Lattices over Dedekind domains

Markus Kirschmer

TRR 195 - Summer School 2023
$1 \begin{aligned} & \text { UNIVERSITÄT } \\ & \text { PADERBORN }\end{aligned}$

Dedekind domains

Definition

Let $S \subseteq T$ be domains. The integral closure of S in T is the subring

$$
\operatorname{Int}_{S}(T)=\{t \in T \mid f(t)=0 \text { for some monic } f \in S[X]\} \subseteq T .
$$

Definition

An integral domain R with field of fractions K is called a Dedekind domain, if

- R is noetherian.
- every nonzero prime ideal of R is maximal.
- $R=\operatorname{Int}_{R}(K)$.

Example

- $R=\mathbb{Z}$ is a Dedekind domain.
- Let K be an algebraic number field (i.e. a finite field extension of \mathbb{Q}). Then $\mathbb{Z}_{K}:=\operatorname{Int}_{\mathbb{Z}}(K)$ is a Dedekind domain.
- Localizations/Completions of Dedekind domains are Dedekind domains.

Fractional ideals

Let R be a Dedekind domain with field of fractions K. Let $\mathbb{P}(R)$ denote the set of maximal ideals of R.

Theorem

(1) The set of fractional ideals

$$
\mathcal{I}(R)=\left\{a I \mid a \in K^{*},\{0\} \neq I \unlhd R\right\}
$$

forms a free abelian group under multiplication with basis $\mathbb{P}(R)$.
(2) The neutral element of $\mathcal{I}(R)$ is R and the inverse of $\mathfrak{a} \in \mathcal{I}(R)$ is

$$
\mathfrak{a}^{-1}=\{x \in K \mid x \mathfrak{a} \subseteq R\} .
$$

(3) Two fractional ideals \mathfrak{a} and \mathfrak{b} are isomorphic (as R-modules) if and only if $\mathfrak{b}=a \mathfrak{a}$ for some $a \in K^{*}$. Hence the class group

$$
\mathrm{Cl}(R):=\mathcal{I}(R) /\left\{a R \mid a \in K^{*}\right\}
$$

describes the isomorphism classes of fractional ideals of R.

Completions

Definition

A valuation of K is a map $||:. K \rightarrow \mathbb{R}_{\geq 0}$ such that for all $x, y \in K$
(1) $|x|=0 \Longleftrightarrow x=0$.
(2) $|x y|=|x| \cdot|y|$.
(3) $|x+y| \leq|x|+|y|$.

If $|$.$| satisfies the stronger condition |x+y| \leq \max \{|x|,|y|\}$ it is called non-archimedean.

Theorem

There is a (unique) minimal field extension \hat{K} / K such $|$.$| extends to a valuation$ on \hat{K} and ($\hat{K},||$.$) is complete (i.e. every Cauchy sequence in \hat{K}$ converges). The field \hat{K} is called the completion of K with respect to |.|.

Proof: See the construction of \mathbb{R} from \mathbb{Q}.

Completion - Examples

(1) Every embedding $\iota: K \rightarrow \mathbb{C}$ yields an archimedean valuation

$$
|\cdot|_{\iota}: K \rightarrow \mathbb{R}_{\geq 0}, x \mapsto|\iota(x)| .
$$

(2) Since $\mathbb{P}(R)$ is a basis of $\mathcal{I}(R)$, every $\mathfrak{a} \in \mathcal{I}(R)$ admits a unique factorization

$$
\mathfrak{a}=\prod_{\mathfrak{p} \in \mathbb{P}(R)} \mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})} .
$$

This gives rise to an archimedean valuation

$$
|\cdot|_{\mathfrak{p}}: K \rightarrow \mathbb{R}_{\geq 0}, x \mapsto 2^{-v_{\mathfrak{p}}(x R)}
$$

We denote the corresponding completion of K by $K_{\mathfrak{p}}$ and set

$$
R_{\mathfrak{p}}=\operatorname{Int}_{R}\left(K_{\mathfrak{p}}\right)=\left\{x \in K_{\mathfrak{p}}| | x \mid \leq 1\right\} .
$$

Then $R_{\mathfrak{p}}$ is a complete local Dedekind ring with field of fractions $K_{\mathfrak{p}}$.

Theorem (Ostrowski)

All completions of algebraic number fields arise in these ways (up to isomorphism).

Lattices

Definition

An R-lattice is a finitely generated, torsion free R-module.

Equivalently:
An R-lattice is a finitely generated R-submodule of a finite dimensional K-vector space V. It is said to be full, if it contains a K-basis of V.

Example

The non-zero lattices of R in $V:=K$ are the fractional ideals of R and the class group $\mathrm{Cl}(R)$ describes the isomorphism classes of lattices in R.

Pseudo bases

Theorem (Steinitz)

Let L be a R-lattice in V. Then there exists a linearly independent system $\left(v_{1}, \ldots, v_{r}\right) \in V^{r}$ and fractional ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r} \in R$ such that

$$
L=\mathfrak{a}_{1} v_{1} \oplus \ldots \oplus \mathfrak{a}_{r} v_{r} .
$$

Moreover, L is free if and only if the Steinitz invariant $\prod_{i} \mathfrak{a}_{i}$ is principal.

The sequence $\left(\left(\mathfrak{a}_{1}, v_{1}\right), \ldots,\left(\mathfrak{a}_{r}, v_{r}\right)\right)$ is called a pseudo basis of L and $r=\operatorname{dim}_{K}(K L)$ is called the rank of L.

Using pseudo bases, CAS like Oscar/Hecke can store, compare, intersect and sum lattices, see Tommy's talk for details.

Completions

Let L a full R-lattice in a K-space V. Then

$$
L_{\mathfrak{p}}:=R_{\mathfrak{p}} \otimes_{R} L
$$

is a full $R_{\mathfrak{p}}$ lattice in the $K_{\mathfrak{p}}$-space $V_{\mathfrak{p}}:=K_{\mathfrak{p}} \otimes_{K} V$.

Remark

If $M=\mathfrak{a}_{1} v_{1} \oplus \ldots \oplus \mathfrak{a}_{r} v_{r}$ and $\pi \in K$ with $v_{\mathfrak{p}}(\pi)=1$, then

$$
\left(\pi^{v_{\mathfrak{p}}\left(\mathfrak{a}_{1}\right)} v_{1}, \ldots, \pi^{v_{\mathfrak{p}}\left(\mathfrak{a}_{r}\right)} v_{r}\right)
$$

is an $R_{\mathfrak{p}}$-basis of $M_{\mathfrak{p}}$.
In particular:

Corollary

If M is a full lattice in V, then $L_{\mathfrak{p}}=M_{\mathfrak{p}}$ almost everywhere (i.e. at all but finitely many prime ideals).

Local-global principle for lattices

Theorem

We get bijections

$$
\begin{aligned}
&\{\text { full } R \text {-lattices in } V\} \leftrightarrow\left\{\left(M^{(\mathfrak{p})}\right)_{\mathfrak{p} \in \mathbb{P}(R)} \left\lvert\, \begin{array}{l}
M^{(\mathfrak{p})} \text { full } R_{\mathfrak{p}} \text {-lattice in } V_{\mathfrak{p}} \text { with } \\
M^{(\mathfrak{p})}=L_{\mathfrak{p}} \text { almost everywhere }
\end{array}\right.\right\} \\
& M \mapsto\left(M_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathbb{P}(R)} \\
& \bigcap_{\mathfrak{p} \in \mathbb{P}(R)} M^{(\mathfrak{p})} \leftrightarrow\left(M^{(\mathfrak{p})}\right)_{\mathfrak{p} \in \mathbb{P}(R)}
\end{aligned}
$$

This allows for "local" manipulations of R-lattices: For example, to compute maximal sublattices X_{1}, \ldots, X_{s} of $L:=\bigoplus_{i=1}^{r} \mathfrak{a}_{i} x_{i}$ that contain $\mathfrak{p} L$ do:
(1) Let M be the lattice with basis $\left(\pi^{v_{\mathfrak{p}}\left(\mathfrak{a}_{1}\right)} v_{1}, \ldots, \pi^{v_{\mathfrak{p}}\left(\mathfrak{a}_{r}\right)} v_{r}\right)$.
(2) Since M is free and $M / \mathfrak{p} M \cong\left(\mathbb{Z}_{K} / \mathfrak{p}\right)^{r}$, one can write down the maximal sublattices Y_{1}, \ldots, Y_{s} of M that contain $\mathfrak{p} M$.
(3) Set $X_{i}=\left(Y_{i}+\mathfrak{p} L\right) \cap L$.

Lattices in quadratic spaces

From now on: K is an algebraic number field. Then any bilinear form $\Phi: V \times V \rightarrow K$ induces a quadratic form $\Phi: V \rightarrow K, v \mapsto \Phi(v, v)$.

Definition

Let (V, Φ) and $\left(V^{\prime}, \Phi^{\prime}\right)$ be regular bilinear/quadratic spaces over K.
(1) The $\mathbb{Z}_{K^{-}}$lattices L, L^{\prime} in (V, Φ) and $\left(V^{\prime}, \Phi^{\prime}\right)$ are called isometric, if there exists an isometry $\varphi:(V, \Phi) \rightarrow\left(V^{\prime}, \Phi^{\prime}\right)$ such that $\varphi(L)=L^{\prime}$.
We denote this by writing $L \cong L^{\prime}$.
(2) The automorphism group of L is

$$
\operatorname{Aut}(L)=\{\varphi \in \mathrm{O}(V, \Phi) \mid \varphi(L)=L\}
$$

(3) The dual of a full lattice L in V is

$$
L^{\#}:=\left\{v \in V \mid \Phi(v, L) \subseteq \mathbb{Z}_{K}\right\}
$$

The lattice L is called integral if $L \subseteq L^{\#}$ and unimodular if $L=L^{\#}$.
Similar definitions hold for the completions $L_{\mathfrak{p}}$ for $\mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$.

Local-global principle for quadratic spaces

Let $v \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$ or $v: K \rightarrow \mathbb{C}$. The map Φ extends to the completion $V_{v}=V \otimes_{K} K_{v}$. This yields a bilinear/quadratic space ($\left.V_{v}, \Phi\right)$ over K_{v}.

Theorem (Hasse-Minkowski)

Quadratic spaces over K are isometric if and only if their completions are isometric.

This yields a classification of regular quadratic spaces over K by the following invariants:
(1) The dimension m of V.
(2) The discriminant $\operatorname{disc}(V, \Phi)$.
(3) The signatures of $\left(V_{\iota}, \Phi\right)$ at the real embeddings $\iota: K \rightarrow \mathbb{R}$.
(9) The finite set of prime ideals $\mathbb{P}\left(\mathbb{Z}_{K}\right)$ with Clifford invariant -1 .

We say that (V, Φ) is definite, if all embeddings $\iota: K \rightarrow \mathbb{C}$ satisfy $\iota(K) \subseteq \mathbb{R}$ and $\left(V_{\iota}, \Phi\right)$ is a definite space over \mathbb{R}.

Failure of the local-global principle

Example

The local-global principle does not hold over \mathbb{Z}. E.g.

$$
Q(x, y)=x^{2}+x y+8 y^{2} \quad \text { and } \quad Q^{\prime}(x, y)=2 x^{2}+x y+4 y^{2}
$$

are isometric over \mathbb{R} and over \mathbb{Z}_{p} for all primes p, but not over \mathbb{Z} since $Q(1,0)=1$ and $Q^{\prime}(x, y) \neq 1$ for all $x, y \in \mathbb{Z}$.

The failure of the local-global principle for lattices leads to the following definition:

Definition

The genus and the isometry class of a \mathbb{Z}-lattice L in (V, Φ) are

$$
\begin{aligned}
\operatorname{gen}(L) & =\left\{L^{\prime} \subset V \text { a full } \mathbb{Z}_{K^{-}} \text {-lattice } \mid L_{\mathfrak{p}} \cong L_{\mathfrak{p}}^{\prime} \text { for all } \mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)\right\} \\
\operatorname{cls}(L) & =\left\{L^{\prime} \subset V \text { a full } \mathbb{Z}_{K} \text {-lattice } \mid L \cong L^{\prime}\right\}
\end{aligned}
$$

Local isometry classes

Let $\pi \in \mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$ with $v_{\mathfrak{p}}(\pi)=1$. A variation of the Gram-Schmidt process shows that $L_{\mathfrak{p}}$ has a Jordan decomposition

$$
L_{\mathfrak{p}}=L_{1} \perp L_{2} \perp \ldots \perp L_{r}
$$

where $\left(L_{i}, \pi^{-s_{i}} \Phi\right)$ is unimodular and $s_{1}<s_{2}<\ldots<s_{r}$.

Theorem

If $2 \notin \mathfrak{p}$, then $\left(\operatorname{rank}\left(L_{i}\right), \operatorname{disc}\left(L_{i}, \pi^{-s_{i}} \Phi\right), s_{i}\right)_{1 \leq i \leq r}$ uniquely describe the isometry class of L_{p}.

If $2 \in \mathfrak{p}$, the classification of the isometry classes is due to O'Meara and much more involved.

Genera

Theorem (Kneser)

$$
\operatorname{gen}(L)=\biguplus_{i=1}^{h} \operatorname{cls}\left(L_{i}\right)
$$

is a union of finitely many isometry classes and $h(L)=h(\operatorname{gen}(L))=h$ is called the class number of L or gen (L).

So $h(L)$ measures by "how much" the local-global principle fails for L.

Goal

Work out representatives L_{1}, \ldots, L_{h}.

- If $m=1$, then $\operatorname{gen}(L)=\operatorname{cls}(L)$.
- For $m=2$, Gauß' famous composition of binary quadratic forms identifies the isometry classes in gen (L) with a (quotient) of a class group of a quadratic extension of \mathbb{Z}_{K}.
- For $m \geq 3$ we distinguish two cases: (V, Φ) is indefinite or definite.

Spinor norms

From now on, let $m \geq 3$.

Definition

Let $v \in V$ such that $\Phi(v, v) \neq 0$. Then the reflection

$$
\sigma_{v}: V \rightarrow V, x \mapsto x-2 \frac{\Phi(v, x)}{\Phi(v, v)} v
$$

is an isometry on (V, Φ).

Theorem

(1) The orthogonal group $\mathrm{O}(V, \Phi)$ is generated by reflections.
(2) There exists a unique homomorphism spn: $\mathrm{O}(V, \Phi) \rightarrow K^{*} / K^{*, 2}$ such that $\operatorname{spn}\left(\sigma_{v}\right)=\Phi(v, v) K^{*, 2}$ called the Spinor norm.

We set

$$
\mathrm{S}(V, \Phi):=\{\varphi \in \mathrm{O}(V, \Phi) \mid \operatorname{det}(\varphi)=1 \text { and } \operatorname{spn}(\varphi)=1\}
$$

Spinor genera

Definition

The spinor genus of a full lattice L in V is

We clearly have

$$
\operatorname{cls}(L) \subseteq \operatorname{sgen}(L) \subseteq \operatorname{gen}(L)
$$

So we are left with two problems:
(1) Decompose the genus of L into spinor genera.
(2) Decompose each spinor genus into isometry classes.

Neighbors

Definition

Let $\mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$ such that $\left(V_{\mathfrak{p}}, \Phi\right)$ is isotropic (automatically holds for $m \geq 5$) and $L_{\mathfrak{p}}$ is unimodular. A \mathfrak{p}-neighbor of L is a full lattice M in V such that

$$
L / L \cap M \cong \mathbb{Z}_{K} / \mathfrak{p} \cong M / L \cap M .
$$

Facts

(1) The \mathfrak{p}-neighbors of L can be written down explicitly.
(2) The \mathfrak{p}-neighbors of L lie in the genus of L.
(3) The number of spinor genera in gen (L) is 2^{r} for some $r \geq 0$.
(- There exists a computable quotient $Q \cong(\mathbb{Z} / 2 \mathbb{Z})^{r}$ of a ray class group of \mathbb{Z}_{K} such that the image of $[\mathfrak{p}] \in Q$ decides in which spinor genus the \mathfrak{p}-neighbors of L fall. In particular, any spinor genus in gen (L) can be reached by some suitable neighbor (Kneser, O'Meara, Beli, Chan, Lorch, K).

Strong approximation

Theorem (Strong approximation, Kneser)

Assume $m=\operatorname{dim}(V) \geq 3$. Let $T \subseteq S \subseteq \mathbb{P}\left(\mathbb{Z}_{K}\right)$ with T finite. Let K_{v} be a completion with $v \notin S$ and $\left(V_{v}, \Phi\right)$ isotropic. Let L be a full lattice in V and for $\mathfrak{p} \in T$ fix some $\sigma_{\mathfrak{p}} \in \mathrm{S}\left(V_{\mathfrak{p}}, \Phi\right)$. Then for any $k \in \mathbb{N}$ there exists some $\sigma \in \mathrm{S}(V \Phi)$ such that

$$
\begin{aligned}
\left(\sigma-\sigma_{\mathfrak{p}}\right)\left(L_{\mathfrak{p}}\right) & \subseteq \mathfrak{p}^{k} L_{\mathfrak{p}} \quad \text { for } \mathfrak{p} \in T \\
\sigma(L)_{\mathfrak{p}} & =L_{\mathfrak{p}} \quad \text { for } \mathfrak{p} \in S \backslash T
\end{aligned}
$$

Corollary

If $m \geq 3$ and (V, Φ) is indefinite, then $\operatorname{sgen}(L)=\operatorname{cls}(L)$.

Note: In the indefinite case, this settles the problem of finding representatives of the isometry classes in $\operatorname{sgen}(L)$ without testing for isometries!

The definite case

Pick $\mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$ s.t. $\left(V_{\mathfrak{p}}, \Phi\right)$ is isotropic and the \mathfrak{p}-neighbors of L lie in $\operatorname{sgen}(L)$.

Theorem (Kneser)

By strong approximation, any isometry class in sgen (L) has a representative M such that $M_{\mathfrak{q}}=L_{\mathfrak{q}}$ for all $\mathfrak{q} \neq \mathfrak{p}$ and there exists a sequence

$$
L=L_{0}, L_{1}, \ldots, L_{r}=M
$$

of lattices such that L_{i} is a \mathfrak{p}-neighbor of L_{i-1}.
Hence the directed graph $\Gamma_{\mathfrak{p}}$ of isometry classes in $\operatorname{sgen}(L)$ defined by

$$
\operatorname{cls}(M) \bullet>\bullet \operatorname{cls}\left(M^{\prime}\right) \Longleftrightarrow M^{\prime} \text { is a } \mathfrak{p} \text {-neighbour of } M
$$

is connected.

Essence

To split sgen (L) into isometry classes, we need to find a spanning tree of $\Gamma_{\mathfrak{p}}$.
Note: This requires that we can test for isometries!

Computing isometries of definite lattices I

Suppose first $K=\mathbb{Q}$ and let L be a lattice in a definite space (V, Φ). Let $\left(b_{1}, \ldots, b_{m}\right)$ be a basis of L and $B>0$.

First: Enumerate $L_{\leq B}:=\{x \in L \mid \Phi(x, x) \leq B\}$

The Finke-Pohst method is based on the Cholesky decomposition: There are $q_{i, j} \in \mathbb{Q}$ such that

$$
\Phi(x, x)=\sum_{i=1}^{m} q_{i, i}\left(x_{i}+\sum_{j=i+1}^{m} q_{i j} x_{j}\right)^{2} \text { for all } x=\sum_{i} x_{i} b_{i} \in L .
$$

Then $\Phi(x, x) \leq B$ implies $x_{m}^{2} q_{m, m} \leq B$. Hence there are only finitely many possibilities for x_{m}.
Similarly, $q_{m-1, m-1}\left(x_{m-1}+q_{m-1, m} x_{m}\right)^{2} \leq B-q_{m, m} x_{m}^{2}$. Thus for fixed x_{m} there are only finitely many possibilities for x_{m-1}, etc.

So $L_{\leq B}$ is finite and can be enumerated by backtracking.

Computing isometries of definite lattices II

The following algorithm computes an isometry $\varphi: L \rightarrow L^{\prime}$ between lattices L, L^{\prime} in definite spaces (V, Φ) and $\left(V^{\prime}, \Phi^{\prime}\right)$.

Plesken \& Souvignier

(1) Let $B>0$ such that $L_{\leq B}:=\{x \in L \mid \Phi(x, x) \leq B\}$ generates L.
(2) Suppose $\left\{b_{1}, \ldots, b_{m}\right\} \subseteq L_{\leq B}$ generates V, so φ is uniquely determined by $\varphi\left(b_{i}\right) \in L_{\leq B}^{\prime}$.
(3) If $\varphi\left(b_{1}\right), \ldots, \varphi\left(b_{i-1}\right)$ are already chosen, pick $\varphi\left(b_{i}\right) \in L_{\leq B}^{\prime}$ such that

$$
\Phi\left(b_{i}, b_{j}\right)=\Phi^{\prime}\left(\varphi\left(b_{i}\right), \varphi\left(b_{j}\right)\right) \text { for all } 1 \leq j \leq i .
$$

If no such image $\varphi\left(b_{i}\right)$ exists, backtrack and choose a different image for b_{i-1}.

A modification can be used to compute generators of $\operatorname{Aut}(L)$.

There are several tricks that speed up this search

(1) Every isometry φ must respect the fingerprint

$$
\#\left\{y \in L_{=D} \mid \Phi(x, y)=c\right\}
$$

for $D \in\left\{\varphi(x, x) \mid x \in L_{\leq B}\right\}$ and $c \in\left\{\varphi(x, y) \mid x, y \in L_{\leq B}\right\}$.
(2) R. Bacher associates to any $v \in L$ with $\ell:=\Phi(v, v)$ a polynomial $B_{v}(T) \in \mathbb{Z}[T]$ as follows.
For $w \in W_{v}:=\{x \in L \mid \Phi(x, x)=\ell, \Phi(x, v)=\ell / 2\}$. Let

$$
n_{w}=\#\left\{(x, y) \in W_{v}^{2} \mid \Phi(x, w)=\Phi(y, v)=\Phi(x, y)=\ell / 2\right\} .
$$

Then $B_{v}(T):=\sum_{w \in W_{v}} T^{n_{w}}$. Since B_{v} is defined by scalar products, we have $B_{v}=B_{\varphi(v)}$ for each isometry φ.
(0) W. Unger uses J. Leon's ideas on partition refinement to speed up the backtrack search in recent versions of Magma.
(0) φ induces isometries between certain canonical sub/overlattices of L and L^{\prime}. E.g. between $\rho_{p}(L)$ and $\rho_{p}\left(L^{\prime}\right)$ where ρ_{p} is Watson p-map (more later).

Computing isometries of definite lattices III

Obvious changes to the above method only computes isometries $L \rightarrow L$ which preserve some additional bilinear forms.

Suppose now $K \neq \mathbb{Q}$ and let L be a \mathbb{Z}_{K}-lattice in a definite bilinear space (V, Φ). For $a \in K$,

$$
\Phi_{a}: V \times V \rightarrow \mathbb{Q},(x, y) \mapsto \operatorname{Tr}_{K / \mathbb{Q}}(a \Phi(x, y))
$$

defines a bilinear form on the \mathbb{Q}-vector space $V_{\mathbb{Q}}$.
Note that Φ_{1} is positive definite. Further, for any \mathbb{Z}-linear map $\varphi: L \rightarrow L$, the following statements are equivalent:

- φ is an isometry in (V, Φ).
- φ is an isometry in $\left(V_{\mathbb{Q}}, \Phi_{1}\right)$ which preserves Φ_{a} where $K=\mathbb{Q}(a)$.

The maps φ satisfying the latter property can be enumerated as seen before.

Siegel's Mass formula

Definition

If $\operatorname{gen}(L)=\biguplus_{i=1}^{h} \operatorname{cls}\left(L_{i}\right)$, then $\operatorname{Mass}(L):=\sum_{i=1}^{h} \frac{1}{\# \operatorname{Aut}\left(L_{i}\right)}$ is the mass of L.

Theorem (Siegel)

If $m \geq 3$ is odd, then

$$
\operatorname{Mass}(L)=c(m)^{[K: \mathbb{Q}]} \cdot d_{K}^{m(m-1) / 4} \cdot \prod_{i=1}^{(m-1) / 2} \zeta_{K}(2 i) \cdot \prod_{\mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)} \lambda\left(L_{\mathfrak{p}}\right)
$$

where
(1) $c(m)$ is a constant depending on m.
(2) d_{K} is the absolute value of the discriminant of K / \mathbb{Q}.
(0) ζ_{K} is the Dedekind zeta function of K.

- $\lambda\left(L_{\mathfrak{p}}\right)$ are the local densities (fudge factors).

A similar formula holds for $m \geq 4$ even.

Siegel's Mass formula

Note

The mass formula yields an oracle to decide if all vertices in the graph $\Gamma_{\mathfrak{p}}$ have already been found.

We now turn to the enumeration of all definite lattices with class number one.

- The main tool is again the mass formula.
- By Gauß' composition of binary quadratic forms, the enumeration of all one-class genera in the case $m=2$ yields relative class number problems in quadratic extensions of K. There is currently no unconditional solution.
- So for the remainder of the talk let (V, Φ) be a definite quadratic space over K of dimension $m \geq 3$.

Watson's transformations

For $\mathfrak{p} \in \mathbb{P}\left(\mathbb{Z}_{K}\right)$ define

$$
\rho_{\mathfrak{p}}(L):=L+\left(\mathfrak{p}^{-1} L \cap \mathfrak{p} L^{\#}\right)
$$

Let $\pi \in K$ with $v_{\mathfrak{p}}(\pi)=1$ and let

$$
L_{\mathfrak{p}}=L_{0} \perp \ldots \perp L_{s}
$$

be a Jordan decomposition such that $\left(L_{i}, \pi^{-i} \Phi\right)$ is unimodular. Then

- $h(L) \geq h\left(\rho_{\mathfrak{p}}(L)\right)$.
- $\rho_{\mathfrak{p}}\left(L_{\mathfrak{p}}\right)=\left(L_{0} \perp \mathfrak{p}^{-1} L_{2}\right) \perp\left(L_{1} \perp \mathfrak{p}^{-1} L_{3}\right) \perp \mathfrak{p}^{-1}\left(L_{4} \perp \ldots \perp L_{s}\right)$
- $\rho_{\mathfrak{p}}(L)=L \Longleftrightarrow L_{\mathfrak{p}}=L_{0} \perp L_{1}$ if this is the case, then $L_{\mathfrak{p}}$ is called square-free.

Idea:

It suffices to enumerate the definite, square-free lattices with class number 1.

Enumeration of one-class genera

Suppose L is a definite square-free lattice of rank $m \geq 3$ with class number 1 . Then there exists an explicit constant $b(m)$ such that

$$
\begin{align*}
1 \geq \operatorname{Mass}(L) & =c(m)^{n} \cdot d_{K}^{m(m-1) / 4} \cdot \prod_{\mathfrak{p}} \lambda_{\mathfrak{p}}(L) \tag{1}\\
& \geq c(m)^{n} \cdot d_{K}^{m(m-1) / 4} \cdot b(m)^{n}
\end{align*}
$$

where $n:=[K: \mathbb{Q}]$. Thus

$$
\begin{equation*}
d_{K}^{1 / n} \leq(b(m) c(m))^{\frac{-4}{m(m-1)}} \tag{2}
\end{equation*}
$$

(1) The rhs of (2) is $\leq 10 \rightsquigarrow$ finitely many K (enumerated by J. Voight).
(2) For K fixed, the rhs of (2) tends to ∞ if $m \rightarrow \infty \rightsquigarrow$ finitely many m.
(For K and m fixed, there are only finitely many square-free L satisfying (1). \rightsquigarrow Construct them and check if class number is 1 .
(- Investigate $\rho_{\mathfrak{p}}^{-1}$ to get the non-square-free lattices with class number 1 .

One-class genera

Theorem (Watson, Lorch, K.)

(1) There are 30 (totally real) number fields K that admit definite lattices of rank ≥ 3 and class number one.
(2) Over $K=\mathbb{Q}$ there are up to similarity (isometry + rescaling the quadratic form) 1884 definite lattices of rank ≥ 3 with class number one:

rank	3	4	5	7	6	8	9	10	>10	total
lattices	794	481	295	186	86	36	4	2	0	1884

(3) Over the 29 fields $K \neq \mathbb{Q}$ there are (up to similarity) 5903 definite lattices of rank ≥ 3 with class number one and they all have rank ≤ 6.

