

to denote the space of G-invariant quadratic forms in ρ. Then ρ is called162

orthogonal, if Q(ρ) contains a non-degenerate quadratic form. A character χ163

of G is called orthogonal if there is an orthogonal representation affording χ.164

An orthogonal character χ is orthogonally stable, if there is a square class ∆165

of the character field of χ such that for all representations ρ : G→ GLχ(1)(K)166

of G affording the character χ all non-degenerate quadratic forms in Q(ρ)167

have discriminant ∆(K×)2. Then ∆ =: disc(χ) is called the orthogonal dis-168

criminant of χ. Clearly orthogonally stable characters and their orthogonal169

constituents have even degree, but this is the only restriction for being or-170

thogonally stable:171

Theorem 1 (see [NP23, Theorem 5.15]) A character χ is orthogonally sta-172

ble, if and only if all indicator + constituents of χ have even degree.173

The main result of [Neb22b] shows that even though there might be no174

representation ρ over the character field with character χ, there is always such175

a square class of the character field that gives the orthogonal discriminant of176

an orthogonally stable character.177
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If χ = χ1 + χ2 is the sum of two orthogonally stable characters then178

disc(χ) = disc(χ1) disc(χ2) (see [NP23, Proposition 5.17] for a precise for-179

mulation taking into account the different character fields). So it suffices to180

determine the orthogonal discriminants of the orthogonally simple characters181

([NP23, Section 5.3]).182

Remark 3 The orthogonally simple characters χ are183

+ Absolutely irreducible characters χ of even degree and indicator +.184

◦ The sum χ = ψ+ψ of a pair of complex conjugate characters of indicator185

o: Then K(ψ) = K(χ)[
√
δ] and disc(χ) = δψ(1)(K(χ)×)2 by Proposition186

1.187

− χ = 2ψ for an indicator − self-dual character and disc(χ) = 1.188

Starting from the character table of G with all indicators known it hence189

suffices to compute the orthogonal discriminants of the absolutely irreducible190

even degree characters of indicator +.191

3 Methods192

3.1 Theoretical methods193

3.1.1 p-groups194

The paper [Neb22a] gives a formula for the orthogonal discriminant of an195

orthogonally stable ordinary character χ of a p-group P . The idea is de-196

scribed easily for odd primes p. Given a non-trivial absolutely irreducible197

representation ρ of P , the image ρ(P ) is a non-trivial p-group and hence has198

a non-trivial center. As ρ is absolutely irreducible, the center acts as scalar199

matrices. Hence the character field of ρ contains the cyclotomic field Q[ζp]200

and one may use Proposition 1 to obtain the orthogonal discriminant of ρ+ρ:201

The maximal real subfield of Q[ζp] is generated by yp := ζp + ζ−1p . Choose202

δp ∈ Q[yp] =: Z+ such that Q[ζp] = Z+[
√
δp]. For p ≡ 3 (mod 4) one may203

choose δp = −p, in general the totally negative generator δp = (ζp − ζ−1p )2 =204

y∗2p − 2 of the prime ideal over p is a possible choice.205

The character χ is orthogonally stable, if and only if χ does not contain206

the trivial character as a constituent. Let K denote the character field of χ,207

put K1 := K ∩ Z+, and a := [Z+ : K1]. Then 2a divides χ(1).208

Theorem 2 (see [Neb22a, Theorem 4.3, Theorem 4.7]) Let χ be an orthog-209

onally stable character of a p-group P and let K1, a be as above.210

• If p is odd then disc(χ) = NZ+/K1
(δp)

χ(1)/(2a)(K×)2.211

• For p ≡ 3 (mod 4) this reads as disc(χ) = (−p)χ(1)/2.212

• If p = 2 then disc(χ) = (−1)χ(1)/2.213
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3.1.2 Modular reduction214

The discriminant of an ordinary character χ is a square class disc(χ) =215

δ(K×)2 of the character field K = F (χ). It hence determines a unique field216

extension Disc(χ) := K[
√
δ] of degree 1 or 2 of the character field. This field217

extension is called the discriminant field of χ.218

Theorem 3 (see [NP23, Theorem 6.4]) Let χ be an orthogonally stable or-219

dinary character. If the reduction of χ modulo the prime ℘ (cf. Remark 1) is220

orthogonally stable then ℘ is unramified in the discriminant field extension221

Disc(χ)/K.222

Mild extra conditions allow one to read off disc(χ (mod ℘)) from the de-223

composition behaviour (split or inert) of ℘ in the discriminant field extension224

Disc(χ). These extra conditions are always satisfied if ℘ does not divide the225

group order and allow one to determine the modular orthogonal discriminants226

from the ordinary ones for those primes.227

Corollary 1 The only primes that might ramify in Disc(χ)/K are the prime228

divisors of the group order. This yields a finite a priori list of possibilities for229

disc(χ).230

For characters in blocks with cyclic defect group, even more is true. We231

only give the conclusion for defect 1:232

Remark 4 (see [NP23, Theorem 6.10]) If χ is an irreducible character in a233

block of defect 1, then also the converse of Theorem 3 holds: ℘ is ramified234

in Disc(χ)/K if and only if the reduction of χ modulo ℘ is not orthogonally235

stable.236

[NP23, Section 7.1] exclusively uses the modular decomposition matrices237

and the methods described above to determine all orthogonal discriminants238

for the sporadic simple group J1. Another example where this strategy works239

well is given in the next section.240

3.1.3 The orthogonal discriminants of R(27)241

The finite simple group R(27) is a twisted group of Lie type, the centraliser of242

an outer automorphism in G2(27). The order of R(27) is 23 · 39 · 7 · 13 · 19 · 37243

and there are no even degree indicator + absolutely irreducible 3-Brauer244

characters. All modular and ordinary orthogonal discriminants of R(27) are245

determined by the p-modular decomposition matrices for the primes p =246

2, 7, 13, 19 and 37 as shown in the following table.247
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χ F (χ) disc(χ) mod 2 mod 7 mod 13 mod 19 mod 37

13832abcdef f37 1 O+ O+ O+ O+ O+
18278a Q −3 O− O+, O+ O+ O+ O+

18278bcd y7 −3 O− O+ O+ O+ O+
19684abcdef y13 3(2− y13) O− O− 1 + 19683 O− O−
19684ghijkl y13 3(2− y13) O− O− 703 + 18981 O− O−

26936abc c19 1 O+ O+ O+ O+, O+, O+ O+

The first column gives the ordinary absolutely irreducible orthogonal char-248

acter in the form χ(1)ab..., the second one its character field (in ATLAS249

notation see Section 2.1.1) followed by a representative of the orthogonal dis-250

criminant disc(χ). We group the Galois conjugate characters into one row.251

The next columns, headed by mod p, indicate the p-modular reduction of χ,252

where we list the orthogonal discriminants of the orthogonally simple con-253

stituents.254

By Theorem 3 the discriminant field extension is unramified at all primes255

but possibly at the ones dividing 3 for all absolutely irreducible characters256

of degree 6= 19684. For the 12 characters of degree 19684 Remark 4 implies257

that the discriminant field extension is ramified at the prime dividing 13258

and possibly at the two primes dividing 3. In all cases this yields a unique259

discriminant field from which one obtains the orthogonal discriminants of the260

ordinary irreducible characters of indicator +. These allow one to read off the261

modular orthogonal discriminants of their modular reductions and hence all262

orthogonal discriminants for all irreducible p-Brauer characters χ of indicator263

+ that do lift. Only the following three exceptions do not lift:264

(a)p = 2, χ(1) = 16796:
Here χ occurs with multiplicity 1 in a permutation character of degree
19684 which decomposes as

2 · 1 + 2 · 702 + 741ab+ 16796.

The following argument can also be found in [GW97, Section 1]: Let265

V ∼= F19684
2 be the permutation module and e := v1 + . . . + v19684 the266

canonical fixed vector in V . The subspace e⊥ consists of even weight vec-267

tors and half of the weight mod 2 is an S19684-invariant quadratic form on268

e⊥ with radical 〈e〉. Hence it induces a non-degenerate quadratic form Q269

on e⊥/〈e〉, which is of orthogonal discriminant O−, as 19684 ≡ 4 (mod 8).270

Now e⊥/〈e〉 = 2 · 702 + 741ab + 16796 is an orthogonally stable module271

for R(27). The irrationality of 741a is z3, so 741ab contributes O− to this272

sum leaving O+ for the orthogonal discriminant of 16796.273

(b)p = 7, χ(1) = 16796. Here χ occurs in the 7-modular reduction of X15 =274

741ab + 16796. As z3 ∈ F7, the orthogonal discriminant of 741ab is O+275

and hence the orthogonal discriminant of 16796 is also O+.276

(c)p = 19, χ(1) = 19682. Here χ occurs in the 19-modular reduction of X33 =277

1443ab+ 2184ab+ 19682 which is orthogonally stable. The character fields278
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of 1443a and 2184a are both F19[z3] = F19 so the orthogonal discriminant279

of χ is O+.280

3.2 Reduction to simple groups281

3.2.1 Groups with a non-trivial center282

By Schur’s Lemma central elements act as scalars on irreducible representa-283

tions, in particular it is enough to consider cyclic central subgroups. If the284

exponent of the center of G is strictly bigger than 2 then all faithful irre-285

ducible characters of G are non-real, i.e. of indicator ◦, and Proposition 1286

can be used to determine orthogonal discriminants. For central elements of287

order 2 we use the spinor norm to deduce discriminants:288

Given a non-degenerate quadratic form Q : V → K, the spinor norm de-289

fines a group homomorphism from the orthogonal group ofQ intoK×/(K×)2,290

a group of exponent 2, where the spinor norm of a reflection along vector v291

equals Q(v) (see [Kne02]). Over a field K of characteristic not 2, the space292

V has an orthonormal basis (v1, . . . , vn). The orthogonal mapping −idV is293

the product of the reflections along the vi and hence its spinor norm is294 ∏n
i=1Q(vi) = 2−n det(Q).295

Theorem 4 (see for instance [Neb99, Section 3.1.2]) Let χ be an orthogo-296

nally stable character of a finite group G in characteristic not 2 and let ρ be297

a faithful representation of G affording χ298

• If there is g ∈ G with ρ(g)2 = −id then disc(χ) = (−1)χ(1)/2.299

• If [G : G′] is odd and −id ∈ ρ(G) then disc(χ) = (−1)χ(1)/2.300

3.2.2 Split extensions301

Given a finite group G and an outer automorphism α of order 2 the split
extension H := G : 2 has a pseudo presentation

G : 〈α〉 = 〈G, h | hgh−1 = α(g), h2 = 1〉.

Given an orthogonal character χ of G such that χ ◦ α 6= χ Clifford theory302

shows that there is a unique irreducible character X of H such that X|G =303

χ+ χ ◦ α. As X (H \G) = {0} the character field F of X is contained in the304

character field K of χ.305

Theorem 5 (see [Neb22b, Theorem 4.3]) Assume that the characteristic is306

not 2.307

If K = F then disc(X ) = (−1)χ(1)(F×)2. Otherwise K = F [
√
δ] is a308

quadratic extension of F and disc(X ) = (−δ)χ(1)(F×)2.309
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Note that in the case that χ is already orthogonally stable, then disc(χ) =310

disc(χ ◦ α) and disc(X ) = NK/F (disc(χ)) ∈ (K×)2 ∩ F .311

3.2.3 Non-split extensions312

The following table lists all those examples of characters of almost simple313

Atlas groups H of the structure G.2, such that the criterion above does not314

suffice to compute the orthogonal discriminant of χ from that of an irreducible315

constituent ψ of χH .316

G H χ i Q(χ) Q(ψ) OD(χ)

L2(16).4 L2(16).2 34a 15 Q Q(b5) −1
L2(16).4 L2(16).2 34b 16 Q Q(b5) −5
U3(4).4 U3(4).2 78a 10 Q Q(b5) −5
U3(4).4 U3(4).2 78b 11 Q Q(b5) −1

The orthogonal discriminants can be computed in these cases as follows.317

The groupG = L2(16).4 is a subgroup of S4(4).2, the irreducible characters318

of degree 50 of S4(4).2 have orthogonal discriminant −17, and the restrictions319

of these characters to G are orthogonally stable and decompose as 16a+ 34a320

and 16c+ 34a, respectively. The orthogonal discriminants of 16a and 16c are321

17, thus 34a has orthogonal discriminant −1. Analogously, the irreducible322

character 34c of S4(4).2, which has orthogonal discriminant −5, restricts to323

34b of G, which thus also has orthogonal discriminant −5.324

The group G = U3(4).4 is a subgroup of G2(4).2, the irreducible char-325

acter 350a of G2(4).2 has orthogonal discriminant −13, its restriction to G326

is orthogonally stable and decomposes as 78a+ 52abcd+ 64a, where 52abcd327

and 64a have orthogonal discriminants 1 and 65, respectively, thus 78a has328

orthogonal discriminant −5. Analogously, the irreducible character 78a of329

G2(4).2, which has orthogonal discriminant −1, restricts to 78b of G, which330

thus also has orthogonal discriminant −1.331

3.3 Direct Methods332

Given an orthogonal representation ρ affording the character χ one can de-333

termine Q(ρ) either by solving a system of linear equations or by applying334

the Reynolds operator (see [PS96] for a more sophisticated approach). Then335

it is straightforward to compute the orthogonal discriminant disc(χ).336

If the characteristic of the underlying field K is not 2 there is no need to337

determine Q(ρ), as we can compute disc(χ) as the discriminant of the adjoint338

involution:339
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3.3.1 The natural involution on the group algebra340

Let K be a field of characteristic not 2. Inverting the group elements defines a
natural involution ◦ on KG, i.e. (

∑
g∈G agg)◦ =

∑
g∈G agg

−1. Then KG =

KG−⊕KG+ where KGε = {a ∈ KG | a◦ = εa}. Now let ρ be an orthogonal
representation of G and choose a non-degenerate Q ∈ Q(ρ). The condition
BQ(ρ(g)v, ρ(g)w) = BQ(v, w) for all g ∈ G, v,w ∈ V shows that ρ(a◦) =
ρ(a)ad for all a ∈ KG, where ad is the adjoint involution of BQ. To see this
fix a basis of V and work with matrices. Let B be the Gram matrix of BQ.
Then ρ(g)Bρ(g)tr = B and hence Bρ(g)trB−1 = ρ(g−1) for all g ∈ G, thus

ρ(a◦) = Bρ(a)trB−1 for all a ∈ KG.

In particular XB = −BXtr for all X ∈ ρ(KG−). As the determinant of a341

skew symmetric matrix is always a square we conclude that det(X)(K×)2 =342

det(B)(K×)2. By Remark 2 this determinant only depends on the character343

of ρ, so we conclude the following lemma.344

Lemma 1 The orthogonal character χ is orthogonally stable if and only if345

there is X ∈ KG− with detχ(X) 6= 0. Then disc(χ) = (−1)χ(1)/2 detχ(X).346

In practice, one finds a suitable X as the sum of at most three matrices347

g − g−1, where g is a randomly chosen element of order at least 3 in ρ(G).348

3.3.2 Condensation Methods349

Lemma 1 also allows one to compute the orthogonal discriminant of a charac-350

ter using well established condensation techniques (see [Ryb90]). To analyse351

the composition factors S1, . . . , St of a KG-module V one computes a suitable352

idempotent e ∈ KG. The condensed module V e is then a module for eKGe353

with composition factors {Sie | 1 ≤ i ≤ t} \ {0}. The main problem here354

is that a K-algebra generating set {g1, . . . , gs} of KG does not necessarily355

condense to a K-algebra generating set {egie | 1 ≤ i ≤ s}, the map a 7→ eae356

is only a vector space homomorphism and even the condensed algebra is in357

general too big to compute a basis.358

In practise we use fixed point condensation in permutation representations359

V with respect to a suitable subgroup H whose order is not divisible by the360

characteristic of K. In view of Section 3.1.1 we choose H = P to be either361

a Sylow p-subgroup of G (for p odd) or H = P ′P 2, where P is a Sylow 2-362

subgroup of G and e := 1
|H|

∑
h∈H h. Then for any orthogonal KG-module V ,363

the restriction of V (1− e) to the Sylow p-subgroup P is orthogonally stable364

and its discriminant can be computed with the formula in Section 3.1.1.365

We start with a big permutation representation V := 1GU . Then a basis for
V e is given by the H-orbit sums

∑
o1, . . . ,

∑
om and for g ∈ G the matrix

of ege = (aij)
m
i,j=1 with
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aij =
1

|oi|
|{x ∈ oi | xg ∈ oj}|.

As e◦ = e, the algebra eKGe inherits the natural involution ◦ : ege 7→366

eg−1e = egtre. The dimensions of the composition factors of V e and their367

multiplicities can be predicted by character theoretic methods.368

In our applications we took 5-10 random group elements gi and computed
the K-algebra A := 〈egie, eg−1i e = (egie)

◦〉. The composition factors of the
A-module V e are obtained using meataxe methods. We check, whether these
do have the predicted dimension and then compute an element a = −a◦ in A
acting as a unit X on such a composition factor Se. Then Lemma 1 together
with Section 3.1.1 allow us to deduce the orthogonal discriminant of S as

disc(S) = (−1)dim(Se)/2 det(X) disc(S(1− e)|P ).

To obtain the orthogonal discriminant for number fields K it is essential to369

use Corollary 1 to obtain a finite list of possible orthogonal discriminants,370

as meataxe methods do only perform well for finite fields. Given this list of371

possible discriminants we obtain enough p-modular reductions (usually for372

small primes p not dividing the group order) of disc(S) to conclude the exact373

value in K×/(K×)2.374

The largest permutation module V handled so far is the one of degree375

108, 345, 600 of the Harada Norton group. Using fixed point condensation376

with the Sylow 5-subgroup of HN we obtain a module V e of dimension 7008.377

As V e is a eZ[ 15 ]HNe-module, we are free to reduce this module modulo all378

primes 6= 5 to compute and analyse the composition factors.379

A more sophisticated implementation of the meataxe (work in progress by380

Richard Parker) should be able to handle even larger examples.381

3.3.3 Summary382

Direct methods in characteristic 6= 2 usually compute the discriminant of the383

natural involution to deduce the orthogonal discriminant of χ. In character-384

istic 2 these do not work and in particular we do not have a provable method385

to use condensation techniques for computing orthogonal discriminants. Here386

we compute the Gram matrix of the invariant quadratic form in the original387

representation and use it to compute the discriminant. (The implementation388

in GAP uses an algorithm due to Jon Thackray.)389

• Many matrix representations are publicly available via the ATLAS of390

Group Representations [Wil+]. The data file marks these entries with391

"AGR".392

• We can reduce the permutation representations that are available via393

the ATLAS of Group Representations [Wil+] modulo primes dividing the394

group order, compute their absolutely irreducible constituents, and deter-395
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mine the orthogonal discriminants of those that are orthogonal and have396

even degree. The data file marks these entries with "const(desc)" where397

desc is the identifier of the permutation representation.398

• Many representations have been constructed by Richard Parker in order399

to compute the orthogonal discriminant. The data file marks these entries400

with "RP".401

• The orthogonal discriminants that have been obtained by Gabriele Nebe402

using condensation methods as described in Section 3.3.2 are marked by403

"GNcond".404

• In certain cases decomposition matrices allow us to conclude orthogonal405

discriminants using Theorem 3. Entries obtained in such a ways are marked406

by "GN".407

3.4 Character Theoretic Methods408

Here the idea is to use only the character table of the given character χ plus409

information from the character table library, concerning (character tables of)410

subgroups and overgroups. This information, for example known orthogonal411

discriminants of related characters, may suffice to deduce the orthogonal412

discriminant of χ. The advantage of this approach is that checking these413

criteria is cheap, but the disadvantage is that they need not yield the answer.414

The following criteria are used. (The string in brackets is used to mark415

those entries in the data file for which the criterion in question yields the416

value.)417

Group order ("order"): In positive characteristic, if the orthogonal dis-418

criminant of χ with character field F is O+ (O−) then the order of G419

divides that of GO+(χ(1), F ) (GO−(χ(1), F )). This condition determines420

the orthogonal discriminant in some cases.421

Group automorphisms ("grpaut(n)"): For a character χ of the group G422

and a group automorphism σ of G, the character χσ is defined by χσ(g) =423

χ(gσ), for g ∈ G. If χ has an orthogonal discriminant then χσ has the424

same orthogonal discriminant.425

Galois action ("galaut(n)"): For a character χ of the group G and a field426

automorphism σ of the character field of χ, the character χσ is defined427

by χσ(g) = χ(g)σ, for g ∈ G. In characteristic zero, if χ has orthogo-428

nal discriminant d then χσ has orthogonal discriminant dσ. In positive429

characteristic, if χ has an orthogonal discriminant then χσ has the same430

orthogonal discriminant.431

Transitive permutation characters ("permchar"): If π is a transitive per-432

mutation character of G, i. e., there is a subgroup H of G such that π is433

the induced character 1GH , then χ = π − 1G is the character of a rational434

representation that fixes a symmetric bilinear form of determinant π(1). If435

χ is orthogonally stable then its orthogonal discriminant is (−1)χ(1)/2π(1)436
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(modulo squares). If χ is absolutely irreducible then this yields the value,437

otherwise it yields a condition on the orthogonal discriminants of the con-438

stituents of χ.439

Eigenvalues ("ev"): Assume that χ is either an ordinary character or a p-440

modular Brauer character for an odd prime p. If χ is orthogonal and if there441

is g ∈ G such that a representation ρ affording χ map g to a matrix that442

does not have an eigenvalue ±1 then the restriction of χ to the subgroup443

〈g〉 is orthogonally stable and has determinant det(ρ(g)−ρ(g−1)), modulo444

squares, see [Neb22b, Cor. 4.2]. (This is a special case of the criterion from445

Section 3.3.1.) Note that the eigenvalues of ρ(g) and hence the determinant446

can be computed from the power map information that belongs to the447

character table of G.448

Jantzen-Schaper formula ("specht"): The ordinary irreducible representa-449

tions of the symmetric group on n points are parameterized by the parti-450

tions of n, and the determinant of the bilinear form that is fixed by the451

representing matrices for the partition λ can be expressed in terms of λ, via452

the Jantzen-Schaper formula [Mat99, p. 5.33]. This yields the orthogonal453

discriminants of those characters of the alternating group on n points that454

extend to the symmetric group. We are interested in the cases 5 ≤ n ≤ 13.455

Restriction to p-subgroups ("syl(p)"): Let p be an odd prime, and let χ456

be a character in characteristic different from p. The restriction χP of χ457

to a p-subgroup P of G is orthogonally stable if and only if the trivial458

character of P is not a constituent of χP , and the orthogonal discriminant459

of χP can be computed in terms of χ(1) and the character field of χP460

(see [Neb22a, Section 4.1] and Section 3.1.1). Note that in order to check461

whether χP is orthogonally stable, it is sufficient to know the permutation462

character 1GP , we do not need the character table of P .463

Restriction to subgroups ("rest(...)" and "ext(...)"): If H is a sub-464

group of G whose character table is known, and if the restriction χH465

is orthogonally stable then we can argue as follows. If the orthogonal dis-466

criminants of the constituents of χH are known then we can deduce that of467

χ; in this case, the data file contains the label "ext(...)". If the orthog-468

onal discriminant of χ is known then we get a condition on the orthogonal469

discriminants of the constituents of χH ; for example, if all of them except470

one are already known then we can deduce the missing one; in this case,471

the data file contains the label "rest(...)".472

Regard ordinary characters as Brauer characters ("lift(+...)"): Let χ be473

a p-modular Brauer character. If χ is the restriction of an ordinary charac-474

ter whose orthogonal discriminant is known then reducing this value mod-475

ulo p often yields the orthogonal discriminant of χ. If χ is a constituent476

of the restriction of an ordinary character whose orthogonal discriminant477

is known then reducing this value modulo p often yields the orthogonal478

discriminant of χ if the discriminants of the other constituents are known.479

Tensor products ("tensor(...)"): [Neb99, Section 3.1.3] lists formulae for480

the determinants of the invariant bilinear forms of tensor products χ · ψ481
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and of symmetric squares χ2+ − 1G and antisymmetric squares χ2−. In482

those cases where these tensor products and symmetrizations are orthogo-483

nally stable, this yields conditions on the orthogonal discriminants of their484

constituents, as in the above criteria.485

Consistency checks: Often an orthogonal discriminant can be computed486

with several criteria, and the results must be consistent. A posteriori,487

also those conditions about constituents of restrictions, tensor products,488

p-modular reductions that were not sufficient to deduce the orthogonal489

discriminants can be used for consistency checks.490

4 Examples and Applications491

This section lists some aspects of the computations, and implications of the492

results.493

4.1 Which discriminant fields are Galois extensions of the494

rationals?495

The number fields that do occur in representation theory of finite groups496

are usually abelian extensions of the rationals, i.e. contained in some cyclo-497

tomic fields. Also discriminant fields are very often abelian extensions of the498

rationals:499

Theorem 6 Let χ be an orthogonally simple ordinary character of a finite500

group G and put L := Disc(χ) to denote the discriminant field.501

• If χ is not absolutely irreducible (i.e. of type ◦ or − in Remark 3), then L502

is an abelian extension of Q.503

• If G is solvable, then L is an abelian extension of Q (see [Neb22a] and504

[Rot22])505

• For G of type L2 all discriminant fields are abelian extensions of the ra-506

tionals (see [BN17]).507

Proposition 2 The discriminant field is Galois over Q if and only if the508

discriminant, a square class of the character field, is stable under all Galois509

automorphisms of the character field.510

For the proof we need the following easy lemma in Galois theory:511

Lemma 2 Given a tower A ⊆ B ⊆ C of fields such that B/A is Galois and512

C/B is Galois and [C : A] < ∞ then C/A is Galois if and only if for all513

g ∈ Gal(B/A) there is f ∈ Aut(C) such that f|B = g.514
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Proof Under the conditions of the lemma the sequence

1→ Gal(C/B)→ AutA(C)→ AutA(B)→ 1

is exact and hence |AutA(C)| = [C : A], which implies that C/A is Galois.�515

Proof (of Proposition 2) Now we apply this to our situation where F = F (χ)516

is the character field of an ordinary orthogonally stable character χ and517

K = F [
√
δ] is the discriminant field.518

To prove Proposition 2 we need to show that K/Q is Galois if and only if519

δ(F×)2 is stable under the full Galois group of F/Q, i.e. for all g ∈ Gal(F/Q)520

there is kg ∈ F such that g(δ) = k2gδ.521

For the proof let α :=
√
δ ∈ K.522

Assume that K/Q is Galois.523

Then 〈σ〉 := Gal(K/F ) is a normal subgroup of Gal(K/Q) of order 2, and524

hence central.525

The minimal polynomial of α over F is X2 − δ and any automorphism526

f ∈ Aut(K) that extends g ∈ Gal(F/Q) satisfies f(α)2 = g(δ) and f(F ) ⊆527

F . Now f commutes with σ so kg := f(α)/α ∈ Fixσ(K) = F and k2g =528

f(α)2/α2 = g(δ)/δ, so g(δ) = k2gδ.529

To see the opposite direction we extend g ∈ Gal(F/Q) to an automorphism530

f of K by putting f(aα + b) := g(a)kgα + g(b) for all a, b ∈ F . It is easy to531

see that f is a field automorphism of K extending g. So Proposition 2 follows532

from Lemma 2. �533

Remark 5 In the notation of the proof we get that the discrimiant field is534

an abelian extension of Q if and only if f(kg)kf = g(kf )kg for all f, g ∈535

Gal(F/Q).536

Corollary 2 Let χ be an orthogonally stable ordinary character of G and537

K := F (χ) its character field. Assume that Aut(G) acts transitive on the538

Galois orbit χGal(K/Q). Then Disc(χ) is Galois over Q.539

In particular all discriminant fields of the orthogonally stable characters540

of the alternating groups are Galois over Q.541

Example 1 Conjecture 3.9 in [Cra22] states that any absolutely irreducible542

character with indicator + and degree congruent to 2 (mod 4) is expected to543

have an orthogonal discriminant α such that
√
α lies in a cyclotomic field.544

A counterexample is provided by the two irreducible characters of degree545

169290 of the sporadic simple O’Nan group. Their orthogonal discriminants546

are −53± 36
√

2, see [NP23, Remark 7.3].547

So far all non Galois discriminant fields that we are aware of do occur for548

sporadic simple groups and their automorphism groups.549
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Example 2 During our computations we only found the following ordinary
orthogonally simple (see Remark 3) characters of finite simple groups for
which the discriminant fields Q(

√
δ) are not Galois over Q:

G χ δ Gal(Q(
√
δ)/Q)

J1 56ab (31 + 5
√

5)/2 D8

J1 120abc 29− 18c19 − 9c∗219 C2 ×A4

J3 1920abc 63− 30y9 − 7y∗29 A4

He 21504ab 357 + 68
√

21 D8

Ru 27000abc 119y7 + 49y∗27 + 170 A4

Ru 34944ab 41− 16
√

6 D8

Ru 110592ab (1015− 185
√

29)/2 D8

ON 169290ab −36
√

2− 53 D8

ON 175616ab 225 + 84
√

5 D8

ON 207360abc −496c19 + 1767c∗419 + 3472 C2 ×A4

HN 5103000ab 17 + 4
√

5 D8

The table lists the groups, the characters χ (full Galois orbit) in the form550

χ(1)ab... the orthogonal discriminant of χ(1)a in ATLAS notation (see Sec-551

tion 2.1.1) and the Galois group of the normal closure of the discriminant552

field. The characters of G = J3 and G = He do extend to characters of G.2553

with the same degree, character field and orthogonal discriminant.554

4.2 No even discriminants ?555

Richard Parker conjectures that orthogonal discriminants in characteristic556

zero are always odd (see [Neb22a, Conjecture 1.3]). This conjecture is true557

for characters of solvable groups (see [Neb22a, Theorem 1.5]), and it holds558

also for all characters of Atlas groups which we have computed so far. Note559

that the sketch of a proof of this conjecture over the rationals given in [Cra22,560

p. 7] is not correct.561

4.3 Groups embedding in both orthogonal groups of same562

degree563

The final remark in [SW91] asks whether there is a group G with irreducible564

orthogonal representations of the same even degree and over the same char-565

acter field in characteristic two, such that one of them has orthogonal dis-566

criminant O+ and the other has orthogonal discriminant O−.567

The data about Atlas groups provide exactly one such example: The simple568

group G2(3) has three 90-dimensional absolutely irreducible representations569
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over the field with two elements, "90a" (the one which is invariant under570

the outer automorphism) has OD O+, whereas "90b" and "90c" (which are571

conjugate under the outer automorphism) have OD O−.572

4.4 Accessing the Atlas of orthogonal discriminants in OSCAR573

The information about orthogonal discriminants of Atlas groups can be used574

in GAP and OSCAR, as follows.575

The GAP function Display and the OSCAR function show, respectively, can576

be called with the option to extend the shown character table by a col-577

umn for orthogonal discriminants. One can also access the list of known578

orthogonal discriminants for an Atlas character table, via the GAP function579

OrthogonalDiscriminants and the OSCAR function orthogonal discriminants,580

respectively.581

4.5 New findings for the old character tables582

The following new information has been obtained as a by-product of the583

computation of orthogonal discriminants.584

• Listing the orthogonal discriminants of the orthogonal absolutely irre-585

ducible characters of a group requires the knowledge of the Frobenius586

Schur indicators of these characters (see Section 2.3). In characteristic two,587

this information is not known for all character tables we are interested in.588

Several 2-modular Frobenius Schur indicators that had been missing are589

now known. They have been either computed explicitly once we had the590

representation in question, or determined using [GW95, Lemma 1.2].591

• The Brauer character tables of L2(49) mod 7, L2(81) mod 3, and L6(2)592

mod 2 had been missing.593

• Several class fusions between Atlas character tables, which turned out to594

be useful for restrictions of characters to subgroups, have been added to595

the character table library.596

• A so-called generality problem for the sporadic simple group HN and597

its automorphism group HN.2 has been solved. This problem concerns598

the consistency between the 11- and 19-modular character tables of these599

groups, as follows.600

In the ordinary character table of HN , the conjugacy classes 20A and 20B601

are distinguished only by the two algebraic conjugate irreducible characters602

χ51, χ52 of degree 5 103 000. Their values on 20A and 20B are 1± 2
√

5.603

According to the Brauer character tables in the library of character tables604

up to version 1.3.4, the conjugacy class 20A of HN was the class for which605

both the unique irreducible 11-modular Brauer character of degree 628 426606
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and the unique irreducible 19-modular Brauer character of degree 1 074 075607

have the value 1−2r5. The orthogonal discriminant of χ51 is either 4
√

5+17608

or −4
√

5 + 17. In the former case, the 11-modular reduction of χ51 is609

orthogonally stable, and the 19-modular reduction is not; in the latter case,610

it is the other way round. However, with the above choice of the class 20A,611

both the 11- and 19-modular reductions of χ51 are orthogonally stable612

(and the 11- and 19-modular reductions of χ52 are not). Thus we have613

shown that the choice of 20A in the two character tables is not consistent.614

In order to make the two character tables consistent, we have changed615

the 11-modular table in version 1.3.5 of the table library, by swapping the616

columns of 20A and 20B.617

(As a consequence, also the 11-modular table of the automorphism group618

HN.2 of HN had to be adjusted. There are still open questions about the619

consistency of other conjugacy classes in Brauer character tables of HN .620

They are independent of the question about 20A and 20B, and they cannot621

be answered by considering orthogonal discriminants.)622

References623

[BN17] Oliver Braun and Gabriele Nebe. “The orthogonal character table624

of SL2(q)”. English. In: J. Algebra 486 (2017), pp. 64–79. doi:625

10.1016/j.jalgebra.2017.04.025.626

[Con+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and627

R. A. Wilson. ATLAS of finite groups. Maximal subgroups and628

ordinary characters for simple groups, With computational assis-629

tance from J. G. Thackray. Oxford University Press, Eynsham,630

1985, pp. xxxiv+252.631

[Cra22] David A. Craven. “An Ennola duality for subgroups of groups632

of Lie type”. In: Monatshefte für Mathematik (2022). doi: 10.633

1007/s00605-022-01676-3.634

[GW95] Roderick Gow and Wolfgang Willems. “Methods to decide if635

simple self-dual modules over fields of characteristic 2 are of636

quadratic type”. In: J. Algebra 175.3 (1995), pp. 1067–1081. doi:637

10.1006/jabr.1995.1227.638

[GW97] Roderick Gow and Wolfgang Willems. “On the quadratic type of639

some simple self-dual modules over fields of characteristic two”.640

English. In: J. Algebra 195.2 (1997), pp. 634–649. doi: 10.1006/641

jabr.1997.7048.642

[Jan+95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer643

characters. Vol. 11. London Mathematical Society Monographs.644

New Series. Appendix 2 by T. Breuer and S. Norton, Oxford645

Science Publications. New York: The Clarendon Press Oxford646

University Press, 1995, pp. xviii+327.647

https://doi.org/10.1016/j.jalgebra.2017.04.025
https://doi.org/10.1007/s00605-022-01676-3
https://doi.org/10.1007/s00605-022-01676-3
https://doi.org/10.1007/s00605-022-01676-3
https://doi.org/10.1006/jabr.1995.1227
https://doi.org/10.1006/jabr.1997.7048
https://doi.org/10.1006/jabr.1997.7048
https://doi.org/10.1006/jabr.1997.7048


An Atlas of Orthogonal Representations 21

[Kne02] Martin Kneser. Quadratische Formen. Neu bearbeitet und heraus-648

gegeben in Zusammenarbeit mit Rudolf Scharlau. German. Berlin:649

Springer, 2002.650

[Knu+98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-651

Pierre Tignol. The book of involutions. With a preface by J. Tits.652

Vol. 44. Colloq. Publ., Am. Math. Soc. Providence, RI: American653

Mathematical Society, 1998.654

[Mat99] Andrew Mathas. Iwahori-Hecke algebras and Schur algebras of655

the symmetric group. Vol. 15. University Lecture Series. American656

Mathematical Society, Providence, RI, 1999, pp. xiv+188. doi:657

10.1090/ulect/015.658

[Neb22a] Gabriele Nebe. “On orthogonal discriminants of characters”. In:659

Albanian J. Math. 16.1 (2022), pp. 41–49.660

[Neb22b] Gabriele Nebe. “Orthogonal determinants of characters”. In:661

Arch. Math. (Basel) 119.1 (2022), pp. 19–26.662

[Neb99] Gabriele Nebe. Orthogonale Darstellungen endlicher Gruppen663

und Gruppenringe. German. Vol. 26. Aachener Beitr. Math.664

Aachen: Verlag der Augustinus Buchhandlung; Aachen: RWTH665

Aachen (Habil.-Schr.), 1999.666

[NP23] Gabriele Nebe and Richard A. Parker. “Orthogonal stability”.667

In: J. Algebra 614 (2023), pp. 362–391.668

[PS96] Wilhelm Plesken and Bernd Souvignier. “Constructing rational669

representations of finite groups”. English. In: Exp. Math. 5.1670

(1996), pp. 39–47. doi: 10.1080/10586458.1996.10504337.671

[Rot22] Marie Roth. “Ennola duality in subgroups of the classical groups”.672

supervised by Donna Testerman and David Craven. MA thesis.673

EPFL, 2022.674

[Ryb90] A. J. E. Ryba. “Computer condensation of modular representa-675

tions”. In: vol. 9. 5-6. Computational group theory, Part 1. 1990,676

pp. 591–600. doi: 10.1016/S0747-7171(08)80076-4.677

[Sch85] Winfried Scharlau. Quadratic and Hermitian forms. English.678

Vol. 270. Grundlehren Math. Wiss. Springer, Cham, 1985.679

[SW91] Peter Sin and Wolfgang Willems. “G-invariant quadratic forms”.680

In: J. Reine Angew. Math. 420 (1991), pp. 45–59. doi: 10.1515/681

crll.1991.420.45.682

[Wil+] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P.683

Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott. ATLAS684

of Finite Group Representations. https://www.atlasrep.org/Atlas/v3.685

https://doi.org/10.1090/ulect/015
https://doi.org/10.1080/10586458.1996.10504337
https://doi.org/10.1016/S0747-7171(08)80076-4
https://doi.org/10.1515/crll.1991.420.45
https://doi.org/10.1515/crll.1991.420.45
https://doi.org/10.1515/crll.1991.420.45

