Lattices over Dedekind domains

Markus Kirschmer

TRR 195 - Summer School 2023

Dedekind domains

Definition

Let $S \subseteq T$ be domains. The integral closure of S in T is the subring

$$\operatorname{Int}_S(T) = \{t \in T \mid f(t) = 0 \text{ for some monic } f \in S[X]\} \subseteq T$$
.

Definition

An integral domain R with field of fractions K is called a Dedekind domain, if

- R is noetherian.
- every nonzero prime ideal of R is maximal.
- $R = \operatorname{Int}_R(K)$.

Example

- $R = \mathbb{Z}$ is a Dedekind domain.
- Let K be an algebraic number field (i.e. a finite field extension of \mathbb{Q}). Then $\mathbb{Z}_K := \operatorname{Int}_{\mathbb{Z}}(K)$ is a Dedekind domain.
- Localizations/Completions of Dedekind domains are Dedekind domains.

Fractional ideals

Let R be a Dedekind domain with field of fractions K. Let $\mathbb{P}(R)$ denote the set of maximal ideals of R.

Theorem

• The set of fractional ideals

$$\mathcal{I}(R) = \{ aI \mid a \in K^*, \{0\} \neq I \trianglelefteq R \}$$

forms a free abelian group under multiplication with basis $\mathbb{P}(R)$.

2 The neutral element of $\mathcal{I}(R)$ is R and the inverse of $\mathfrak{a} \in \mathcal{I}(R)$ is

$$\mathfrak{a}^{-1} = \{ x \in K \mid x\mathfrak{a} \subseteq R \} .$$

Two fractional ideals a and b are isomorphic (as R-modules) if and only if b = aa for some a ∈ K*. Hence the class group

$$\operatorname{Cl}(R) := \mathcal{I}(R) / \{ aR \mid a \in K^* \}$$

describes the isomorphism classes of fractional ideals of R.

Completions

Definition

A valuation of K is a map $|.|: K \to \mathbb{R}_{\geq 0}$ such that for all $x, y \in K$

$$|x| = 0 \iff x = 0.$$

$$|xy| = |x| \cdot |y|.$$

$$\ \ |x+y| \le |x|+|y|.$$

If |.| satisfies the stronger condition $|x+y| \leq \max\{|x|,|y|\}$ it is called non-archimedean.

Theorem

There is a (unique) minimal field extension \hat{K}/K such |.| extends to a valuation on \hat{K} and $(\hat{K}, |.|)$ is complete (i.e. every Cauchy sequence in \hat{K} converges). The field \hat{K} is called the completion of K with respect to |.|.

Proof: See the construction of $\mathbb R$ from $\mathbb Q.$

Completion - Examples

 $\textbf{ Svery embedding } \iota \colon K \to \mathbb{C} \text{ yields an archimedean valuation }$

 $|.|_{\iota} \colon K \to \mathbb{R}_{\geq 0}, \ x \mapsto |\iota(x)| \ .$

2 Since $\mathbb{P}(R)$ is a basis of $\mathcal{I}(R)$, every $\mathfrak{a} \in \mathcal{I}(R)$ admits a unique factorization

$$\mathfrak{a} = \prod_{\mathfrak{p} \in \mathbb{P}(R)} \mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})}$$

This gives rise to an archimedean valuation

$$|.|_{\mathfrak{p}} \colon K \to \mathbb{R}_{\geq 0}, \ x \mapsto 2^{-v_{\mathfrak{p}}(xR)}.$$

We denote the corresponding completion of K by $K_{\mathfrak{p}}$ and set

$$R_{\mathfrak{p}} = \operatorname{Int}_{R}(K_{\mathfrak{p}}) = \{ x \in K_{\mathfrak{p}} \mid |x| \le 1 \}.$$

Then $R_{\mathfrak{p}}$ is a complete local Dedekind ring with field of fractions $K_{\mathfrak{p}}$.

Theorem (Ostrowski)

All completions of algebraic number fields arise in these ways (up to isomorphism).

Definition

An *R*-lattice is a finitely generated, torsion free *R*-module.

Equivalently:

An R-lattice is a finitely generated R-submodule of a finite dimensional K-vector space V. It is said to be full, if it contains a K-basis of V.

Example

The non-zero lattices of R in V := K are the fractional ideals of R and the class group Cl(R) describes the isomorphism classes of lattices in R.

Theorem (Steinitz)

Let L be a R-lattice in V. Then there exists a linearly independent system $(v_1, \ldots, v_r) \in V^r$ and fractional ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_r \in R$ such that

 $L = \mathfrak{a}_1 v_1 \oplus \ldots \oplus \mathfrak{a}_r v_r$.

Moreover, L is free if and only if the Steinitz invariant $\prod_i \mathfrak{a}_i$ is principal.

The sequence $((\mathfrak{a}_1, v_1), \dots, (\mathfrak{a}_r, v_r))$ is called a pseudo basis of L and $r = \dim_K(KL)$ is called the rank of L.

Using pseudo bases, CAS like Oscar/Hecke can store, compare, intersect and sum lattices, see Tommy's talk for details.

Completions

Let L a full R-lattice in a K-space V. Then

$$L_{\mathfrak{p}} := R_{\mathfrak{p}} \otimes_R L$$

is a full $R_{\mathfrak{p}}$ lattice in the $K_{\mathfrak{p}}$ -space $V_{\mathfrak{p}} := K_{\mathfrak{p}} \otimes_{K} V$.

Remark

If $M = \mathfrak{a}_1 v_1 \oplus \ldots \oplus \mathfrak{a}_r v_r$ and $\pi \in K$ with $v_{\mathfrak{p}}(\pi) = 1$, then

$$(\pi^{v_{\mathfrak{p}}(\mathfrak{a}_1)}v_1,\ldots,\pi^{v_{\mathfrak{p}}(\mathfrak{a}_r)}v_r)$$

is an $R_{\mathfrak{p}}$ -basis of $M_{\mathfrak{p}}$.

In particular:

Corollary

If M is a full lattice in V, then $L_{\mathfrak{p}} = M_{\mathfrak{p}}$ almost everywhere (i.e. at all but finitely many prime ideals).

Local-global principle for lattices

Theorem

We get bijections

$$\{ \text{full } R\text{-lattices in } V \} \leftrightarrow \left\{ (M^{(\mathfrak{p})})_{\mathfrak{p} \in \mathbb{P}(R)} \middle| \begin{array}{l} M^{(\mathfrak{p})} \text{full } R_{\mathfrak{p}}\text{-lattice in } V_{\mathfrak{p}} \text{ with } \\ M^{(\mathfrak{p})} = L_{\mathfrak{p}} \text{ almost everywhere } \end{array} \right\}$$
$$M \mapsto (M_{\mathfrak{p}})_{\mathfrak{p} \in \mathbb{P}(R)} \\ \bigcap_{\mathfrak{p} \in \mathbb{P}(R)} M^{(\mathfrak{p})} \leftrightarrow (M^{(\mathfrak{p})})_{\mathfrak{p} \in \mathbb{P}(R)}$$

This allows for "local" manipulations of R-lattices: For example, to compute maximal sublattices X_1, \ldots, X_s of $L := \bigoplus_{i=1}^r \mathfrak{a}_i x_i$ that contain $\mathfrak{p}L$ do:

- Let M be the lattice with basis $(\pi^{v_{\mathfrak{p}}(\mathfrak{a}_1)}v_1, \ldots, \pi^{v_{\mathfrak{p}}(\mathfrak{a}_r)}v_r)$.
- Since M is free and $M/\mathfrak{p}M \cong (\mathbb{Z}_K/\mathfrak{p})^r$, one can write down the maximal sublattices Y_1, \ldots, Y_s of M that contain $\mathfrak{p}M$.

$$I Set X_i = (Y_i + \mathfrak{p}L) \cap L$$

Lattices in quadratic spaces

From now on: K is an algebraic number field. Then any bilinear form $\Phi: V \times V \to K$ induces a quadratic form $\Phi: V \to K, v \mapsto \Phi(v, v)$.

Definition

- Let (V, Φ) and (V', Φ') be regular bilinear/quadratic spaces over K.
 - The \mathbb{Z}_K -lattices L, L' in (V, Φ) and (V', Φ') are called isometric, if there exists an isometry $\varphi \colon (V, \Phi) \to (V', \Phi')$ such that $\varphi(L) = L'$. We denote this by writing $L \cong L'$.
 - **2** The automorphism group of L is

$$\operatorname{Aut}(L) = \{ \varphi \in \operatorname{O}(V, \Phi) \mid \varphi(L) = L \}.$$

③ The dual of a full lattice L in V is

$$L^{\#} := \{ v \in V \mid \Phi(v, L) \subseteq \mathbb{Z}_K \} .$$

The lattice L is called integral if $L \subseteq L^{\#}$ and unimodular if $L = L^{\#}$.

Similar definitions hold for the completions $L_{\mathfrak{p}}$ for $\mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)$.

Local-global principle for quadratic spaces

Let $v \in \mathbb{P}(\mathbb{Z}_K)$ or $v \colon K \to \mathbb{C}$. The map Φ extends to the completion $V_v = V \otimes_K K_v$. This yields a bilinear/quadratic space (V_v, Φ) over K_v .

Theorem (Hasse-Minkowski)

Quadratic spaces over K are isometric if and only if their completions are isometric.

This yields a classification of regular quadratic spaces over ${\cal K}$ by the following invariants:

- The dimension m of V.
- **2** The discriminant $\operatorname{disc}(V, \Phi)$.
- **③** The signatures of (V_{ι}, Φ) at the real embeddings $\iota \colon K \to \mathbb{R}$.
- The finite set of prime ideals $\mathbb{P}(\mathbb{Z}_K)$ with Clifford invariant -1.

We say that (V, Φ) is definite, if all embeddings $\iota \colon K \to \mathbb{C}$ satisfy $\iota(K) \subseteq \mathbb{R}$ and (V_{ι}, Φ) is a definite space over \mathbb{R} .

Failure of the local-global principle

Example

The local-global principle does *not* hold over \mathbb{Z} . E.g.

$$Q(x,y) = x^2 + xy + 8y^2 \quad \text{and} \quad Q'(x,y) = 2x^2 + xy + 4y^2$$

are isometric over \mathbb{R} and over \mathbb{Z}_p for all primes p, but not over \mathbb{Z} since Q(1,0) = 1 and $Q'(x,y) \neq 1$ for all $x, y \in \mathbb{Z}$.

The failure of the local-global principle for lattices leads to the following definition:

Definition

The genus and the isometry class of a \mathbb{Z} -lattice L in (V, Φ) are

$$gen(L) = \{ L' \subset V \text{ a full } \mathbb{Z}_K \text{-lattice} \mid L_{\mathfrak{p}} \cong L'_{\mathfrak{p}} \text{ for all } \mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K) \}$$
$$cls(L) = \{ L' \subset V \text{ a full } \mathbb{Z}_K \text{-lattice} \mid L \cong L' \}.$$

Local isometry classes

Let $\pi \in \mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)$ with $v_{\mathfrak{p}}(\pi) = 1$. A variation of the Gram-Schmidt process shows that $L_{\mathfrak{p}}$ has a Jordan decomposition

$$L_{\mathfrak{p}} = L_1 \perp L_2 \perp \ldots \perp L_r$$

where $(L_i, \pi^{-s_i} \Phi)$ is unimodular and $s_1 < s_2 < \ldots < s_r$.

Theorem

If $2 \notin \mathfrak{p}$, then $(\operatorname{rank}(L_i), \operatorname{disc}(L_i, \pi^{-s_i}\Phi), s_i)_{1 \leq i \leq r}$ uniquely describe the isometry class of $L_{\mathfrak{p}}$.

If $2\in \mathfrak{p},$ the classification of the isometry classes is due to O'Meara and much more involved.

Theorem (Kneser)

$$\operatorname{gen}(L) = \biguplus_{i=1}^{h} \operatorname{cls}(L_i)$$

is a union of finitely many isometry classes and h(L) = h(gen(L)) = h is called the class number of L or gen(L).

So h(L) measures by "how much" the local-global principle fails for L.

Goal

Work out representatives L_1, \ldots, L_h .

- If m = 1, then gen(L) = cls(L).
- For m = 2, Gauß' famous composition of binary quadratic forms identifies the isometry classes in gen(L) with a (quotient) of a class group of a quadratic extension of \mathbb{Z}_K .
- For $m \geq 3$ we distinguish two cases: (V, Φ) is indefinite or definite.

Spinor norms

From now on, let $m \geq 3$.

Definition

Let $v \in V$ such that $\Phi(v, v) \neq 0$. Then the reflection

$$\sigma_v \colon V \to V, \ x \mapsto x - 2 \frac{\Phi(v, x)}{\Phi(v, v)} v$$

is an isometry on (V, Φ) .

Theorem

• The orthogonal group $O(V, \Phi)$ is generated by reflections.

2 There exists a unique homomorphism spn: $O(V, \Phi) \to K^*/K^{*,2}$ such that $spn(\sigma_v) = \Phi(v, v)K^{*,2}$ called the Spinor norm.

We set

$$\mathcal{S}(V,\Phi) := \left\{ \varphi \in \mathcal{O}(V,\Phi) \mid \det(\varphi) = 1 \text{ and } \operatorname{spn}(\varphi) = 1 \right\}.$$

Definition

The spinor genus of a full lattice L in V is

 $\operatorname{sgen}(L) := \begin{cases} \sigma(M) \middle| & \sigma \in \mathcal{O}(V, \Phi) \text{ and } M \subseteq V \text{ a full lattice such that for all} \\ & \mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K) \text{ exists some } \sigma_{\mathfrak{p}} \in \mathcal{S}(V_{\mathfrak{p}}, \Phi) \text{ with } M_{\mathfrak{p}} = \sigma_{\mathfrak{p}}(L_{\mathfrak{p}}) \end{cases}$

We clearly have

$$\operatorname{cls}(L) \subseteq \operatorname{sgen}(L) \subseteq \operatorname{gen}(L) \; .$$

So we are left with two problems:

- **①** Decompose the genus of L into spinor genera.
- 2 Decompose each spinor genus into isometry classes.

Neighbors

Definition

Let $\mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)$ such that $(V_{\mathfrak{p}}, \Phi)$ is isotropic (automatically holds for $m \geq 5$) and $L_{\mathfrak{p}}$ is unimodular. A \mathfrak{p} -neighbor of L is a full lattice M in V such that

 $L/L \cap M \cong \mathbb{Z}_K/\mathfrak{p} \cong M/L \cap M$.

Facts

- The p-neighbors of L can be written down explicitly.
- **2** The p-neighbors of L lie in the genus of L.
- The number of spinor genera in gen(L) is 2^r for some $r \ge 0$.
- There exists a computable quotient $Q \cong (\mathbb{Z}/2\mathbb{Z})^r$ of a ray class group of \mathbb{Z}_K such that the image of $[\mathfrak{p}] \in Q$ decides in which spinor genus the \mathfrak{p} -neighbors of L fall. In particular, any spinor genus in gen(L) can be reached by some suitable neighbor (Kneser, O'Meara, Beli, Chan, Lorch, K).

Strong approximation

Theorem (Strong approximation, Kneser)

Assume $m = \dim(V) \ge 3$. Let $T \subseteq S \subseteq \mathbb{P}(\mathbb{Z}_K)$ with T finite. Let K_v be a completion with $v \notin S$ and (V_v, Φ) isotropic. Let L be a full lattice in V and for $\mathfrak{p} \in T$ fix some $\sigma_{\mathfrak{p}} \in \mathrm{S}(V_{\mathfrak{p}}, \Phi)$. Then for any $k \in \mathbb{N}$ there exists some $\sigma \in \mathrm{S}(V\Phi)$ such that

$$\begin{split} (\sigma - \sigma_{\mathfrak{p}})(L_{\mathfrak{p}}) &\subseteq \mathfrak{p}^{k}L_{\mathfrak{p}} \quad \textit{for } \mathfrak{p} \in T \\ \sigma(L)_{\mathfrak{p}} &= L_{\mathfrak{p}} \quad \textit{for } \mathfrak{p} \in S \setminus T \end{split}$$

Corollary

If $m \ge 3$ and (V, Φ) is indefinite, then $\operatorname{sgen}(L) = \operatorname{cls}(L)$.

Note: In the indefinite case, this settles the problem of finding representatives of the isometry classes in sgen(L) without testing for isometries!

The definite case

Pick $\mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)$ s.t. $(V_{\mathfrak{p}}, \Phi)$ is isotropic and the \mathfrak{p} -neighbors of L lie in $\operatorname{sgen}(L)$.

Theorem (Kneser)

By strong approximation, any isometry class in $\operatorname{sgen}(L)$ has a representative M such that $M_{\mathfrak{q}} = L_{\mathfrak{q}}$ for all $\mathfrak{q} \neq \mathfrak{p}$ and there exists a sequence

 $L = L_0, L_1, \ldots, L_r = M$

of lattices such that L_i is a p-neighbor of L_{i-1} .

Hence the directed graph $\Gamma_{\mathfrak{p}}$ of isometry classes in $\operatorname{sgen}(L)$ defined by

$$\operatorname{cls}(M) \bullet \rightarrow \operatorname{cls}(M') \iff M'$$
 is a p-neighbour of M

is connected.

Essence

To split $\operatorname{sgen}(L)$ into isometry classes, we need to find a spanning tree of $\Gamma_{\mathfrak{p}}$.

Note: This requires that we can test for isometries!

Computing isometries of definite lattices I

Suppose first $K = \mathbb{Q}$ and let L be a lattice in a definite space (V, Φ) . Let (b_1, \ldots, b_m) be a basis of L and B > 0.

First: Enumerate $L_{\leq B} := \{x \in L \mid \Phi(x, x) \leq B\}$

The Finke-Pohst method is based on the Cholesky decomposition: There are $q_{i,j} \in \mathbb{Q}$ such that

$$\Phi(x,x) = \sum_{i=1}^m q_{i,i} \left(x_i + \sum_{j=i+1}^m q_{ij} x_j \right)^2 \text{ for all } x = \sum_i x_i b_i \in L.$$

Then $\Phi(x,x) \leq B$ implies $x_m^2 q_{m,m} \leq B$. Hence there are only finitely many possibilities for x_m .

Similarly, $q_{m-1,m-1}(x_{m-1}+q_{m-1,m}x_m)^2 \leq B-q_{m,m}x_m^2$. Thus for fixed x_m there are only finitely many possibilities for x_{m-1} , etc.

So $L_{\leq B}$ is finite and can be enumerated by backtracking.

Computing isometries of definite lattices II

The following algorithm computes an isometry $\varphi \colon L \to L'$ between lattices L, L' in definite spaces (V, Φ) and (V', Φ') .

Plesken & Souvignier

- $\textbf{O} \ \ \text{Let} \ B>0 \ \text{such that} \ L_{\leq B}:=\{x\in L\mid \Phi(x,x)\leq B\} \ \text{generates} \ L.$
- ② Suppose $\{b_1, \ldots, b_m\}$ ⊆ $L_{\leq B}$ generates V, so φ is uniquely determined by $\varphi(b_i) \in L'_{\leq B}$.
- $\textbf{0} \ \ \mathsf{lf} \ \varphi(b_1), \dots, \varphi(b_{i-1}) \ \mathsf{are \ already \ chosen, \ pick } \ \varphi(b_i) \in L'_{\leq B} \ \mathsf{such \ that} \\$

$$\Phi(b_i, b_j) = \Phi'(\varphi(b_i), \varphi(b_j))$$
 for all $1 \le j \le i$.

If no such image $\varphi(b_i)$ exists, backtrack and choose a different image for $b_{i-1}.$

A modification can be used to compute generators of Aut(L).

There are several tricks that speed up this search

 $\textbf{0} \quad \text{Every isometry } \varphi \text{ must respect the fingerprint} \\$

$$#\{y \in L_{=D} \mid \Phi(x,y) = c\}$$

 $\text{for } D \in \{\varphi(x,x) \mid x \in L_{\leq B}\} \text{ and } c \in \{\varphi(x,y) \mid x,y \in L_{\leq B}\}.$

2 R. Bacher associates to any $v \in L$ with $\ell := \Phi(v, v)$ a polynomial $B_v(T) \in \mathbb{Z}[T]$ as follows. For $w \in W_v := \{x \in L \mid \Phi(x, x) = \ell, \Phi(x, v) = \ell/2\}$. Let

$$n_w = \#\{(x,y) \in W_v^2 \mid \Phi(x,w) = \Phi(y,v) = \Phi(x,y) = \ell/2\}.$$

Then $B_v(T) := \sum_{w \in W_v} T^{n_w}$. Since B_v is defined by scalar products, we have $B_v = B_{\varphi(v)}$ for each isometry φ .

- W. Unger uses J. Leon's ideas on partition refinement to speed up the backtrack search in recent versions of Magma.
- φ induces isometries between certain canonical sub/overlattices of L and L'.
 E.g. between ρ_p(L) and ρ_p(L') where ρ_p is Watson p-map (more later).

Obvious changes to the above method only computes isometries $L\to L$ which preserve some additional bilinear forms.

Suppose now $K \neq \mathbb{Q}$ and let L be a \mathbb{Z}_K -lattice in a definite bilinear space (V, Φ) . For $a \in K$,

 $\Phi_a \colon V \times V \to \mathbb{Q}, \ (x, y) \mapsto \operatorname{Tr}_{K/\mathbb{Q}}(a\Phi(x, y))$

defines a bilinear form on the \mathbb{Q} -vector space $V_{\mathbb{Q}}$.

Note that Φ_1 is positive definite. Further, for any \mathbb{Z} -linear map $\varphi \colon L \to L$, the following statements are equivalent:

- φ is an isometry in (V, Φ) .
- φ is an isometry in $(V_{\mathbb{Q}}, \Phi_1)$ which preserves Φ_a where $K = \mathbb{Q}(a)$.

The maps φ satisfying the latter property can be enumerated as seen before.

Siegel's Mass formula

Definition

If
$$gen(L) = \biguplus_{i=1}^{h} cls(L_i)$$
, then $Mass(L) := \sum_{i=1}^{h} \frac{1}{\# Aut(L_i)}$ is the mass of L.

Theorem (Siegel)

If $m\geq 3$ is odd, then

$$\operatorname{Mass}(L) = c(m)^{[K:\mathbb{Q}]} \cdot d_K^{m(m-1)/4} \cdot \prod_{i=1}^{(m-1)/2} \zeta_K(2i) \cdot \prod_{\mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)} \lambda(L_\mathfrak{p})$$

where

- c(m) is a constant depending on m.
- **2** d_K is the absolute value of the discriminant of K/\mathbb{Q} .
- **(a)** ζ_K is the Dedekind zeta function of K.
- $\lambda(L_{\mathfrak{p}})$ are the local densities (fudge factors).

A similar formula holds for $m \ge 4$ even.

Note

The mass formula yields an oracle to decide if all vertices in the graph $\Gamma_{\mathfrak{p}}$ have already been found.

We now turn to the enumeration of all definite lattices with class number one.

- The main tool is again the mass formula.
- By Gauß' composition of binary quadratic forms, the enumeration of all one-class genera in the case m = 2 yields relative class number problems in quadratic extensions of K. There is currently no unconditional solution.
- So for the remainder of the talk let (V,Φ) be a definite quadratic space over K of dimension $m\geq 3.$

Watson's transformations

For $\mathfrak{p} \in \mathbb{P}(\mathbb{Z}_K)$ define

$$\rho_{\mathfrak{p}}(L) := L + (\mathfrak{p}^{-1}L \cap \mathfrak{p}L^{\#})$$

Let $\pi \in K$ with $v_{\mathfrak{p}}(\pi) = 1$ and let

$$L_{\mathfrak{p}} = L_0 \perp \ldots \perp L_s$$

be a Jordan decomposition such that $(L_i, \pi^{-i}\Phi)$ is unimodular. Then

- h(L) ≥ h(ρ_p(L)).
 ρ_p(L_p) = (L₀ ⊥ p⁻¹L₂) ⊥ (L₁ ⊥ p⁻¹L₃) ⊥ p⁻¹(L₄ ⊥ ... ⊥ L_s)
- $\rho_{\mathfrak{p}}(L) = L \iff L_{\mathfrak{p}} = L_0 \perp L_1$ if this is the case, then $L_{\mathfrak{p}}$ is called square-free.

Idea:

It suffices to enumerate the definite, square-free lattices with class number 1.

Enumeration of one-class genera

Suppose L is a definite square-free lattice of rank $m \ge 3$ with class number 1. Then there exists an explicit constant b(m) such that

$$1 \ge \operatorname{Mass}(L) = c(m)^n \cdot d_K^{m(m-1)/4} \cdot \prod_{\mathfrak{p}} \lambda_{\mathfrak{p}}(L)$$

$$\ge c(m)^n \cdot d_K^{m(m-1)/4} \cdot b(m)^n$$
(1)

where $n := [K : \mathbb{Q}]$. Thus

$$d_K^{1/n} \le (b(m)c(m))^{\frac{-4}{m(m-1)}}.$$
(2)

- The rhs of (2) is $\leq 10 \rightsquigarrow$ finitely many K (enumerated by J. Voight).
- **2** For K fixed, the rhs of (2) tends to ∞ if $m \to \infty \rightsquigarrow$ finitely many m.
- For K and m fixed, there are only finitely many square-free L satisfying (1). → Construct them and check if class number is 1.
- Investigate $\rho_{\mathfrak{p}}^{-1}$ to get the non-square-free lattices with class number 1.

Theorem (Watson, Lorch, K.)

- O There are 30 (totally real) number fields K that admit definite lattices of rank ≥ 3 and class number one.
- Over K = Q there are up to similarity (isometry + rescaling the quadratic form) 1884 definite lattices of rank ≥ 3 with class number one:

rank	3	4	5	7	6	8	9	10	> 10	total
lattices	794	481	295	186	86	36	4	2	0	1884

Over the 29 fields K ≠ Q there are (up to similarity) 5903 definite lattices of rank ≥ 3 with class number one and they all have rank ≤ 6.