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Preface

The aim of this monograph is to provide an introduction to some fundamental
problems, results and algorithms of invariant theory. The focus will be on the
three following aspects:

(1) Algebraic algorithms in invariant theory, in particular algorithms arising
from the theory of Grobner bases;

(ii) Combinatorial algorithms in invariant theory, such as the straightening al-
gorithm, which relate to representation theory of the general linear group;

(iii) Applications to projective geometry.

Part of this material was covered in a graduate course which I taught at RISC-
Linz in the spring of 1989 and at Cornell University in the fall of 1989. The
specific selection of topics has been determined by my personal taste and my
belief that many interesting connections between invariant theory and symbolic
computation are yet to be explored.

In order to get started with her/his own explorations, the reader will find
exercises at the end of each section. The exercises vary in difficulty. Some of
them are easy and straightforward, while others are more difficult, and might in
fact lead to research projects. Exercises which I consider “more difficult” are
marked with a star. :

This book is intended for a diverse audience: graduate students who wish
to learn the subject from scratch, researchers in the various fields of application
who want to concentrate on certain aspects of the theory, specialists who need
a reference on the algorithmic side of their field, and all others between these
extremes. The overwhelming majority of the results in this book are well known,
with many theorems dating back to the 19th century. Some of the algorithms,
however, are new and not published elsewhere.

I am grateful to B. Buchberger, D. Eisenbud, L. Grove, D. Kapur, Y. Laksh-
man, A. Logar, B. Mourrain, V. Reiner, S. Sundaram, R. Stanley, A. Zelevinsky,
G. Ziegler and numerous others who supplied comments on various versions of
the manuscript. Special thanks go to N. White for introducing me to the beau-
tiful subject of invariant theory, and for collaborating with me on the topics in
Chapters 2 and 3. T am grateful to the following institutions for their support: the
Austrian Science Foundation (FWF), the U.S. Army Research Office (through
MSI Cornell), the National Science Foundation, the Alfred P. Sloan Foundation,
and the Mittag-Leffler Institute (Stockholm).

Ithaca, June 1993 Bernd Sturmfels
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Introduction

Invariant theory is both a classical and a new area of mathematics. It played a
central role in 19th century algebra and geometry, yet many of its techniques
and algorithms were practically forgotten by the middle of the 20th century.

With the fields of combinatorics and computer science reviving old-fashioned
algorithmic mathematics during the past twenty years, also classical invariant
theory has come to a renaissance. We quote from the expository article of Kung
and Rota (1984):

“Like the Arabian phoenix rising out of its ashes, the theory of invariants,
pronounced dead at the turn of the century, is once again at the forefront of
mathematics. During its long eclipse, the language of modern algebra was de-
veloped, a sharp tool now at last being applied to the very purpose for which it
was invented.”

This quote refers to the fact that three of Hilbert’s fundamental contributions
to modern algebra, namely the Nullstellensatz, the Basis Theorem and the Syzygy
Theorem were first proved as lemmas in his invariant theory papers (Hilbert
1890, 1893). It is also noteworthy that, contrary to a common belief, Hilbert’s
main results in invariant theory yield an explicit finite algorithm for computing
a fundamental set of invariants for all classical groups. We will discuss Hilbert’s
algorithm in Chap. 4.

Throughout this text we will take the complex numbers C to be our ground
field. The ring of polynomials f(x1, X2, ..., x,) in n variables with complex
coefficients is denoted C[xy, x2, ..., x,]. All algorithms in this book will be
based upon arithmetic operations in the ground field only. This means that if
the scalars in our input data are contained in some subfield X C C, then all
scalars in the output also lie in K. Suppose, for instance, we specify an algorithm
whose input is a finite set of n x n-matrices over C, and whose output is a finite
subset of C[x1, x2, ..., x,]. We will usually apply such an algorithm to a set of
input matrices which have entries lying in the field Q of rational numbers. We
can then be sure that all output polynomials will lie in Q[xq, xp, ..., x,].

Chapter 1 starts out with a discussion of the ring of symmetric polynomials,
which is the simplest instance of a ring of invariants. In Sect. 1.2 we recall some
basics from the theory of Grobner bases, and in Sect. 1.3 we give an elemen-
tary exposition of the fundamental problems in invariant theory. Section 1.4 is
independent and can be skipped upon first reading. It deals with invariants of
algebraic tori and their relation to integer programming. The results of Sect. 1.4
will be needed in Sect. 2.7 and in Chap. 4.



2 Introduction

1.1. Symmetric polynomials

Our starting point is the fundamental theorem on symmetric polynomials. This
is a basic result in algebra, and studying its proof will be useful to us in three
ways. First, we illustrate some fundamental questions in invariant theory with
their solution in the easiest case of the symmetric group. Secondly, the main
theorem on symmetric polynomials is a crucial lemma for several theorems to
follow, and finally, the algorithm underlying its proof teaches us some basic
computer algebra techniques.

A polynomial f € Clxy, ..., x,] is said to be symmetric if it is invariant un-
der every permutation of the variables xi, x3, ..., x,,. For example, the polyno-
mial f7 := x1x2 + x1x3 is not symmetric because fi(xy, x2, x3) # f1(x2, X1, x3)
= X1X2 + x2x3. On the other hand, f, := x1x7 + x1x3 + Xpx3 is symmetric.

Let z be a new variable, and consider the polynomial

8@) =@ —x1)(z—x2)...(2 = Xn)

="~ Vo — (=)0,
We observe that the coefficients of g with respect to the new variable z,

o1 =x1+x2+ ...+ Xy,
Oy =x1X +x1x3 4+ ...+ x2x3 + ...+ Xp_1Xp,

03 = X1X2X3 + X1X2X4 + ... + Xpn—02X5n—1Xn,

Op = X1X2X3 - -+ Xp,

are symmetric in the old variables x1, x7, . .., x,. The polynomials o1, 03, ..., 0,
€ Clx1, x2, ..., x,] are called the elementary symmetric polynomials.

Since the property to be symmetric is preserved under addition and multi-
plication of polynomials, the symmetric polynomials form a subring of Clx;,
..., Xz]. This implies that every polynomial expression p(o1, 09, ..., 0,) in the
elementary symmetric polynomials is symmetric in C[x, ..., x,]. For instance,
the monomial ¢ - 0{"0,”...0{" in the elementary symmetric polynomials is
symmetric and homogeneous of degree u; + 2uz + ... + nu, in the original
variables x1, xa, ..., X,.

Theorem 1.1.1 (Main theorem on symmetric polynomials). Every symmetric
polynomial f in C[xy, ..., x,] can be written uniquely as a polynomial

f(xl’XZa"‘axn)zp(o-l(x17"'7xn)7'~-9o-n(x1"--,-xn))

in the elementary symmetric polynomials.

Proof. The proof to be presented here follows the one in van der Waerden
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(1971). Let f € Clxy, ..., x,] be any symmetric polynomial. Then the following
algorithm rewrites f uniquely as a polynomial in o7, ..., 0.

We sort the monomials in f using the degree lexicographic order, here de-
noted “<”. In this order a monomial x{" ... x," is smaller than another monomial

xfl .. .x,‘f” if it has lower total degree (i.e., ) o; < Y_ B;), or if they have the
same total degree and the first non-vanishing difference o; — B; is negative.
For any monomial x{" ... x," occurring in the symmetric polynomial f also

all its images x{' ... x,°" under any permutation ¢ of the variables occur in f.

This implies that the initial monomial init(f) = c - x]'x}?...x)" of f satisfies

Y1 = Y2 = ... = ¥y By definition, the initial monomial is the largest monomial
with respect to the total order “<” which appears with a nonzero coefficient
in f.

In our algorithm we now replace f by the new symmetric polynomial f :=
f—c-ol" e g TG e store the summand c - ol e

n—1
a:i‘ll_y”a,,y”, and, if f is non-zero, then we return to the beginning of the
previous paragraph.
Why does this process terminate? By construction, the initial monomial of

c-ol' el -0} """ equals init(f). Hence in the difference defining

f the two initial monomials cancel, and we get init( f ) < init(f). The set
of monomials m with m < init(f) is finite because their degree is bounded.
Hence the above rewriting algorithm must terminate because otherwise it would
generate an infinite decreasing chain of monomials.

It remains to be seen that the representation of symmetric polynomials in
terms of elementary symmetric polynomials is unique. In other words, we need

to show that the elementary symmetric polynomials o1, ..., 0, are algebraically
independent over C.

Suppose on the contrary that there is a non-zero polynomial p(yi, ..., y,)
such that p(o1, ..., 0,) =0 in C[xy, ..., x,]. Given any monomial y{' -- - yy"

a1top+...Ato, ar+..tay,
X

of p, we find that x] ... xp" is the initial monomial of

o' ---0,". Since the linear map
(ap, a0, ...,ap) > (@1 +a2+ ...+ ay, ag+...+ay,, ..., o)
is injective, all other monomials 01’3 ! ...U,‘,B " in the expansion of p(oy,...,0,)

have a different initial monomial. The lexicographically largest monomial
xfirerttan dotden Ly s not cancelled by any other monomial, and there-
fore p(o1,...,0,) # 0. This contradiction completes the proof of Theorem
1.1.1. <

As an example for the above rewriting procedure, we write the bivariate
symmetric polynomial x13 + xg as a polynomial in the elementary symmetric

polynomials:

ﬁ-}-x; — 013 - 3)(?%)62 — 3x1x22 — 013 — 30109.
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The subring C[x]% of symmetric polynomials in C[x] := Clxy, ..., x,]
is the prototype of an invariant ring. The elementary symmetric polynomials
o1,..., 0, are said to form a fundamental system of invariants. Such fundamental
systems are generally far from being unique. Let us describe another generating
set for the symmetric golynomials which will be useful later in Sect. 2.1. The
polynomial py(x) := x| + x’2‘ +...+ x,’f is called the k-th power sum.

Proposition 1.1.2. The ring of symmetric polynomials is generated by the first
n power sums, i.e.,

C[X]Sn = C[O-l’ 0.27 ey Gn] = C[pl, p2a ceey pn]~

Proof. A partition of an integer d is an integer vector A = (A1, A2, ..., Ap)
such that A; > A; >...z Ay > 0and Ay + X + ... + A, = d. We assign
to a monomial x;'...x," of degree d the partition A(i1, ..., i,) which is the

decreasingly sorted string of its exponents.

This gives rise to the following total order on the set of degree d mono-
mials in C[x]. We set x,'...x;" < x{'...x)" if the partition A(i1,...,i,) is
lexicographically larger than A(ji, ..., ju), or if the partitions are equal and
(i1, ..., i) is lexicographically smaller than (ji, ..., j,). We note that this total
order on the set of monomials in C[x] is nor a monomial order in the sense of
Grobner bases theory (cf. Sect. 1.2). As an example, for n = 3, d = 4 we have
xg‘ < x§ =< xf < x2x33 < xgxg < xlxg’ < xlxg < x13x3 < xfxz < x22x32 <
xlzxg < xlzxg < xlxzxg < x1x§X3 < X%XZX3.

We find that the initial monomial of a product of power sums equals

.. i iz i . . .
init(p;, piy - . - Pip) = Citipiy * X1 Xy ... X, Whenever iy > ip > ... > Iy

where ¢;,;,..;, 1S a positive integer.

Now we are prepared to describe an algorithm which proves Proposition
1.1.2. Tt rewrites a given symmetric polynomial f € C[x] as a polynomial
function in py, ps, ..., py. By Theorem 1.1.1 we may assume that f is one of
the elementary symmetric polynomials. In particular, the degree d of f is less or

equal to n. Its initial monomial init(f) = c-xi1 .. .xf,” satisfiesn > i1 > ... > i,.
Now replace f by fri=f—— pi, - - - pi,- By the above observation the initial

Ciy..in
monomials in this difference cancel, and we get init(f) < init(f). Since both f
and f have the same degree d, this process terminates with the desired result. <

Here is an example for the rewriting process in the proof of Proposition
1.1.2. We express the three-variate symmetric polynomial f := xjx2x3 as a
polynomial function in p;, p» and p3. Using the above method, we get
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1,3_1 2. 1 3
X1X2X3 —> & Pj 2§,xixl 6%%
i#]

1.3 1
— 01— 5(pip2 - ;x/?) -3 ;ng
— P} — 5pip2 + 3ps.

Theorem 1.1.1 and Proposition 1.1.2 show that the monomials in the el-
ementary symmetric polynomials and the monomials in the power sums are
both C-vector space bases for the ring of symmetric polynomials C[x]5*. There
are a number of other important such bases, including the complete symmetric
polynomials, the monomial symmetric polynomials and the Schur polynomials.
The relations between these bases is of great importance in algebraic combina-
torics and representation theory. A basic reference for the theory of symmetric
polynomials is Macdonald (1979).

We close this section with the definition of the Schur polynomials. Let A,
denote the alternating group, which is the subgroup of S, consisting of all even
permutations. Let C[x]?" denote the subring of polynomials which are fixed by
all even permutations. We have the inclusion C[x]®* C C[x]4. This inclusion
is proper, because the polynomial

D(xy, ..., x0) = [ (xi—x))

1<i<j<n
is fixed by all even permutations but not by any odd permutation.

Proposition 1.1.3. Every polynomial f € C[x]4" can be written uniquely in
the form f = g + A - D where g and / are symmetric polynomials.

Proof. We set

g(xt, oy xa) i= [ f (v, X2, 43, ., Xn) + (2, X1, X3, ..., X)) and
h(xt, ... x,) 1= %[f(xl,xz,xa,..-,xn)—f(xz,X1,x3,.-.,xn)]-

Thus f is the sum of the symmetric polynomial g and the antisymmetric poly-
nomial 4. Here i being antisymmetric means that

fl(xm, .o, Xg,) = sign(o) ~ﬁ(x1, ey Xp)

for all permutations o € S,,. Hence & vanishes identically if we replace one of
the variables x; by some other variable x;. This implies that x; — x; divides h,
forall 1 <i < j < n, and therefore D divides h. To show uniqueness, we
suppose that f = ¢ +hD = g’ + h'D. Applying an odd permutation 7, we get
fom=g—hD =g —hD. Now add both equations to conclude g = g’ and
therefore h = h'. <
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With any partition A = (A; > X2 > ... > A,) of an integer d we associate
the homogeneous polynomial

r+n—1 A+n—1 . A+n—1
X1 X Xn
xk2+n—2 x§2+n—2 . x,);2+"’2
a(x1, ..., x,) = det
A A
xi”n x2n e xnn

Note that the total degree of a; (x1, ..., x,) equals d + (}).

The polynomials a, are precisely the nonzero images of monomials undpr
antisymmetrization. Here by antisymmetrization of a polynomial we mean its
canonical projection into the subspace of antisymmetric polynomials. Therefore
the a, form a basis for the C-vector space of all antisymmetric polynomials.
We may proceed as in the proof of Proposition 1.1.3 and divide a, by the
discriminant. The resulting expression s, := a,/D is a symmetric polynomial
which is homogeneous of degree d = |A|. We call s;(x1,...,x,) the Schur
polynomial associated with the partition A.

Corollary 1.1.4. The set of Schur polynomials s,, where A = (A > )Lg >...>
Ap) ranges over all partitions of d into at most » parts, forms a basis for the

C-vector space C[x]fi" of all symmetric polynomials homogeneous of degree d.

Proof. Tt follows from Proposition 1.1.3 that multiplication with D is an iso-
morphism from the vector space of symmetric polynomials to the space Qf
antisymmetric polynomials. The images of the Schur polynomials s; under this
isomorphism are the antisymmetrized monomials a,. Since the latter are a basis,
also the former are a basis. <

Exercises

(1) Write the symmetric polynomials f := x; + x; + x; and
g = (x; — x2)%(x; — x3)%(x2 — x3)? as polynomials in the elementary
symmetric polynomials o7 = X1 + X3 + X3, 02 = X1X2 + X1X3 + X2x3, and
03 = X1X2X3.

(2) Study the complexity of the algorithm in the proof of Theorem 1.1.1. More
precisely, find an upper bound in terms of deg(f) for the number of steps
needed to express a symmetric f € C[xy, ..., x,] as a polynomial in the
elementary symmetric polynomials.

(3) Write the symmetric polynomials o4 := x1Xox3x4 and ps := x} +x5 +x3+x]
as polynomials in the first four power sums p = x; + xp + x3 + x4,

D2 =x12+x%+x§+x2, P3 =x?+x§’ +x33 +x2, N =x;‘+x§+x§‘+x2.

(4) Consider the vector space V = Cl[x1, x2, x3]g3 of all symmetric polynomials
in three variables which are homogeneous of degree 6. What is the
dimension of V? We get three different bases for V by considering Schur
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. : i i iy .
polynomials ¢, 1,.15), monomials 0;'0,20;* in the elementary symmetric

polynomials, and monomials p}' p5* p5 in the power sum symmetric
polynomials. Express each element in one of these bases as a linear
combination with respect to the other two bases.

(5) Prove the following explicit formula for the elementary symmetric
polynomials in terms of the power sums (Macdonald 1979, p. 20):

p1 1 0o ... 0

D2 D1 2 ... 0

Oy = F det :
Pk-1 D2 ... p1 k—1

Pk DPk-1 --- ... 1

1.2. Grobner bases

In this section we review background material from computational algebra. More
specifically, we give a brief introduction to the theory of Gribner bases. Our
emphasis is on how to use Grobner bases as a basic building block in designing
more advanced algebraic algorithms. Readers who are interested in “how this
black box works” may wish to consult either of the text books Cox et al. (1992)
or Becker et al. (1993). See also Buchberger (1985, 1988) and Robbiano (1988)
for additional references and details on the computation of Grobner bases.

Grobner bases are a general purpose method for multivariate polynomial
computations. They were introduced by Bruno Buchberger in his 1965 disserta-
tion, written at the University of Innsbruck (Tyrol, Austria) under the supervision
of Wolfgang Grobner. Buchberger’s main contribution is a finite algorithm for
transforming an arbitrary generating set of an ideal into a Grobner basis for that
ideal.

The basic principles underlying the concept of Grébner bases can be traced
back to the late 19th century and the early 20th century. One such early reference
is P. Gordan’s 1900 paper on the invariant theory of binary forms. What is called
“Le systéme irréductible N’ on page 152 of Gordan (1900) is a Grobner basis
for the ideal under consideration.

Buchberger’s Grobner basis method generalizes three well-known algebraic
algorithms: '

— the Euclidean algorithm (for univariate polynomials)
~ Gaussian elimination (for linear polynomials)
— the Sylvester resultant (for eliminating one variable from two polynomials)

So we can think of Grobner bases as a version of the Euclidean algorithm
which works also for more than one variable, or as a version of Gaussian elim-
ination which works also for higher degree polynomials. The basic algorithms
are implemented in many computer algebra systems, e.g., MAPLE, REDUCE, AX-
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I0M, MATHEMATICA, MACSYMA, MACAULAY, COCOA, and playing with one of
these systems is an excellent way of familiarizing oneself with Grobner bases.
In MAPLE, for instance, the command “gbasis” is used to compute a Grobner
basis for a given set of polynomials, while the command “normalf” reduces any
other polynomial to normal form with respect to a given Grobner basis.

The mathematical set-up is as follows. A total order “<” on the monomials
IM. x,f” in C[x1,...,X,] is said to be a monomial order if 1 < m; and
(my < my = my-m3 < my-m3) for all monomials my, ma, m3 € Clxy, ..., x,].

Both the degree lexicographic order discussed in Sect. 1.1 and the (purely)
lexicographic order are important examples of monomial orders. Every linear
order on the variables x1, X2, . . ., X, can be extended to a lexicographic order on
the monomials. For example, the order x; < x3 < xz on three variables induces
the (purely) lexicographic order 1 <x < x% =< xf’ < xf < ... =< X3 <X3X1 <
X3xf < ... <Xy <Xox1 < xle < ...on Clxy, x3, x3].

We now fix any monomial order “<”on C[xq, ..., Xx,]. The largest monomial
of a polynomial f € C[x, ..., x,] w1th respect to “ ” is denoted by init(f)
and called the initial monomial of f. For an ideal I C C[xl, ..., Xn], we define
its initial ideal as init(1) = {({init(f) : f € I}). In other Words, init(/) is the
ideal generated by the initial monomials of all polynomials in /. An ideal which
is generated by monomials, such as init(/), is said to be a monomial ideal. The
monomials m ¢ init(I) are called standard, and the monomials m € init(/) are
non-standard.

A finite subset G := {g1, g2, ..., &} of an ideal I is called a Grébner basis
for I provided the initial ideal init(/) is generated by {init(g1), ..., init(gy)}.
One last definition: the Grobner basis G is called reduced if init(g;) does not
divide any monomial occurring in gj, for all distinct i, j € {1,2, ..., s}. Grob-
ner bases programs (such as “gbasis” in MAPLE) take a finite set 7 C C[x] and
they output a reduced Gribner basis G for the ideal (F) generated by F. They
are based on the Buchberger algorithm.

The previous paragraph is perhaps the most compact way of defining Grob-
ner bases, but it is not at all informative on what Grébner bases theory is
all about. Before proceeding with our theoretical crash course, we present six
concrete examples (F, G) where G is a reduced Grobner basis for the ideal (F).

Example 1.2.1 (Easy examples of Grébner bases). In (1), (2), (5), (6) we also
give examples for the normal form reduction versus a Grobner bases G which
rewrites every polynomial modulo (F) as a C-linear combination of standard
monomials (cf. Theorem 1.2.6). In all examples the used monomial order is
specified and the initial monomials are underlined.

(1) For any set of univariate polynomials F, the reduced Grobner basis G is
always a singleton, consisting of the greatest common divisor of F. Note
that 1 <x < x2 < x3 < x* < ... is the only monomial order on C[x].

= {12x —x2=23x —11, x* = x? —2x - 1}
={x?—-x— 1}
Normal form: x% 4+ x? —g 3x +2
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Here x> generates the initial ideal, hence 1 and x are the only standard
monomials.

(2) This ideal in two variables corresponds to the intersection of the unit circle
with a certain hyperbola. We use the purely lexicographic order induced
from x < y

}' {y +x2 -1, 3xy — 1}

{y—|—3x —3x 9x — 9x? +1}

Normal form: y* + y3 —>g 27x3 +9x? — 24x — 8
The Grobner basis is triangularized, and we can easily compute coordinates
for the intersection points of these two curves. There are four such points
and hence the residue ring C[x, y]/(F) is a four-dimensional C-vector space.
The set of standard monomials {1, x, x%, x3} is a basis for this vector space
because the normal form of any bivariate polynomial is a polynomial in x
of degree at most 3.

(3) If we add the line y = x 41, then the three curves have no point in common.
This means that the ideal equals the whole ring. The Grobner basis with
respect to any monomial order consists of a non-zero constant.

{y +x2—1, 3xy—1,y—x—1}
={1}
(4) The three bivariate polynomials in (3) are algebraically dependent. In order

to find an algebraic dependence, we introduce three new “slack” variables
f, g and h, and we compute a Grébner basis of

.7-"={y_2+x2—l~f,3x_y—l—g,_)i—x—1——h}
with respect to the lexicographic order induced from f < g <h <x < y.
={y—x—h—1,3x2+3x —g+3hx — 1, 3R2+6h +2¢ —3f +2}
The third polynomial is an algebraic dependence between the circle, the
hyperbola and the line.

(5) We apply the same slack variable computation to the elementary symmetric
polynomials in C[xj, x2, x3], using the lexicographic order induced from
o1 <02-<03<x1 < X2 < X3.

= {x1+x2+x3 — 01, X122 + X113 SHXaXs — 02, X10pX3 — o3}
= {x3+x2+x1 —o01, x% +x1x2 -l-xl — 01Xy — 01X1 + 03, xf 01x12 +
02X — 03}
The Grobner basis does not contain any polynomial in the slack variables
01, 02, 03 because the elementary symmetric polynomials are algebraically

independent. Here the standard monomials are 1 X1, xlz, X2, XpX1, xzx:f and

all their products with monomials of the form 01 021203’3

Normal form: (x; — xg) (x1 — x3)% (9 — x3)2 —>g
- 2703 + 180300071 — 403013 — 402 +0; 0‘12
(6) This is a special case of a polynomial system which will be studied in detail
in Chap. 3, namely the set of d x d-subdeterminants of an n X d-matrix (x;;)
whose entries are indeterminates. We apply the slack variable computation
to the six 2 x 2-minors of a 4 x 2-matrix, using the lexicographic order
induced from the variable order [12] < [13] < [14] < [23] < [24] < [34] <
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X11 < X2 < X1 < X2 < X31 < X32 < X471 < X42. In the polynomial ring in
these 14 = 6 + 8 variables, we consider the ideal generated by
F = {xnxpp—x12x21—[12], x11x30—x1231 —[13], x11x00 —X12%41 —[14],
X21X30 —X22X31 —[23], Xp1X42 —x20x41 —[24], X31X40—x32X41 —[34]}
The Grobner basis equals
G = FU({[12][34] — [13][24] + [14][23], ... ... ... (and
many more) ...}
This polynomial is an algebraic dependence among the 2 x 2-minors of any
4 x 2-matrix. It is known as the (quadratic) Grassmann—Pliicker syzygy.
Using the Grobner basis G, we can rewrite any polynomial which lies in
the subring generated by the 2 x 2-determinants as a polynomial function in
[12], [13], ..., [34].
Normal form: x11x22X31X42 + X11X20X30X41 + X12X21X31X42 +
X12X21X32X41 — 2X11X21X32X42 — 2X12X22X31X41 -G
[14][23] + [13][24]

Before continuing to read any further, we urge the reader to verify these six
examples and to compute at least fifteen more Grobner bases using one of the
computer algebra systems mentioned above.

We next discuss a few aspects of Grobner bases theory which will be used
in the later chapters. To begin with we prove that every ideal indeed admits a
finite Grobner basis.

Lemma 1.2.2 (Hilbert 1890, Gordan 1900). Every monomial ideal M in
Clx1, ..., x,] is finitely generated.

Proof. We proceed by induction on n. By definition, a monomial ideal M in
C[x1] is generated by {x{ :j € J} where J is some subset of the nonnegative
integers. The set J has a minimal element jy, and M is generated by the

singleton {xlj"}. This proves the assertion for n = 1.
Suppose that Lemma 1.2.2 is true for monomial ideals in # — 1 variables. For
every nonnegative integer j € N consider the (n — 1)-variate monomial ideal M;

which is generated by all monomials m € C[xy, ..., x,_1] such that m-x;] € M.
By the induction hypothesis, M; is generated by a finite set S; of monomials.
Next observe the inclusions Mo S M; S M, € ... S M; S M;1; C....By
the induction hypothesis, also the monomial ideal U;?_—o M, is finitely generated.
This implies the existence of an integer r such that M, = M, | = M, =
M43 = ... It follows that a monomial x| ...x:"_“llx,'f” is contained in M if
and only if x{" .. .x:”:l‘ is contained in M, where ¢ = min {r, a,,}. Hence the

finite monomial set | JI_, S; - x| generates M. <«

Corollary 1.2.3. Let “<” be any monomial order on C[xy, ..., x,]. Then there
is no infinite descending chain of monomials m; > my > m3 > M4 > . . ..

Proof. Consider any infinite set {m;, m,, ms, ...} of monomials in C[x,...,

-

1.2. Grobner bases "

v, ). Its ideal is finitely generated by Lemma 1.2.2. Hence there exists an integer j
such that m; € (my1,ma,...,mj—1). This means that m; divides m; for some
i < j. Since “<” is a monomial order, this implies m; < m; with i < j. This
proves Corollary 1.2.3. <

Theorem 1.2.4.

(1) Any ideal I C C[x,...,x,] has a Grobner basis G with respect to any
monomial order “<”.

(2) Every Grobner basis G generates its ideal .

Proof. Statement (1) follows directly from Lemma 1.2.2 and the definition of
Grobner bases. We prove statement (2) by contradiction. Suppose the Grob-
ner basis G does not generate its ideal, that is, the set / \ (G) is non-empty. By
Corollary 1.2.3, the set of initial monomials {init(f) : f € I\ (G)} has a minimal
element init( fy) with respect to “<”. The monomial init(fy) is contained in
init(7) = (init(G)). Let g € G such that init(g) divides init( fy), say init(fp) =
m - init(g).

Now consider the polynomial f; := fy—m-g. By construction, f € I\ (G).
But we also have init(f;) < init(fp). This contradicts the minimality in the
choice of fy. This contradiction shows that G does generate the ideal /. <

From this we obtain as a direct consequence the following basic result.

Corollary 1.2.5 (Hilbert’s basis theorem). Every ideal in the polynomial ring
Clxy, x2, ..., x,] is finitely generated.

We will next prove the normal form property of Grobner bases.

Theorem 1.2.6. Let I be any ideal and “<” any monomial order on C[xy, ...,
x,]. The set of (residue classes of) standard monomials is a C-vector space basis
for the residue ring Clxy, ..., x,1/1.

Proof. Let G be a Grobner basis for /, and consider the following algorithm

which computes the normal form modulo /.

Input: p € Clxy, ..., xu].

1. Check whether all monomials in p are standard. If so, we are done: p is in
normal form and equivalent modulo / to the input polynomial.

2. Otherwise let hnst(p) be the highest non-standard monomial occurring in p.
Find g € G such that init(g) divides hnst(p), say m - init(g) = hnst(p).

3. Replace pby p:=p—m-g, and go to 1.

We have init(p) < init( p) in Step 3, and hence Corollary 1.2.3 implies that this
algorithm terminates with a representation of p € C[xy, ..., x,] as a C-linear
combination of standard monomials modulo /. We conclude the proof of Theo-
rem 1.2.6 by observing that such a representation is necessarily unique because,
by definition, every polynomial in / contains at least one non-standard mono-
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mial. This means that zero cannot be written as non-trivial linear combination
of standard monomials in Clx1, ..., x,]/1. <

Sometimes it is possible to give an a priori proof that an explicitly known
“nice” subset of a polynomial ideal / happens to be a Grobner basis. In such
a lucky situation there is no need to apply the Buchberger algorithm. In order
to establish the Grobner basis property, tools from algebraic combinatorics are
particularly useful. We illustrate this by generalizing the above Example (5) to
an arbitrary number of variables.

Let I denote the ideal in C[x, y] = C[x1, x2, ..., Xn, Y1, Y2, ..., Yu] Which
is generated by the polynomials o;(x1,...,x,) — y; fori = 1,2, ..., n. Here
o; denotes the i-th elementary symmetric polynomial. In other words, I is the
ideal of all algebraic relations between the roots and coefficients of a generic
univariate polynomial.

The i-th complete symmetric polynomial h; is defined to be the sum of all
monomials of degree i in the given set of variables. In particular, we have

) o
hi(e, -, x0) = D x x5 -+ - x;" where the sum ranges over all (" f”) non-
negative integer vectors (Vg, Vky1, ..., V,) whose coordinates sum to i.

Theorem 1.2.7. The unique reduced Grobner basis of I with respect to the
lexicographic monomial order induced from x; > x; > ... > X, > y1 > y» >
... > Y, equals

k .
g = {hk(xk,...,xn) + 2 (=D iy e X))y k= 1,...,n}.

i=1

Proof. In the proof we use a few basic facts about symmetric polynomials
and Hilbert series of graded algebras. We first note the following symmetric
polynomial identity

k .
Pk, -y xn) + 20 (=D i ok« oy X0) 03 (X1, oy Xim 1y Xy oo, Xn) = 0.

i=1

This identity shows that G is indeed a subset of the ideal /.

We introduce a grading on C[x, y] by setting degree(x;) = 1 and degree(y;)
= j. The ideal I is homogeneous with respect to this grading. The quotient ring
R = CJx, y]/I is isomorphic as a graded algebra to C[x, ..., x,], and hence
the Hilbert series of R = @2, Ry equals H(R,z) = Y 32 dimc(Ry)z¢ =
(I — z)™". It follows from Theorem 1.2.6 that the quotient C[x, y]/init.(])
modulo the initial ideal has the same Hilbert series (1 — z)™".

Consider the monomial ideal J = (x;, x22, xg’ ,...,Xy) which is generated
by the initial monomials of the elements in G. Clearly, J is contained in the
initial ideal init (/). Our assertion states that these two ideals are equal. For the
proof it is sufficient to verify that the Hilbert series of R’ := C[x, y]/J equals
the Hilbert series of R.

1.2. Grobner bases 3

A vector space basis for R’ is given by the set of all monomials xil ceexn yi!

. y,{” whose exponents satisfy the constraints i1 < 1,ip < 2,...,i, < n. This

shows that the Hilbert series of R’ equals the formal power series

H(R'.z) = (Zzi1+i2+.“+i,,) (sz1+2j2+...+nj,l>.

The second sum is over all (ji,..., j,) € N" and thus equals [(1 — z)(1 —
722y (1= z")]~L. The first sum is over all (iy, ..., i,) € N* with iy < u and
hence equals the polynomial (1 +2z)(14+z+22)---(1+z 422 +...+2"h).
We compute their product as follows:

ooy (] l+z\[/1+z+2? l+z+z224. 47!
e ’Z)'<1—z>(1—z2)( = )( 2 )
1 1 1 1
:(1—2)(1—2)(1—z>”.<:>:H(R’Z)'

This completes the proof of Theorem 1.2.7. «

The normal form reduction versus the Grobner basis G in Theorem 1.2.7 pro-
vides an alternative algorithm for the Main Theorem on Symmetric Polynomials
(1.1.1). If we reduce any symmetric polynomial in the variables X1y X25 ooy Xn
modulo G, then we get a linear combination of standard monomials y{'y;* - - - yy/".
These can be identified with monomials 0,'0,? - - - 6," in the elementary sym-

metric polynomial.

Exercises

(1) Let “<” be a monomial order and let / be any ideal in Clxy, ..., x,].

A monomial m is called minimally non-standard if m is non-standard
and all proper divisors of m are standard. Show that the set of minimally
non-standard monomials is finite.

(2) Prove that the reduced Grobner basis Greq of I with respect to “<” is
unique (up to multiplicative constants from C). Give an algorithm which
transforms an arbitrary Grobner basis into G;eq.

(3) Let I C C[xy, ..., x,] be an ideal, given by a finite set of generators. Using
Grobner bases, describe an algorithm for computing the elimination ideals
INClxy,...,x],i =1,...,n—1, and prove its correctness.

(4) Find a characterization for all monomial orders on the polynomial ring
Clx1, x,]. (Hint: Each variable receives a certain “weight” which behaves
additively under multiplication of variables.) Generalize your result to
n variables.

(5) * Fix any ideal I C C[xy, ..., x,]. We say that two monomial orders are
I-equivalent if they induce the same initial ideal for /. Show that there are
only finitely many /-equivalence classes of monomial orders.
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(6) Let F be a set of polynomials whose initial monomials are pairwise
relatively prime. Show that F is a Grobner basis for its ideal.

1.3. What is invariant theory?

Many problems in applied algebra have symmetries or are invariant under certain
natural transformations. In particular, all geometric magnitudes and properties
are invariant with respect to the underlying transformation group. Properties in
Euclidean geometry are invariant under the Euclidean group of rotations, reflec-
tions and translations, properties in projective geometry are invariant under the
group of projective transformations, etc. . . . This identification of geometry and
invariant theory, expressed in Felix Klein’s Erlanger Programm (cf. Klein 1872,
1914), is much more than a philosophical remark. The practical significance of
invariant-theoretic methods as well as their mathematical elegance is our main
theme. We wish to illustrate why invariant theory is likely to play an increas-
ingly important role for computer algebra and computational geometry in the
future.

We begin with some basic invariant-theoretic terminology. Let I' be a sub-
group of the group GL(C") of invertible n x n-matrices. This is the group of
transformations, which defines the geometry or geometric situation under con-

sideration. Given a polynomial function f € C[xy,..., x,], then every linear
transformation 7w € I' transforms f into a new polynomial function f o 7. For
example, if f = xl2 + x1x0 € Clx1, x2] and w = (2 2), then

fom = (3x1 +5x)% + (3x1 + 5x2)(4x1 + Txz) = 21x? + T1x1x5 + 60x2.
In general, we are interested in the set
Clxi, ..., x, 1" = {(feClx,....x,1: Vo e (f = fom)}

of all polynomials which are invariant under this action of I'. This set is a
subring of Clxy, ..., x,] since it is closed under addition and multiplication.
We call Clx1, ..., x,]" the invariant subring of I'. The following questions are
often called the fundamental problems of invariant theory.

(1) Find aset {Iy, ..., I,,} of generators for the invariant subring C[x, ..., x,]".
All the groups I' studied in this text do admit such a finite set of fundamen-
tal invariants. A famous result of Nagata (1959) shows that the invariant
subrings of certain “exotic” matrix groups are not finitely generated.

(2) Describe the algebraic relations among the fundamental invariants Iy, .. ., I,,.
These are called syzygies.
(3) Give an algorithm which rewrites an arbitrary invariant I € C[x1, ..., x,]"

as a polynomial I = p([y, ..., I;) in the fundamental invariants.

-
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For the classical geometric groups, such as the Euclidean group or the projective
group, also the following question is important.

(4) Given a geometric property ‘P, find the corresponding invariants (or co-
variants) and vice versa. Is there an algorithm for this transition between

geometry and algebra?

Example 1.3.1 (Symmetric polynomials). Let S, be the group of permutation
matrices in GL(C™). Its invariant ring C[xq, ..., Xn]5n equals the subring of
symmetric polynomials in C[x1, ..., x,). For the symmetric group S, all three
fundamental problems were solved in Sect. 1.1.

(1) The elementary symmetric polynomials form a fundamental set of invariants:
Clx1, .. .,xn]S” = Cloy, ..., 0]

(2) These fundamental invariants are algebraically independent: There is no non-

7ero Syzygy. o
(3) We have two possible algorithms for rewriting symmetric polynomials in

terms of elementary symmetric ones: either the method in the proof in The-
* orem 1.1.1 or the normal form reduction modulo the Grobner basis in The-
orem 1.2.7.

Example 1.3.2 (The cyclic group of order 4). Let n = 2 and consider the group

1 0 -1 0 0 1 0 -1
Z4={<0 l)’( 0 —1)’(—1 0)’(1 O)}
of rotational symmetries of the square. Its invariant ring equals

Clx1, x21% = {f € Clx1, x2] : f(x1,x2) = f(—x2, x1)}.

(1) Here we have three fundamental invariants

2 2.2 3 3
11=xf+x2, L =x7x5, Iz=x{x—x1x;.

(2) These satisfy the algebraic dependence 17 — L1} +41}. This syzygy can be
found with the slack variable Grébner basis method in Example 1.2.1.(4).
(3) Using Grobner basis normal form reduction, we can rewrite any invariant

as a polynomial in the fundamental invariants. For example, x17x2 - x; Xy —

135 — L.

We next give an alternative interpretation of the invariant ring from the point
of view of elementary algebraic geometry. Every matrix group I' acts on the
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vector space C", and it decomposes C” into I'-orbits

I'v={ov:o0 €T} whereveC".

Remark 1.3.3. The invariant ring C[x]" consists of those polynomial functions f
which are constant along all I"-orbits in C”.

Proof. A polynomial f € C[x] is constant on all ["-orbits if and only if

VveC'"Vr el: f(nv) = f(v)
= Vrel'Vvel": (fom)v) = f(v).

Since C is an infinite field, the latter condition is equivalent to f being an
element of C[x]". «

Remark 1.3.3 suggests that the invariant ring can be interpreted as the ring
of polynomial functions on the quotient space C"/T" of I'-orbits on C". We
are tempted to conclude that C"/T" is actually an algebraic variety which has
C[x]" as its coordinate ring. This statement is not quite true for most infinite
groups: it can happen that two distinct I"-orbits in C" cannot be distinguished
by a polynomial function because one is contained in the closure of the other.

For finite groups I', however, the situation is nice because all orbits are finite
and hence closed subsets of C". Here C[x]" is truly the coordinate ring of the or-
bit variety C" / T". The first fundamental problem (1) can be interpreted as finding
an embedding of C"/ T as an affine subvariety into C™, where m is the number of
fundamental invariants. For example, the orbit space C2/Z4 of the cyclic group
in Example 1.3.2 equals the hypersurface in C* which is defined by the equa-
tion y3 — y,yf+4y? = 0. The map (x1, X2) > (I1(x1, x2), I (x1, x2), I3(x1, x2))
defines a bijection (check this!!) from the set of Z4-orbits in C? onto this hy-
persurface.

Let us now come to the fundamental problem (4). We illustrate this question
for the Euclidean group of rotations, translations and reflections in the plane.
The Euclidean group acts on the polynomial ring C[x1, y1, X2, Y2, -+, Xu, Yul

by rigid motions
G~ (Cng o) G+ ().

and by reflections, such as (x;, ;) + (—x;, y;). The invariant polynomials un-
der this action correspond to geometric properties of a configuration of 7 points
(xi, y;) in the Euclidean plane. Naturally, for this interpretation we restrict our-
selves to the field R of real numbers.

Example 1.34. Consider the three polynomials L := x12 -+ y% ~7,D = (x; —

x2)%+ (y1 —y2)% and R := X7+ Y} — X1X2 = Y1y2 — X1X3 — Y13 + X2X3 + Y2 y3.
The first polynomial L expresses that point “1” has distance 7 from the origin.
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This property is not Euclidean because it is not invariant under translations, and
7 is not a Euclidean invariant. The second polynomial D measures the distance
between the two points “1” and “2”, and it is a Euclidean invariant. Also R
is a Buclidean invariant: it vanishes if and only if the lines “12” and “13” are
perpendicular.

The following general representation theorem was known classically.

Theorem 1.3.5. The subring of Euclidean invariants is generated by the squared

distances , )
Dij =i —x))"+(i—y)°, 1=<i<j=<n.

For a new proof of Theorem 1.3.5 we refer to Dalbec (1992). In that article an
efficient algorithm is given for expressing any Euclidean invariant in terms of the
D;;. It essentially amounts to specifying a Grobner basis for the Cayley—Menger
ideal of syzygies among the squared distances D;;. Here are two examples for
the resulting rewriting process.

Example 1.3.6 (Heron’s formula for the squared area of a triangle).

Let A1z € Clx1, y1, X2, y2, X3, y3] denote the squared area of the triangle “123”.
The polynomial A123 is a Euclidean invariant, and its representation in terms of
squared distances equals

0 1 1 1
B 1 0 Dy Di
Aipz = det 1 Dp 0 Do
1 Dz Dy O

Note that the triangle area 4/ Aj23 is not a polynomial in the vertex coordinates.

Example 1.3.7 (Cocircularity of four points in the plane). Four points (x1, y1),
(x2, ¥2), (x3, ¥3), (x4, ya) in the Euclidean plane lie on a common circle if and
only if

3x0,y0 1 (i —x0)* + i = y0)* = (7 —x0)> + (yj —y0)* (1 <i<j<4).
This in turn is the case if and only if the following invariant polynomial vanishes:

Df2D§4 + D%,D3, + D%4D§3 —2D12D13D24D34 — 2D 12D 14D23 D34 —
— 2D13D14Dy3Dy4.

Writing Euclidean properties in terms of squared distances is part of a new
method for automated geometry theorem proving due to T. Havel (1991).

We have illustrated the basic idea of geometric invariants for the Euclidean
plane. Later in Chap. 3, we will focus our attention on projective geometry.
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In projective geometry the underlying algebra is be.tter under§t00d than in Eu-
clidean geometry. There we will be concerned with the action of the group
' = SL(C?) by right multiplication on a generic n x d-matrix X = (x;;). Its
invariants in C[X] := C[x11, x12. . ., Xpq] correspond to geometric properties of
a configuration of n points in projective (d — 1)-space.

The first fundamental theorem, to be proved in Sect. 3.2, states that the
corresponding invariant ring CIxy' is generated by the d x d-subdeterminants

xh,l xil,d
[i1ip...0i4] := det

Xig,l oo Xigd

Example 1.3.8. The expression in Example 1.2.1 (6) is a polynomial function
in the coordinates of four points on the projective line (e.g., the point “3”
has homogeneous coordinates (x3;, x32)). This polynomial is invariant, it does
correspond to a geometric property, because it can be rewritten in terms of
brackets as [14][23] + [13][24]. It vanishes if and only if the projective cross
ratio (1, 3; 4, 2) = [13][24]/[14][23] of the four points equals —1.

The projective geometry analogue to the above rewriting process for Eu-
clidean geometry will be presented in Sects. 3.1 and 3.2. It is our objective to
show that the set of straightening syzygies is a Grobner basis for the Grassmann
ideal of syzygies among the brackets [iyi, . ..i;]. The resulting Gr6bner basis
normal form algorithm equals the classical straightening law for Young tableaus.
Its direct applications are numerous and fascinating, and several of them will
be discussed in Sects. 3.4-3.6.

The bracket algebra and the straightening algorithm will furnish us with
the crucial technical tools for studying invariants of forms (= homogeneous
polynomials) in Chap. 4. This subject is the cornerstone of classical invariant
theory.

Exercises

(1) Show that every finite group I' € GL(C") does have nonconstant
polynomial invariants. Give an example of an infinite matrix group I" with
Cx]' =C.

(2) Write the Euclidean invariant R in Example 1.3.4 as a polynomial
function in the squared distances Dyy, Di3, D3, and interpret the result
geometrically.

(3) Fix a set of positive and negative integers {a;, ay, ..., a,}, and let
I' C GL(C") denote the subgroup of all diagonal matrices of the form
diag(r®, %2, ..., t%), t € C*, where C* denotes the multiplicative group of
non-zero complex numbers. Show that the invariant ring Clxy, ..., x,]* is
finitely generated as a C-algebra.
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(4) Let C[X] denote the ring of polynomial functions on an n x n-matrix
X = (x;;) of indeterminates. The general linear group GL(C") acts on C[X]
by conjﬁgation, ie., X — AXA~! for A € GL(C"). The invariant ring
C[X]CHC" consists of all polynomial functions which are invariant under
the action. Find a fundamental set of invariants.

1.4. Torus invariants and integer programming

Let n > d be positive integers, and let A = (g;;) be any integer n x d-matrix
of rank d. Integer programming is concerned with the algorithmic study of the
monoid defined by A:

My ={1,...,v,) € Z"\ {0} :

1.4.1)
Vi,...,V, >0 and (vl,.‘.,vn)uA:O}.

We are interested in the following three specific questions:

(2) Feasibility Problem: “Is M 4 nonempty?” If yes, find a vector v = (vy, ...,
v,) in M 4.

(b) Optimization Problem: Given any cost vector w = (wy, ..., w,) € R’ find a
vector v = (v, ..., V) € My such that (w, v) = Y 7, w;v; is minimized.

(c) Hilbert Basis Problem: Find a finite minimal spanning subset H in M 4.

By “spanning” in (c) we mean that every B € M 4 has a representation

B= Y c-v, (1.4.2)

veH

where the ¢, are non-negative integers. It is known (see, e.g., Schrijver 1986,
Stanley 1986) that such a set H exists and is unique. It is called the Hilbert
basis of M 4. The existence and uniqueness of the Hilbert basis will also follow
from our correctness proof for Algorithm 1.4.5 given below.

Example 14.1. Let n = 4,d = 1. We choose the matrix A = (3, 1, -2, —2)T
and the cost vector @ = (5,5, 6,5). Our three problems have the following
solutions:

(&) My s~ 0 because v =(1,1,1,1) € M.

(b) v =1(0,2,0,1) € M4 has minimum cost {w, v) = 15.

(c) The Hilbert basis of M 4 equals H = {(2,0,3,0),(2,0,2,1),(2,0,1,2),
(2,0,0,3),(1,1,2,0),(1,1,1, 1), (1,1,0,2), (0, 2,0, 1), (0, 2, 1, 0)}.

The Hilbert basis problem (c) has a natural translation into the context of
invariant theory; see, e.g., Hochster (1972), Wehlau (1991). Using this translation
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and Grobner bases theory, we will present algebraic algorithms for solving the
problems (a), (b) and (c).

With the given integer n x d-matrix A we associate a group of diagonal
7 X n-matrices:

d d d
Ty = {diag(ﬂz;’“, [T, TIe™) sty .. ta € C*}. (1.4.3)
i=1

i=1 i=1

The matrix group I"4 is isomorphic to the group (C*)¢ of invertible diagonal
d x d-matrices, which is called the d-dimensional algebraic torus. We call T" 4
the torus defined by A. In this section we describe an algorithm for computing
its invariant ring C[x1, x2, ..., X,] 4.

The action of I' 4 maps monomials into monomials. Hence a polynomial
Sf(x1,...,x,) is an invariant if and only if each of the monomials appearing
in f is an invariant. The invariant monomials are in bijection with the elements
of the monoid M 4.

Lemma 1.4.2.

(a) A monomial X = x;" ---x," is T 4-invariant if and only if v = (vy, ..., v,)
€ M.

(b) A finite set H C Z" equals the Hilbert basis of M4 if and only if the
invariant ring C[x, ..., x,]'4 is minimally generated as a C-algebra by
{xV:veH}.

Proof. The image of x” under a torus element diag(J]%, LTI, 1

equals

d ay; d ani v d i1 vidji
CTN I L0 ICERRRRE Gon [T = ) - xy - T16777 . (1.4.4)
i=1 i=1 i=1

Therefore x” is invariant under the action of I" 4 if and only if 27=1 viaj; =0,
fori =1,...,d. This is equivalent to v - A = 0, which is the defining equation
of the monoid M 4. Part (b) follows from the fact that (1.4.2) translates into

X =T (x"). <

Example 1.4.1 (continued). Let I" 4 be the group of diagonal 4 x 4-matrices of
the form diag(t3, t!',¢72,t72), where t € C*. The invariant ring equals C[xy,
X2, X3, x4]T4 = C[xlzxg’, x%x§x4, x3x3x2, xix;, x1x2x32, X1X2X3X4, X1X2X[,

2 2
Xy X3, X5X4 ] <

We first show how to solve the easiest of the three problems. The subsequent
Algorithms 1.4.3 and 1.4.4 are due to L. Pottier (1992). For an alternative Grob-
ner basis approach to integer programming see Conti and Traverso (1991).

1.4, Torus invariants and integer programming .

Algorithm 1.4.3 (Integer programming — Feasibility problem (a)).

Input: An integer n x d-matrix A = (a;;).

Qutput: A vector (B1, ..., By) in the monoid M 4 if M 4 # @; “INFEASIBLE”
otherwise.

1. Compute any reduced Grobner basis G for the kernel of the C-algebra ho-

momorphism
1 1 d ay
Clxt, x2, ooy Xul = Cltr, oota by ot ], x> Htj”. (1.4.5)
j=1
2. Does there exist an element of the form xf 1fo . -x,’f” —1in G?
If yes, then output “(B1, ..., Bn) € M4”. If no, then output “INFEASIBLE”.

In step 1 of Algorithm 1.4.3 we may encounter negative exponents a; j. In
practice these are dealt with as follows. Let 7y be a new variable, and choose any
elimination order {fo, t1, ..., 13} > {x1,..., x,}. Using the additional relation
fot1 -+ -tq — 1, clear the denominators in x; — ]_[;.1:1 t]f'ij, fori =1,2,...,n. For
the resulting 7 + 1 polynomials compute a Grébner basis G’ with respect to <.

Let G : =G NClxy,...,x,].
Algorithm 1.4.4 (Integer programming — Optimization problem (b)).

0. Choose a monomial order < which refines the given cost vector w € R7.
By this we mean

Va,B e N": (o, w) < (B, w) = x* < xP.

1. Let G be the reduced Grobner basis with respect to < for the kernel of
(1.4.5).

2. Among all polynomials of the form xf ‘xf 7. 'x,f " —1 appearing in G, choose
the one which is smallest with respect to <. Output (B1, B2, ..., Bn).

Proof of correctness for Algorithms 1.4.3 and 1.4.4. Let I denote the kernel of
the map (1.4.5). This is a prime ideal in the polynomial ring C[xy, ..., x,],

having the generic point (], L | t/"). By the proof of Lemma
1.4.2, a monomial x? is invariant under I" 4 if and only if x# is congruent to 1
modulo /. Therefore, if Algorithm 1.4.3 outputs a vector 8, then 8 must lie in
M 4.

We must show that Algorithm 1.4.3 outputs “INFEASIBLE” only if M 4 = @.
Suppose that M 4 # @ and let B € M 4. Then x# — 1 lies in the ideal I, and
hence the normal form of x# modulo the Grébner basis G equals 1. In each
step in the reduction of x# a monomial reduces to another monomial. In the
last step some monomial x¥ reduces to 1. This implies that x¥ — 1 € G. This
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is a contradiction to the assumption that the output equals “INFEASIBLE”. We
conclude that Algorithm 1.4.3 terminates and is correct.

To see the correctness of Algorithm 1.4.4, we suppose that the output vector
B = (B1, ..., By) is not the optimal solution to problem (b). Then there exists a
vector B’ = (B, ..., B,) in M 4 such that (w, ') < (w, B). Since the monomial
order < refines w, the reduction path from x' 10 1 decreases the w-cost of the
occurring monomials. The last step in this reduction uses a relation x¥ — 1 € G
with (w, y) < (w, B') < (w, B). This is a contradiction, because x” — 1 would
be chosen instead of xf — 1 in step 2. <«

Our next algorithm uses 2n + d variables 1, ...,%7, X1, ..., Xn, Y15+ -+ » Yn-
We fix any elimination monomial order {¢1,...,#;} > {x1,..., X} > {31,...,
yn}. Let J4 denote the kernel of the C-algebra homomorphism

-1 -1
C[XI,XZ,c--,xnayl,y2-~-’)’n]—)C[tl,n-,tdaf] 7'-'7td 9y17"’7y}’l]9
d ayj d apj
xiy[IG7 o e 1Y v v, oo Y e
j:l j:l
(1.4.6)

Algorithm 1.4.5 (Integer programming — Hilbert basis problem (c)).

1. Compute the reduced Grobner basis G with respect to < for the ideal J 4.
2. The Hilbert basis H of M consists of all vectors 8 such that xf — y#
appears in G.

Proof of correctness for Algorithm 1.4.5. We first note that J4 is a homoge-
neous prime ideal and that there is no monomial contained in J4. By the same
reasoning as above, a vector § € N” lies in M 4 if and only if the monomial
difference xf — y# lies in J4.

We wish to show that the finite subset H C M 4 constructed in step 2 spans
the monoid M 4. Suppose this is not the case. Then there exists a minimal
(with respect to divisibility) monomial x# such that 8 € M, but B is not a
sum of elements in H. The polynomial x# — y# lies in Jy4, so it reduces to zero
modulo G. By the choice of monomial order, the first reduction step replaces
x? by some monomial x”y?, where § = 8 — y is non-zero. Therefore

X'y —yf =y (x¥ —y) € Ja.

Since J4 is a prime ideal, not containing any monomials, we conclude that
x¥ —y” lies in J4. This implies that y lies in M4, and therefore the non-
negative vector § = B — y lies in M 4. By our minimality assumption on S,
we have that both § and y can be written as sums of elements in /. Therefore
B = y + 8 can be written as sums of elements in 7. This is a contradiction,
and the proof is complete. <
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Example 1.4.1 (continued). For A= (3,1, =2, —2)T, we consider the relations

3 2 2
{Xl —1"y1, Xo —1y2, I"x3 — ¥3, I7x4 —y4}
The reduced Grobner basis with respect to the lexicographic monomial order
- X1 - X2 > X3 > X4 > Y1 > Yy > y3 > ysequals G =
2 2 2 2 2
{t3y1 — X1, I"Xo Y1 — X1Y2, 7X3 — Y3, ["X4 — Y4, [X1X3 — Y13,
) 2 2 .2 2
[X1X3X4 — Y1Y3Y4, EX1X4 — V1Y4, [X3Y1 — X1Y3, [X2X3 — Y2Y3, [X2X4 — Y2 )4,
2.3 2.3 2.2 2.2
Iy1y3 — X1X3, IY1y4 — X1X4, 1Yo — X2, X1 X3 — Y1 V3, X1 X3X4 — Y1 V3 V4,
2 2.2 2.3 2.3 2 2
X%X3X4 —V1Y3Y4, X1 X4 — Y1Y4, X1X2X35 — Y1Y2Y3, X1X2X3X4 — Y1Y2Y3 Y4,
2 2 3 3
X1X2Xy — Y1Y2Y4, X1X3Y2 — X2Y1Y3, X1X4Y2 — X2Y1Y4, X1Yy — X3 V1,

2 2 2 2
X3X3 = Y23, XpX4 — Yy Y4, X3Y4 — X4)3 }

The polynomials not containing the variable ¢ form a Grobner basis for the ideal
J 4. The Hilbert basis of M 4 consists of the nine underlined monomials.

Exercises

(1) Compute a Hilbert basis for M 4 where A = (4, 1, —2, —3)7. Verify your
result using the polyhedral methods given in (Stanley 1986: section 4.6).

(2) * Give a bound for the complexity of the Hilbert basis 7 in terms of the
input data A.

(3) * With an integer n x d-matrix A we can also associate the monoid

My={neZ| A n=>0}.
Give an algorithm, using Grobner bases, for computing a Hilbert basis for
M.
(4) * With an integer n x d-matrix A we can also associate the monoid

My={pneZ'|IveQ":v>0andv- A=pu}.

Give an algorithm, using Grébner bases, for computing a Hilbert basis for
M.



Invariant theory
of finite groups

Let C[x] denote the ring of polynomials with complex coefficients in n vari-
ables x = (x1,X2,...,Xy). We are interested in studying polynomials which
remain invariant under the action of a finite matrix group I' C GL(C"). The
main result of this chapter is a collection of algorithms for finding a finite set
(I, I, ..., Iy} of fundamental invariants which generate the invariant subring
C[x]'. These algorithms make use of the Molien series (Sect. 2.2) and the
Cohen—Macaulay property (Sect. 2.3). In Sect. 2.4 we include a discussion of
invariants of reflection groups, which is an important classical topic. Sections
2.6 and 2.7 are concerned with applications and special cases.

2.1. Finiteness and degree bounds

We start out by showing that every finite group has “sufficiently many” invari-
ants.

Proposition 2.1.1. Every finite matrix group I' C GL(C") has n algebraically
independent invariants, i.e., the ring C[x]" has transcendence degree n over C.

Proof. Foreach i € {1,2,...,n} we define P; := [ _(x; o — 1) € C[x][t].
Consider P; = P;(¢) as a monic polynomial in the new variable r whose coeffi-
cients are elements of C[x]. Since P; is invariant under the action of I" on the
x-variables, its coefficients are also invariant. In other words, P lies in the ring

Clx1'[z].
We note that t+ = x; is a root of P;(¢) because one of the # € I' in the
definition of P equals the identity. This means that all variables x1, x2, ..., X,

are algebraically dependent upon certain invariants. Hence the invariant subring
C[x]" and the full polynomial ring C[x] have the same transcendence degree n
over the ground field C. <«

The proof of Proposition 2.1.1 suggests that “averaging over the whole
group” might be a suitable procedure for generating invariants. This idea can
be made precise by introducing the following operator which maps polynomial
functions onto their average with respect to the group I'. The Reynolds opera-

66, 99

tor “x” is defined as

1
= =Y for

%:C[x] > CIxl', [~ f*:=
]F|nel"

Each of the following properties of the Reynolds operator is easily verified.
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Proposition 2.1.2. The Reynolds operator “+” has the following properties.

(a) “x” is a C-linear map, i.e., (Af + vg)* = Af* 4 vg* for all f, g € C[x] and
A,veC.

(b) “«” restricts to the identity map on C[x]", ie., ] = I* for all invariants
I eC[x]".

(c) “x¢”is a C[x]" -module homomorphism, i.e., (fI)* = f*-Iforall f e C[x]
and / € C[x]".

We are now prepared to prove a theorem about the invariant rings of finite
groups.

Theorem 2.1.3 (Hilbert’s finiteness theorem). The invariant ring C[x]" of a
finite matrix group I' ¢ GL(C") is finitely generated.

Proof. Let Iy := (C[x]i) be the ideal in C[x] which is generated by all homo-
geneous invariants of positive degree. By Proposition 2.1.2 (a), every invariant [
is a C-linear combination of symmetrized monomials (xflxsz ... Xy")*. These ho-
mogeneous invariants are the images of monomials under the Reynolds operator.
This implies that the ideal Zr is generated by the polynomials (x7'x32. .. x5")*,
where e = (eq, g, ..., e,) ranges over all non-zero, nonnegative integer vectors.

By Hilbert’s basis theorem (Corollary 1.2.5), every ideal in the polynomial
ring C[x] is finitely generated. Hence there exist finitely many homogeneous
invariants Iy, I, ..., I,, such that Ir = (I, b, ..., I,). We shall now prove
that all homogeneous invariants I € C[x]" can actually be written as polynomial
functions in Iy, I, . . ., I,.

Suppose the contrary, and let / be a homogeneous element of minimum
degree in C[x]" \Cl1, I, ..., 1,]. Since I e Ir, we have [ = ijl fil; for
some homogeneous polynomials /i € C[x] of degree less than deg(7). Applying
the Reynolds operator on both sides of this equation we get

N N
L=1 = () =557
j=1 j=1
from Proposition 2.1.2. The new coefficients f]* are homogeneous invariants
whose degree is less than deg(/). From the minimality assumption on / we get
fj* € C[li, ..., I,] and therefore I € Cl, ..., I;], which is a contradiction
to our assumption. This completes the proof of Theorem 2.1.3. <«

This proof of Theorem 2.1.3 implies the remarkable statement that every
ideal basis {1y, ..., I,} of Ip is automatically an algebra basis for C[x]', ie.,
a fundamental system of invariants. Observe also that in this proof the finiteness
of the group I" has not been used until the last paragraph. The only hypothesis
on the group I' which we really needed was the existence of an averaging

66, 99

operator “x” which satisfies (a), (b) and (c) in Proposition 2.1.2.

2.1, Finiteness and degree bounds 7

The finiteness theorem and its proof remain Vali‘d for infinite groups I vv}ﬁclcl1
do admit a Reynolds operator with these properties. .These groups archa fe
: tive. In particular, it is known that every matrix representation I' of a
redue t Lie group is reductive. The Reynolds operator of such a compact group
Cof?%ai"ined by the formula f* = [.(fom)dm, where dr is the Haar probablllty
;;Zsuie on I'. For details on reductive groups and proofs of_ the general finiteness
t}ieorem we refer to Dieudonné and Carrell (1971) or Springer (1977).

i I". Here the general incon-
Let us now return to the case of a ﬁmte group : :
qtruct?ve finiteness result of Hilbert can be improved substantially. The following
éffective version of the finiteness theorem is due to E. Noether (1916).

Theorem 2.1.4 (Noether’s degree bound). The invariant ring C[x]" of a finite

.. NN .
matrix group I' has an algebra basis consisting of at most ("+n| |) invariants
whose degree is bounded above by the group order |I'[.

Proof. With every vector e = (e, e2..., eng o£ nonnt:,gaitive .inte‘gers we asso-
ciate the homogeneous invariant Jo(x) := (xllxz2 .. ._xn") which is obtained by
applying the Reynolds operator to the monomial with exponent vector e. We
abbreviate e .= |e| = e1 + ey + ...+ en. ' .

Let uy,...,u, be a new set of variables, and consider the polynomia

Se(w, x) == {(u1x1 + ... + upxn)’}*

= Il?l > [ul(xioaf) + .4 Uy (g o m)]°
wel

in the new variables whose coefficients are polynomials in t.ihe old Vanables
X1i,...,Xn. The Reynolds operator “x” acts on such polynomw}ls by regarding
the u; as constants. By complete expansion of the above expression, we ﬁnd'that
the coefficient of ui'...u;" in S, is equal to the invariant Je times a positive
T, ‘
mte%;e polynomials S, are the power sums of the |I| rpggmtudes ui(xyom)+
...+ uy(x, o w) where m ranges over I'. By .Proposmon 1.1.2, we can ex-
press each power sum S, as a polynomial function in the first |I'| power sums
S1, 82, ..., Siry. Such a representation of S, 'shows that all u-coefficients are
actually polynomial functions in the u—qoefﬁmentg of $1, 8, ..., 8. .y
This argument proves that the invarlants’ Je with |e| > |I'| are contained in
the subring C[{Je Del < |F|}]. We have noticed aboye Fhat every invariant is a
C-linear combination of the special invariants Je. This implies that

CixI” = C[{J : el < IT]-

. T, (T
The set of integer vectors e € N” with |e| < |I'| has cardinality ( i ) <
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The following proposition shows that, from the point of view of worst case
complexity, the Noether degree bound is optimal.

Proposition 2.1.5. For any two integers n, p > 2 there exists a p-element
matrix group I' C GL(C") such that every algebra basis for C[x]" contains at

least ("*77!) invariants of degree p.

Proof. Consider the action of the p-element cyclic group on C”" given by

We can easily determine the action the Reynolds operator on all monomials:

e| . e e . - .
el e eyt _ ) X1 Xy X" if pdivides e =e; +... 4 ¢,
0 otherwise.

This shows that the invariant ring C[x]" is the Veronese subalgebra of C[x]
which is generated by all monomials of total degree p. Clearly, any graded

algebra basis for this ring must contain a vector space basis for the (”:f 1_1)-

dimensional C-vector space of n-variate polynomials of total degree p. <

The lower bounds in Proposition 2.1.5 have been shown to hold for es-
sentially all primitive groups I' by Huffman and Sloane (1979). In spite of
these discouraging results, there are many special groups for which the system
of fundamental invariants is much smaller. For such groups and for studying
properties of invariant rings in general, the technique of “linear algebra plus
degree bounds” will not be sufficient, but we will need the refined techniques
and algorithms to be developed in the subsequent sections.

Exercises

(1) Determine the invariant rings of all finite subgroups of GL(C"), that is, the
finite multiplicative subgroups of the complex numbers.

(2) Let * : C[x, x2] — C[x1, x2]%* be the Reynolds operator of the cyclic
group in Example 1.3.2., and consider its restriction to the 5-dimensional
vector space of homogeneous polynomials of degree 4. Represent this
C-linear map “«” by a 5 x 5-matrix A, and compute the rank, image and
kernel of A.

(3) Consider the action of the symmetric group S4 on
Clxiz, x13, X14, X23, X24, X34] by permuting indices of the six vari-
ables (subject to the relations x;; = x;;). Determine a minimal algebra
basis for the ring of invariants. Compare your answer with the bounds in
Theorem 2.1.4.

(4) Let I' ¢ GL(C") be a finite matrix group and 7 C C[x] an ideal which
is fixed by T'. Show that I acts on the quotient ring C[x]/Z, and give
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an aleorithm for computing a finite algebra basis for the invariant ring
€D

3.2. Counting the number of invariants

We continue our discussion with the problem “how many invariants does a given
matrix group I' have?” Such an enumerative question can b(; made precise as
follows. Let C[x]g denote the set of all homogeneous 1nvar1ant§ of degree d.
The invariant ring C[x]" is the direct sum of the finite-dimensional C-Velgtqr
spaces C[x]g. By definition, the Hilbert series of the graded algebra C[x]" is
the generating function ®r(z) = fo:q dim(C[x]} ).z‘{ ) ‘

The following classical theorem gives an explicit formula for the ‘Hllb?r’[
series of C[x]" in terms of the matrices in T'. We write id for the n x n-identity

matrix.

Theorem 2.2.1 (Molien 1897). The Hilbert series of the invariant ring C[x]"
equals

1 1
*r@ = L Gqd =

Theorem 2.2.1 states in other words that the Hilbert series of the invariant ring
is the average of the inverted characteristic polynomials of all group elements.
In order to prove this result we need the following lemma from linear algebra.

Lemma 2.2.2. Let I' C GL(C") be a finite matrix group. Then the dimension
of the invariant subspace

Vi={veC":nv=vforall w €I}
is equal to I—Il:l Y rer trace(m).

Proof. Consider the average matrix Pr := ﬁ > rer . This linear map is a

projection onto the invariant subspace V'. Since the matrix P d@ﬁnes a pro-
jection, we have Pr = Plg, which means that Pr has only th§ elgel}valges 0
and 1. Therefore the rank of the matrix Pr equals the multiplicity of its eigen-

value 1, and we find dim(V") = rank(Pr) = trace(Pr) = ﬁ Zn'el" trace(r). <

Proof of Theorem 2.2.1. We write C[x]; for the ("+Z_1)—dimensiona1 vector
space of d-forms in C[x]. For every linear transformation 7 € T thqre is an
induced linear transformation 7 (¥ on the vector space C[x];. In this llngar
algebra notation C[x]g becomes precisely the invariant subspace of C[x]; with

: d—1 +d—1 :
respect to the induced group {7? : 7 € I'} of (”+ p ) X (" d )-matrlces.

In order to compute the trace of an induced transformation 79, we identify
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the vector space C" with its linear forms C[x];. Let £, 1, ..., £z, € C[x]; be the
eigenvectors of w = 71, and let Px1s .., Pr.n € C denote the corresponding

eigenvalues. Note that each matrix = € I' is diagonalizable over C because it
has finite order.

The eigenvectors of 7@ are precisely the (”+Z_1) d-forms Ei{l ‘..Kﬁ’fn
where di + ...+ d, = d. The eigenvalues of 79 are therefore the complex
numbers ,o]‘ffl pﬁ'}n where dy + ... + d, = d. Since the trace of a linear
transformation equals the sum of its eigenvalues, we have the equation

trace(r @)= Y pzfl ... ,off’jn.
di+...+d,=d

By Lemma 2.2.2, the dimension of the invariant subspace C[X]g equals the
average of the traces of all group elements. Rewriting this dimension count in
terms of the Hilbert series of the invariant ring, we get:

S |
ori)=Y —>( X ol .. o)z

d=0 Ul wer ‘a,+. Fd,=d

1 d dy _di+..+d
= — Ot L pln g8
Tl et Gyens ™! w
1 1
- =X
T ger (1 — Zprr,l) (1= an,n)
1 1

=T Srdet(id — zn)

In the remainder of this section we illustrate the use of Molien’s theorem for
computing invariants. For that purpose we need the following general lemma
which describes the Hilbert series of a graded polynomial subring of C[x].

Lemma 2.2.3. Let py, p2,..., pn be algebraically independent elements of
Cl[x] which are homogeneous of degrees di, d, ..., d, respectively. Then the
Hilbert series of the graded subring R := C[pi, p2, ..., pm] equals

00 1
Py— 3 d ==
H(R,z) := n§=0(d1mc Rg)z® = (1 —20)(1 —2%) ... (1 —z4n)’

Proof. Since the p; are algebraically independent, the set
i1 iy

[pyp3...pm it in, ... im €N and iydy +izdy + ... + ipdy = d}

is a basis for the C-vector space R; of degree d elements in R. Hence the
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dimension of Ry equals the cardinality of the set
Agi={G1, 02, ..., ipn) e N" tirdi +12do + ... + indn = d}.

The expansion

1 o 1 1
(1—z)(1—zR) .. (1—zd)  (1—zdh) (1—z%h) " (1—z%)

= (3 (30 20%) . (3 2

1= ir=0 im=0
o0 o
d
=2 Y =3 1Adlz
d=0 (dy,da....,dn)€Ad d=0

proves the claim of Lemma 2.2.3. <

The following matrix group had already been considered in Example 1.3.2.

Example 2.2.4.

The invariant ring C[xy, x2]% of the group {= ((l) (1)) , £ ((1) (1))} is gen-
erated by the invariants [ := x12 + xzz, b = x%xQ2 and I3 := x1x23 — xfxz.
Proof. The graded algebra C[1}, I», I3] is clearly contained in the graded algebra
Clxy, x2]%4. In order to establish that these two algebras are equal, it suffices
that, for each d € N, their graded components C[/}, I, I3]; and Cl[xy, xz]f“
have the same finite dimension as C-vector spaces. In other words, we need
to show that the Hilbert series of C[Iy, I», I3] equals the Molien series of the
invariant ring.

The Hilbert series ®z,(z) of Clxy, x2]%* can be computed using Molien’s
Theorem. ‘

Dz, (2)

o 1 1 N 1 N 1

“‘Ztl—z 0 I+|—1—z 0 ' -z 1 —z —1’
0 1—2z 0 -1 -z -1 -z 1 —z
1 1 2

_1

_4[(1—2)2+(1+z)2+1+22]
1+z4

T A-2H0-2%
= 14224324 13204528 45210 47,12 4 7214 49710 9,18

The Hilbert series of C[[I;, I», I3] can be computed as follows. Using the Grobner
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basis method discussed in Sect. 1.2 (see also Subroutine 2.5.3), we find that the
algebraic relation I — 1,17 + 417 generates the ideal of syzygies among the /;.
This implies that every polynomial p € C[/y, I,, Iz] can be written uniquely in
the form p(I1, I, I3) = q(I;, I,) + Is - r(I, I) where g and r are bivariate
polynomials. In other words, the graded algebra in question is decomposed as
the direct sum of graded C-vector spaces

Clh, b, 1= Cll, bl ® I C[1}, I].

The first component in this decomposition is a subring generated by algebraically
independent homogeneous polynomials. Using Lemma 2.2.3, we find that its
Hilbert series equals (—1_—22)1(1“_24) Since the degree d elements in Clh, I,] are
in one-to-one correspondence with the degree d + 4 elements in I3 C[I;, I1], the
Hilbert series of the second component equals ﬁ?l‘—?) The sum of these

two series equals © 7,(z), and it is the Hilbert series of Clh, I, I3] because the
vector space decomposition is direct. <

The method we used in Example 2.2.4 for proving the completeness of a
given system of invariants works in general.

Algorithm 2.2.5 (Completeness of fundamental invariants). Suppose we are
given a set of invariants {I1,..., In} C C[x]'. We wish to decide whether
this set is complete, i.e., whether the invariant ring C[x]" equals its subalgebra
R = C[Iy, ..., I,]. This is the case if and only if the Hilbert series H(R,z2)
is equal to the Molien series ®r(z). Otherwise, we can subtract H (R, z) from
the Molien series, and we get Or(z) — H(R, z) = cyz9 + higher terms, where
Cq is some positive integer. From this we conclude that there are ¢4 linearly
independent invariants of degree d which cannot be expressed as polynomials
in 1y, ..., I,. We may now compute these extra invariants (using the Reynolds
operator) and proceed by adding them to the initial set {1, ..., I,}).

Hence our problem is reduced to computing the Hilbert function of a graded
subalgebra C[/y, ..., I,] C C[x] which is presented in terms of homogeneous
generators. Let d; := deg(/;). Using the Subroutine 2.5.3, we compute any
Grobner basis G = {g1, ..., g} for the kernel T of the map of polynomial rings
Clyt, .oy yml = Clxy, .. <» Xnl, yi > I;(x). Then R is isomorphic as a graded
C-algebra to C[yy, ..., y,1/Z where the degree of each variable yj is defined
to be d;.

By JTheorem 1.2.6, R is isomorphic as a graded C-vector space to C[y;,

-+ Ym1/(init(gy), ..., init(g,)). Hence the d-th coefficient dimc(R;) of the
desired Hilbert series H (R, z) equals the number of monomials y,'y;? ...y
with iydy + ... +i,d, = d which are not multiples of any of the monomials
init(gy), ..., init(g,). Fast combinatorial algorithms for determining this number
are given in Bayer and Stillman (1992) and Bigatti et al. (1992). These algo-
rithms are implemented in the computer algebra systems MACAULAY and COCOA
respectively.
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-di i i ihedral group Dg). Con-
~ample 2.2.6 (A 3-dimensional representation of the di ; Con
%21?177&6 action of the dihedral group Dg = {id, 8, 82, {33, §4,8%,0,08,08%, 083,

; s* 08} on C[x, y, z] which is defined by the matrices

1 0 0 12 —=V3/2 0
co={0 -1 0 and 8:=1|.3/2 1/2 0
0 0 -1 0 0 1

By computing the characteristic polynomials of all twelve matrices we obtain

1 1
®os(t) = 1_2,,§)6det(id—m)
1 1 2 . 2
N 5((1 T 0@ —t+1)  A-0D@+1+1)

7
Tana+ 1)2>
=1+202 436"+ 565 + 17 + 768 4 2¢° 4 9110
4+ 361 12012 4 508 4+ 15: 4 o).
According to Proposition 2.1.1 there exist three algebraically independent in-

variants. The Molien series ®p,(f) suggests to search for such invariants in
degree 2 and 6. Using the Reynolds operator we find

Py i=x%+ y2, 0, =722, Ps:=x°— 6Jc4y2 + 9x2y4.

i 0 Igebraically
We can see (e.g., using Grobner bases) that sz 0, and Pg are alg
independent over C. By Lemma 2.2.3, their subring R = C[P,, Q», Ps] has the

Hilbert series

1

= 14202+ 34+ 560+ 75 49010 4 1207
(1 —12)2(1 —19)

H(R,t) =

Since ®p,(t) — H(R, 1) = t74+2t° 4+ ... is non-zero, R is a proper subring of
Clx, y, z]Ps. We need to find an additional invariant in degree 7. For instance,
let S

P;:=3xyz — 10x3y%z + 3xy’z.
Following Algorithm 2.2.5 we now compute a Grobner basis G for the set

{PQ(X, ya Z) - p27 QZ(-x’ ya Z) - QZ? P6(X, J’» Z) - p6’ P7(xa )’, Z) - p7}7 Where
P2, 92, Ps, p7 are new variables lexicographically smaller than x, y, z. We find

2
G N Clpa. q2. pe. p11 = {p3 — P3qags + 4242},
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which means that the four invariants satisfy a unique syzygy of degree 14. We
conclude that the current subring R’ = C[P», O», Ps, P;] has the Hilbert series

(1+17)
(1 —12)%(1 —19)

=142 43+ 505+ 17+ 78+ 202 + 9010 4 341

H(R',t) =

This series is equal to the Molien series, and hence {P,, Q,, Py, P;} is a complete
set of invariants. Every other invariant /(x, y, z) can be expressed as a poly-
nomial function in P, Q», Ps, P; by computing the normal form of 1 (x,y,2)
with respect to G.

In the remainder of this section we present an application of the invariant
theory of finite groups to the study of error-correcting codes. Our discussion
is based on an expository paper of N.J. A. Sloane (1977), and we refer to
that article for details and a guide to the coding theory literature. According to
Sloane’s “general plan of attack™, there are two stages in using invariant theory
to solve a problem.

I Convert the assumptions about the problem (e.g., from coding theory) into
algebraic constraints on polynomials (e.g., weight enumerators).

II. Use invariant theory to find all possible polynomials satisfying these con-
straints.

Imagine a noisy telegraph line from Ithaca to Linz, which transmits Os and 1s.
Usually when a 0 is sent from Ithaca it is received as a 0 in Linz, but occasionally
a 0 is received as a 1. Similarly a 1 is occasionally received as a 0. The problem
is to send a lot of important messages down this line, as quickly and as reliably
as possible. The coding theorist’s solution is to send certain strings of Os and 1s,
called code words.

Consider a simple example: One of two messages will be sent, either YES or
No. The message YES will be encoded into the code word 00000, and NoO into
11111. Suppose 10100 is received in Linz. The receiver argues that it is more
likely that 00000 was sent (and two errors occurred) than that 11111 was sent
(and three errors occurred), and therefore decodes 10100 as 00000 = vEs. For
in some sense 10100 is closer to 00000 than to 11111. To make this precise,
define the Hamming distance dist(u, v) between two vectors u = (Ui, ..., uy)
and v = (v1,...,v,) to be the number of places where u; # v;. It is easily
checked that “dist” is a metric. Then the receiver should decode the received
vector as the closest code word, measured in the Hamming distance.

Notice that in the above example two errors were corrected. This is possible
because the code words 00000 and 11111 are at distance 5 apart. In general,
if d is the minimum Hamming distance between any two code words, then the
code can correct ¢ = [(d — 1)/2] errors, where [x] denotes the greatest integer
not exceeding [x]. This motivates the following definition. Let V be the vector
space of dimension n over G F(2) consisting of all n-tuples of Os and 1s. An
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[n,k.d] binary code is a k-dimensional linear subspace C_ C V such that any
twb code words in C differ in at least d places. Then » is called the Iengtl},
I the dimension, and d the minimum distance of the code. In a good che nis
small (for rapid transmission), k is large (for an efficient code)', and d is large
(to correct many errors). These are incompatible goals, and coding theory deals
with the problem to find best possible compromises.

The weight of vector u = (uq, ..., u,) is the number of nonzero u;. Since a
code C is a linear space, for any code words u, v, dist(u, v) = weight(u — v)
— weight(w) for some w € C. Therefore the minimum distance d between
code words equals the smallest weight of any nonzero code word. The weight
enumerator of an [n, k,d] code C is a bivariate polynomial which tells the
number of code words of each weight. If C contains a; code words of weight i,
then the weight enumerator of C is defined to be

n . .
We(xy, x2) = Y a; x{ ™' x5.
i=0

Notice that W¢ is a homogeneous polynomial of degree n. The weight enu-
merator immediately gives the minimum distance d of C. For C always con-
tains the zero code word, giving the leading monomial x] of W, and the next
non-zero monomial is ay x;’_dxg . As an example consider the [3,2,2] code
C; = {000, 011, 101, 110}. Its weight enumerator equals We, = x3 + 3x;x2.
Let C be any [n, k, d] code. The dual code C* consists of all vectors having
zero dot product in G F(2) with every code word of C. It is an [n,n — k, d']
code for some d’. E.g., the dual code of C; is the [3, 1, 3] code Cll = {000, 111}.

A self-dual code is one for which C* = C. In a self-dual code k must be equal
to n/2, and so n must be even.

Example 2.2.7. The following 16 code words

00000000 11101000 01110100 00111010 10011100 01001110
10100110 11010010 11111111 00010111 10001011 11000101
01100011 10110001 01011001 00101101

define a self-dual [8, 4, 4] code C,. Its weight enumerator equals W, = xi‘ +
14xfxg + x§.

The following theorem relates the weight enumerators of dual pairs of codes.
A proof can be found in Sloane (1977: theorem 6).

Theorem 2.2.8. If C is an [n, k, d] binary code with dual code C, then

1
Wer(xy, x2) = % We(x1 + x2, x1 — x2).



36 Invariant theory of finite groups

The class of self-dual codes is of particular interest in coding theory because
here the decoding of messages is relatively easy (Sloane, 1977: sect. ILB). It is
the study of this class of codes to which invariant theory of finite groups has
been applied. The basic observation is the following.

Corollary 2.2.9. Let W be the weight enumerator of a self-dual binary code C.
Then
We (1 +x2)/7/2, (01 = x2)/V/2) = We (1, x2)

We(x1, —x2) = We(xy, x2).

Proof. The first of these identities follows from Theorem 2.2.8 and the fact that
Wc is homogeneous of degree n = 2k. The second one is equivalent to the fact
that every w € C has an even number of 1s, since w-w = 0. «

We rephrase Corollary 2.2.9 in the language of invariant theory. Consider the
group Dg which is generated by the matrices % (} _i) and ( (1) _(1)) It
consists of 16 elements, and geometrically speaking, Dg is the symmetry group

of a regular hexagon in the plane.

Corollary 2.2.9°. Let W be the weight enumerator of a self-dual binary code C.
Then W is a polynomial invariant of the group Ds.

Proposition 2.2.10. The invariant ring C[x1, x,]P8 is generated by the funda-
mental invariants 6; := x12 + x% and 6, := xlzx%(xl2 — x2)2

Corollary 2.2.11. The weight enumerator of every self-dual binary code is a
polynomial function in 6; and 6,.

As an example consider the weight enumerator We, = xf + 14xi‘x§ + x§ of
the self-dual code in Example 2.2.7. We have the representation We, = 9;‘ —4.6,
in terms of fundamental invariants.

One of the main applications of Sloane’s approach consisted in proving the
nonexistence of certain very good codes. The desired properties (e.g., minimum
distance) of the code are expressed in a tentative weight enumerator W, and
invariant theory can then be used to show that no such invariant W exists.

Exercises

(1) Compute the Hilbert series of the ring Cloy, 03, ..., 0,] of symmetric
polynomials.

(2) Consider the subring of C[xy, x», x3, x4] consisting of all polynomials p
which satisfy the shift invariance p(xy, x2, x3, x4) = p(x2, X3, X4, x;). Find
a generating set for this invariant ring and use Molien’s theorem to prove
the correctness of your result.

(3) The dihedral group D, acts on C[x, y] via the symmetries of a regular
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n-gon. Show that there exists an invariant 6 of degree n such that
C{ﬁ +y?%, 8] = Clx, y]P". In particular, prove Proposition 2.2.10.

(4) * Let ' C GL(C") be a finite matrix group and let x : ' — C* be any

~ character.

(a) Find a generalization of Molien’s theorem 2.2.1 for the graded vector
space of relative invariants C[x]; ={feCx]: for=x(m)- f}.

(b) Show that C[x])‘; is a finitely generated module over the invariant ring
C[x]", and give an algorithm for computing a set of module generators.

(c) Find an example where C[x]! is not free as a C[x]"-module.

(5) Consider the action of a finite matrix group I' C GL(C") on the exterior
algebra N*C" = @);_o A?C", and let (A*C")T = @))_,(A?C™)T denote the
subalgebra of I'-invariants. Prove the following anticommutative version of
Molien’s theorem:

n 1
> dim((A*CHN) 27 = — 3 det(z id + 7).
d=0 U] zer

(6) * Prove the following expression of the Molien series in terms of the
character “trace” of the given representation of I'. This formula is due to
Jari¢ and Birman (1977).

o0 N
@)= % exp(Z e )

T zer =1 )

2.3. The Cohen-Macaulay property

In this section we show that invariant rings are Cohen—Macaulay, which implies
that they admit a very nice decomposition. Cohen-Macaulayness is a fundamen-
tal concept in commutative algebra, and most of its aspects are beyond the scope
of this text. What follows is a brief introduction to some basic concepts and prop-
erties. For further reading on Cohen—Macaulayness and commutative algebra in
general we refer to Atiyah and MacDonald (1969), Kunz (1985), Matsumura
(1986), and Hochster and Eagon (1971). I wish to thank Richard Stanley for
supplying the elementary proof of Theorem 2.3.1 given below.

Let R=Ry@® Ry ® R, ® ... be a graded C-algebra of dimension 7. This
means that Ry = C, R; - R; C R;4 j» and that n is the maximal number of
elements of R which are algebraically independent over C. This number is the
Krull dimension of R, abbreviated dim(R) := n. We write H (R, for the set of
homogeneous elements of positive degree in R. A set {61, ...,6,} C H(R,) is
said to be a homogeneous system of parameters (h. s. o. p.) provided R is finitely
generated as a module over its subring C[6), ..., 6,]. This implies in particular
that 6y, ..., 6, are algebraically independent. A basic result of commutative
algebra, known as the Noether normalization lemma, implies that an h. s. o. p.
for R always exists. See Logar (1990) and Eisenbud and Sturmfels (1992) for
discussions of the Noether normalization lemma from the computer algebra point
of view. We will need the following result from commutative algebra.
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Theorem 2.3.1. Let R be a graded C-algebra, and let 6, . . ., 6, be an h. s. o. p.
for R. Then the following two conditions are equivalent.

(@) R is a finitely generated Jree module over C[6, ... ,0,]. In other words,
there exist 1, ..., n, € R (which may be chosen to be homogeneous) such
that

t
R = Pn,Cloy, ..., 06,]. (2.3.1
i=1

(b) For every h.s. 0.p. ¢y, ..., ¢n of R, the ring R is a finitely-generated free
Clg1, ..., ¢p]-module.

If condition (a) and therefore (b) holds, then the elements N, ..., N satisfy
(2.3.1) if and only if their images form a C-vector space basis of the quotient
algebra R/(61,...,6,).

The proof of Theorem 2.3.1 is based on two lemmas. We recall that a

sequence 6y, ..., 0, of elements in R is said to be regular if 6; is not a zero-

divisor in R/(0y,...,0;_1) for i = 1,2,..., n. This is equivalent to R being a

free module over its subring C[6, ..., 6,], provided 6, ..., 0, are algebraically

independent.

Lemma 2.3.2. Let R be a graded C-algebra and ay, ..., a, positive integers.

(@) A set {61,...,0,} C H(R}) is an h. s. o. p. if and only if {9;", ... 6%} is
an h. s. o. p.

(b) A sequence 6y,...,0, € H (Ry) is regular if and only if the sequence
0", ...,6:" is regular.

Proof. Suppose 6y, ..., 0, are algebraically independent over C. Then the poly-
nomial ring C[0y, ..., 6,] is a free module of rank aja; - - - a, over its subring
CLOy", ..., 0"]. In fact, the set (67" -0 | 0 < b; < a,} is a free basis. This
implies both (a) and (b). <«

We also need the following “weak exchange property”. For combinatorialists
we note that h. s. 0. p.’s do not form the bases of a matroid.

Lemma 2.3.3. Let ¢, .. ., ¢, and 61,...,0, be h.s. o. p.’s of R, with all 6; of
the same degree. Then there exists a C-linear combination 8 = AOL+. ..+ 4,0,
such that ¢q, ..., ¢,_1,0 is an h. s. o. p-

Proof. The ring S = R/($1, ..., dn—1) has Krull dimension dim(S) = 1. Let
T denote the image of C[6, ..., ] in S. Since S is finitely generated as a
module over its subring T, we have dim(T) = dim(S) = 1. By the Noether
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izati i i inati = X014+ ...+ A,0,,

lization lemma, there exists a linear combmgtlon 0 161 10
1}?1:% 1ivhic:h is a parameter for 7. Now 7 is a finitely geqerated C[0]-module,
;Ad 116;1(36 § is a finitely generated C[6]-module. Thus 6 is a parameter for S,
and hence @1, ..., ¢n—1,0 is an h.s. 0. p. for R. <

Proof of Theorem 2.3.1. Clearly, (b) implies (a). To prove the converse, suppose
that 93; ..., 06, 1s a regular sequence in R and that ¢y, ..., ¢, is any h s. 0. p.
We need to show that ¢y, ..., ¢, is a regular sequence. We proceed by induction
= dim(R).
X ’:7 :dfirznéei 6 € H(R,) be regular and ¢ € H(R,) a parameter. In other
words, 6 is not a zerodivisor, and R is a finitely generated C[¢]-modul§. Suppose
¢ is not regular, and pick an element u € H (R, ) such that d).u = 01in R. Thus
¢ lies in the annihilator Ann(u) = {v € R | vu = Q}. Sl.nce ¢ € Ann(Lf)
is a parameter for the 1-dimensional ring R, the quotient ring R/ Ann(ur?1 is
zero-dimensional. Hence 6 € Ann(u) for some m € N: T.hIS means that 87 is
a zero-divisor and hence not regular. This is a contradiction to Lemma 2.3.2,
0 was assumed to be regular.

beciu—s—el — n: By Lemma 2.3.2,g we may assume that 9y, ..., 9’5 are of the same
degree. Choose ¢ as in Lemma 2.3.3, and suppose (after relabeling if necessgry)
that 61, ..., 8,-1, 0 are linearly independent over C. Then 01,...,6,-1,0 is a
regular sequence in R, and consequently 6;, ..., 0,_; is a regular sequence in
the (n — 1)-dimensional quotient algebra § := R / (0).

By the choice of 0, the set {¢1, ..., ¢,—1} is an h.s. 0. p. for S Apply-
ing the induction hypothesis to S, we conclude that ¢, . o Gn—1 is regular
for § and therefore ¢4, ..., ¢,—1, 6 is regular for R. In partlcplar, 6 is a non-
zerodivisor in the 1-dimensional ring R/{¢1, ..., ¢,?_1). Applying the 1¥1Quct19n
hypothesis again, we find that the parameter ¢, is also a non—zgrod1v1sor in
R/{(¢1, ..., dn—1). Hence ¢1, ..., ¢, is a regular sequence in R. This completes
the proof of the implication from (a) to (b). . ‘ -

For the second part of the statement we rewrite the C-linear decomposition
(2.3.1) as

R=(E{l9m-C)ea( % GthGf‘“'@’L”C)«

(i1,..in)eN"\{0} i=1

The claim follows from the fact that the second summand is the ideal
O1,...,8,). <

A graded C-algebra R satisfying the conditions (a) and (b) in Theorer_n 2.3.1
is said to be Cohen—Macaulay. The decomposition (2.3.1) is called a Hzronqu
decomposition of the Cohen—Macaulay algebra R. Once we }(now an explicit
Hironaka decomposition for R, then it is easy to read off the Hilbert series of R.
The following formula is a direct consequence of Lemma 2.2.3.

Corollary 2.3.4. Let R be an n-dimensional graded Cohen-Macaulay algebra
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with Hironaka decomposition (2.3.1). Then the Hilbert series of R equals

H(R,z) = (f_:zdegni) / ﬁ(l _ Zdegej).
i=1 j=1

We now come to the main result of this section. Theorem 2.3.5 first appeared
in Hochster and Eagon (1971) although it was apparently part of the “folklore”
of commutative algebra before that paper appeared.

Theorem 2.3.5. The invariant ring C[x]" of a finite matrix group I' C GL(C™)
is Cohen—Macaulay.

Proof. Consider the polynomial ring C[x] as a module over the invariant subring
C[x]". We have seen in the proof of Proposition 2.1.1 that every coordinate
function x; satisfies a monic equation with coefficients in C[x]". This implies
that C[x] is finitely generated as a C[x]"-module. Note that the set U := {f e
Cl' : f* = 0} of polynomials which are mapped to zero by the Reynolds
operator is also a C[x]' -module. We can write the full polynomial ring as the
direct sum C[x] = C[x]" @ U of C[x]" -modules.

By the Noether normalization lemma, there exists an h.s.o.p. 6y, ..., 0,
for C[x]". Since C[x] is finite over C[x]" as observed above, and since C[x]"
is finite over the subring C[6}, ..., 6,], it follows that C[x] is also finite over
Cly,...,0,]. Hence 6y, ..., 0, is an h. s. 0. p. also for C[x].

Taking the coordinate functions xi, ..., x, as an h.s. o. p. for the polyno-
mial ring C[x], we see that C[x] is Cohen—Macaulay. From the implication
“(a) = (b)” of Theorem 2.3.1 we get that C[x] is a finitely generated free
Cl#6y, ..., 6,]-module.

From the module decomposition C[x] = C[x]" @ U we obtain a decompo-
sition

CIx1/(61,...,0,) = CIxI" /(61,...,6,) ®U/BLU + ...+ 6,U)
F+ 2 hibi >[5+ 3°h50 + (f — £+ S (hF — h);

of finite-dimensional C-vector spaces. We can choose a homogeneous C-basis
Ny ey ey Negds -« -, s for C[x1/(61, ..., 6,) such that 7y, ..., N, 1s a C-basis
for C[x]r/(Ql, ooy 6n) and Ny, ..., 0 is a C-basis for U/ (01U + ... +6,U).
Lift #7y,...,n; to homogeneous elements 7, ..:, n: of C[x]', and lift
Ne+1, - - -, I)g to homogeneous elements 1,41, ..., ns of U. By the last part of
Theorem 2.3.1, C[x] = @le niCl6y, ..., 6,]. This implies the desired Hironaka
decomposition

Cxll' = ém Cl61,...,6,] (2.3.2)

i=1

which shows that the invariant ring C[x]" is Cohen—Macaulay. <«

2.3, The Cohen—Macaulay property B

In the following we shall see that the Hironaka decomposition (2.3.2) prom-
.ced by Theorem 2.3.5 is a useful way of representing the invariant ring pf a
;;me ;natrix group I'. In this representation every invariant / (x) can be written

uniquely as

I(x) = Zt:m(X) - pi (0100, -, 6,(%) (2.3.3)

i=1
where p1, P2, .-, Pr are suitable n-variate polynom.ials. ¥n particular, we have
that {01, .. 6ns M1, -, 1} is a set of fundamental invariants for I'. The poly-
nomials 6; in the h. s. o p. are called primary invariants wh11e.the n; are called
secondary invariants. We abbreviate the respective degrees with d; := deg(6;)
and ¢; 1= deg(n;)- . ‘ .

Note that for a given group I' there are many different Hironaka decomposi-
tions. Also the degrees of the primary and secondary invariants are not unique.
For instance, take I' = {1} C GL(C"), then we have

C[x]r =C[x] = C[xz] @ x C[x2] = C[x3] D x C[x3] ® x? C[x3] =....

But there is also a certain uniqueness property. Suppose that we already know the
primary invariants or at least their degrees d;, i = 1, ..., n. Then thg number ¢
of secondary invariants can be computed from the following exphqt formula.
In the algebraic language of the proof of Theorem 2.3.5 the integer ¢ is the rank

of the invariant ring C[x]" as a free C[6, ..., 6,]-module. Moreover, also the
degrees ey, ..., e; of the secondary invariants are uniquely determined by the
numbers di, ..., d,.

Proposition 2.3.6. Let dy, da, ..., d, be the degrees of a collection of primary
invariants of a matrix group I'. Then

(a) the number of secondary invariants equals

_didy...d,
o

(b) the degrees (together with their multiplicities) of the secondary invariants
are the exponents of the generating function

n
orz) - []( —z%) =26 422 ... 4 2%,
i=1

Proof. We equate the formula for the Hilbert series of a Cohen—Macaulay al-
gebra given in Corollary 2.3.4 with Molien’s formula (Theorem 2.2.1) for the
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Hilbert series @r(z) of the invariant ring C[x]":

1 1 . n 4
T, 2 detid — o) = (27 )/jljl(l 2. (2.3.4)

=1

Multiplying both sides of (2.3.4) with (1 — z)", we get

! -2 — ¢ e g 2 dji—1
ﬁnerm“(igz)/g(lJrZJrz +...+29hH0 (23.5)

We now take the limit z — 1 in (2.3.5). The expressions H% all converge
to zero except for one summand where 7 equals the identity matrix. For that
summand we get 1, and hence the left hand side of (2.3.5) converges to 1/|T"|. On
the right hand side we get 1/dd; .. -dy. The resulting identity ¢/d;d, . . .d, =

1/|T’| proves statement (2). The statement (b) follows directly from Eq. (2.3.4). «

Now it is really about time for a concrete example which casts some light
on the abstract discussion on the last few pages.

Example 2.3.7. Consider the matrix group

100 01 o0 1 0 0 0 -1 0
r={010,—100,0—1o,1oo}.
00 1 00 —1 0 o0 1 0 0 —1

This is a three dimensional representation of the cyclic group of order 4. Its
invariant ring equals

Clxt, x2, x31" = {f € Clay, x2, 131 f(x1, 12, 33) = fl—xg, 11, —x3)}.
By Molien’s theorem the invariant ring has the Hilbert series
1 2 1
O =1.
=3 [(1 —z)3 " A +21+22) * (1 +2)2(1 —Z)]

_ 242 —z41
0+ 2214251 = 2)?

=1+4+27%42;3 +5z¢ +4z° + 826 +8z7 + 1328 +127° +18z10 +

The following three invariants
01 = x12 + x22, 0y = x32, 03 := xf + xg,

are algebraically independent and they have no common roots except the zero
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i i 01,0 ) 93]_
. Thi ns that C[xy, xp, x3] is a finitely generated free C[ 1,62, €
vectoxi . Tg; g:aarguments in our proof of Theorem 2.3.5, also the invariant
mOd%?él 6,, 631" is then a finitely generated free C[0;, 6,, 63]-module, which
ring » 025

; . ans.
t 81, 6>, 63 can serve as primary invarian ' .
meagfogz}iitién 2.3.6 tells us that we need to find four secondary invariants
n1. 12, 13- N4 Whose degrees e1, €3, €3, e4 are computed by the formula
1s s *
29 422 4 2% 4 2% = Dp(z) - (1 — 2 (1 — z®2)(1 — z%)

B +22—z4+ DA -2 -2%
- (1 +2)2(1 + z2)(1 — 2)3

=1+2~Z3+Z4.

We can simply read off e; = 1, ep = e3 = 3, e4 = 4. Now we can apply the
Reynolds operator

*of e M, x2, x3) + f(—x2, X1, —X3) + f(—x1, —x2, X3)

+ f(x2, —x1, —x3)]

to all monomials of degree 3 and 4, and we obtain the desired secondary invari-
ants

2 2 = x3xy — X1 X3
mo=1, mi=x1xox3, N3 = X]X3 - XZX3, N4 1= XjXp — XX

i 0 i . 1. 2.5 (or by hand calculations)
Using the Grobner basis methods of Sects. 1.2 an'd‘ : :
we ﬁially verify that there does not exist a non-trivial polynomial relation of the

form 24 1 i pi(01, 62, 03) = 0. Therefore the invariant ring has the Hironaka
i=
decomposition

Clx1, x2, x3]7 = C[61, 62, 651 ® 12.C[61, 65, 631 ® n3CI6y, 62, 65]
@ n3Cl61, 62, 63].

Exercises

(1) Prove that the algebra A := C[x, x2]/{(x1x,) is Cohen—Macaulay, and find
a Hironaka decomposition for A. (Hint: Try 6 = x; + x3.) '
Prove that B := C[x1, x,]/(x?x2, x1X3) is not Cohen—Macaulay: (Hmt:
Every homogeneous element of positive degree in B is a zero-divisor.)
Compare the Hilbert functions of both algebras. .

(2) Consider the six invariants 13, 7,73, Maila, n3, 13na, nj in Example 2.3.7,
and compute their Hironaka decompositions

nin; — pij1(01, 62, 603) +n2 - pij2(61, 02, 63) +n3 - pij3 (61, 62, 63)
+ 04 - pija(61, 02, 03).



44 Invariant theory of finite groups

Using your results, find a rewriting rule for computing the Hironaka
decomposition of an arbitrary invariant T = 7 (61, 65, 63, 12, 13, n4).

(3) * LetI' C GL(C") be a matrix group and H C T" any subgroup. Show
that C[x]” is a free module of rank [I" : H] over its subring C[x]". How
can you compute a free module basis?

(4) Let R be the subring of C[xy, x2, X3, x4] spanned by all monomials

ay _apy az_dg .
X, X, x3°x," with

a1 +3a; +a3 =0 (mod 4) and 4a; — a3 + 2a, = 0 (mod 5).

(a) Show that R is the invariant ring of a finite abelian group T'.
(b) Compute the Hilbert series of the graded ring R.
(c) Compute a Hironaka decomposition for R.

2.4. Reflection groups

In view of Theorem 2.3.5 it is natural to ask under what circumstances does
the Hironaka representation C[x]" = @521 n: Cl61, ..., 6,] have a particularly
simple or interesting form. In this section we discuss the simplest possibility of
all, namely the case C[x]" = C[4,, ..., 0,] when the invariant ring is generated
by n algebraically independent invariants. We have seen in Sect. 1.1 that this
happens for the symmetric group S, of n x n permutation matrices. In Exercise
2.2.3 we have seen that also the invariant ring of the symmetry group of a
regular n-gon is isomorphic to a polynomial ring in two variables.

The main theorem in this section characterizes those matrix groups whose
invariants form a polynomial ring. In order to state this theorem we need two
definitions. A matrix or linear transformation = € GL(C") is called a reflection
if precisely one eigenvalue of 7 is not equal to one. Actually, these reflections
are what some authors call “generalized reflections” or “pseudo-reflections”. The
“usual” hyperplane reflections in R” are those reflections whose #-th eigenvalue
is equal to —1. A finite subgroup I' C GL(C") is said to be a reflection group
if I' is generated by reflections.

Theorem 2.4.1 (Shephard—Todd—Chevalley theorem). The invariant ring C[x]"
of a finite matrix group I' C GL(C") is generated by n algebraically independent
homogeneous invariants if and only if T is a reflection group.

It is important to note that being a reflection group is not a property of
the abstract group underlying I" but it depends on the specific n-dimensional
representation. For instance, the 2-dimensional representation of the dihedral
group D as the symmetry group of a hexagon is a reflection group (and its
invariant ring is a polynomial ring by Exercise 2.2.3), while the 3-dimensional
representation of Dg considered in Example 2.2.6 is not a reflection group (and
its invariant ring is not a polynomial ring). See also Example 2.4.6.

Theorem 2.4.1 was first proved for real reflection groups by Shephard and
Todd (1954), and subsequently generalized to the complex case by Chevalley
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(1955) and Serre (Stanley 1979b). Shephard and Todd explicitly d§tennined
all finite subgroups generated by reﬂectiqns_, anq they_ verified 1che if-part of
Theorem 2.4.1 by explicitly computing their invariant rings C[x_]‘ .

The proof of the if-part to be presented here follows the exposition of Cheval-
ley’s proof given in Grove and Benson (1985?. Leto € GL(C") be any reﬂef:—
tion. Then the kernel of the linear transformation o — id is a hyperplane H, in
C”. Let L, denote the linear polynomial whose zero set is the hyperplane H,.

Lemma 2.4.2. For all polynomials f € C[x], the linear polynomial L, is a
divisor of of — f.

Proof. Given v € C" with L, (v) = 0, then we have
veH, = ov=v = fov)—f(v)=0 = (cf — f)(v) =0.

Since the linear polynomial L, is irreducible, Hilbert’s Nullstellensatz implies
that of — f is a multiple of L,. <«

In the following let I' C GL(C") be a finite reflection group. Let Zr denote
the ideal in C[x] which is generated by all homogeneous invariants of positive

degree.

Proposition 2.4.3. Let hy, hy, ..., hy € C[x] be homogeneous polynomials,
let g1,82,---,8m € C[x]" be invariants, and suppose that g1/ + goho + ...
+ gmhm = 0. Then either h; € Zr, or g1 is contained in the ideal (go, ..., gm)
in C[x].

Proof. We proceed by induction on the degree of ;. If i1 = 0, then hy € Zr.
If deg(h;) = O, then h; is a constant and hence g; € (g2, ..., gn). We may
therefore assume deg(%1).> O and that the assertion is true for smaller degrees.

Suppose that g1 € (g2, ..., &m)-
Let o € I' be any reflection. Then

g (0h) =0(Sgi-hi) =0(0) =0.
i=1 i=1

By Lemma 2.4.2, we can write ch; = h; + L, -ﬁ;, where ﬁ,- is a homogeneous
polynomial of degree deg(h;) — 1. We get

giﬁi,

m ~
0=> g -(hi+Ls-hj))=Ls-
‘ i—1

m
i=1 1=
and consequently g1/1 + g2h2 + ... + gmhim = 0. By the induction hypothesis,
we have h; € Ir, and therefore chy —hy = h; - Ly € Ir.

Now let 7 = 0107 ...0; be an arbitrary element of I', written as a product
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of reflections. Since the ideal Zr is invariant under the action of T,
I
JT/’ll - /’11 = Z(Gl .. ‘O'iO','_H/’ll — 01 .. .O'l'hl)
i=1
/
= > (01...01)(0i41h1 — hy) € Ir.
i=1

This implies hi —hy € Ir and consequently 4, € Zp. <

Proof of Theorem 2.4.1 (if-part). By Hilbert’s basis theorem (Corollary 1.2.5),
there exists a finite set {fi, f2,..., fu} C C[x] of homogeneous invariants
which generates the ideal Zr. With the same argument as in the proof of Theo-
rem 2.1.3 this automatically implies

CIxI" =CLf1, for ... ful-

Suppose now that  is minimal with this property, i.e., no smaller set of homo-
geneous invariants generates Zr. We need to prove that m = n, or, equivalently,
that the invariants fi, f2,..., f, are algebraically independent over C.

Our proof is by contradiction. Suppose there exists a non-zero polynomial
g € Cly1, y2,..., yml such that g(f1, fo, ..., fm) = 0 in C[x]. We may assume

that g is of minimal degree and that all monomials xilxéz ... Xy occurring (before

cancellation) in the expansion of g(f1, f3, ..., f.) have the same degree d :=
i1+i+...+1i,
Fori =1,2,...,m consider the invariant

9
g = (a—g) (fi, f2s - fm) € CIx]V.
Yi

Each g; is either 0 or of degree d —deg f;. Since g1, ..., ym) is not a constant,
there exists an i with (g—;%)(yl, .-y Ym) # 0, and hence g; # 0, by the choice
of g. '

gLet J denote the ideal in C[x] generated by {g1,82,..-,gm}, and relabel
if necessary so that J is generated by {g1, ..., g¢} but no proper subset. For
i=k+1,...,m write g; = Zf:l hijg; where h;; is either 0 or homogeneous
of degree deg(g;) — deg(g;) = deg(f;) — deg(fi). We have

0= -"[g(fi, for--» f)]

3
s

m
g

=1 0xs

2.4, Reflection groups

47

k X m k 9
g 0 > (Zh,-,-g,-)i

i
=1 0Xs  iZkr1 =1 x5

k 31. m of;:
ot £t

axs j=k+1 8xs

Il

Since g1 € (2, - ., &k), Proposition 2.4.3 implies

m .
%"‘ Zhﬂ%EIr fors=1,2,...,n.
0xs  jlih1 o 0xg

Multiplying with x; and summing over s, we can apply Euler’s formula to find
m

szﬁ"“ > hjn sza_]
s=1

9xs j=k+1  s=1 Xs

= (deg fOfi + 3. hj (deg £ f;

€ (x1, ..., xn)Ir

C (xlfla-~~,xnf1>+<f2’---»fm)-

All monomials in this polynomial are of degree deg(f1), and therefore
m
(deg f)fi+ 2 hji(deg fj)fj € (f2s -, fn)-
j=k+1

The last expression implies fi € (f2,..., fm), which is a contradiction to the
minimality of m. This completes the proof of the “if”’-part of Theorem 2.4.1. «

Our proof of “only-if’-direction follows Stanley (1979b). It is based on some
interesting generating function techniques. In what follows we do not assume
any longer that I" is a reflection group.

Lemma 2.4.4. Let r be the number of reflections in a finite matrix group F C
GL(C™). Then the Laurent expansion of the Molien series about z = 1 begins

CI)F(Z) = ”11—|(1 — Z)_n + —2_|r:l:"i'(1 __ Z)—n+1 + 0((1 _ Z)_n+2),

Proof. Recall from Theorem 2.2.1 the representation

O(z) = _11“_| 3 det(id — zm) L.

I wel
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The only term det(id — z7z)~! in this sum to have a pole of order n at z =1 is

the term (1 — z)™" corresponding to the identity matrix in T'. If det(id — z)~!
has a pole of order n — 1 at z = 1, then 7 is a reflection and

det(id — zm) ™' = (1 — 2) "*1(1 — detr - 2)~".

Hence the coefficient of (1 — z)™"*! in the Laurent expansion of ®r(z) equals

1
ﬁ2(1 —deto)”!

where the fum ranges over all reflections o in I'. Since o is a reflection if and
only if 0™ is a reflection, we conclude

1 1 1

23 2(

~1—deto =\ _deto T 1—(deta)—1)'=;1:r’

completing the proof. <«

C‘orollanl: _2.4.5. Let I' C GL(C") be a finite matrix group whose invariant
ring C[x]" is generated by n algebraically independent homogeneous invariants
01,...,6, where d; := deg0;. Let r be the number of reflections in I". Then

Il=didy...d, and r=dy+dr+...4+d, —n.

Proof. By Lemma 2.2.3, we have

1 1 1
(1 —z%) (1 —z8) """ (1 —zdn)’

@r(z) =

The Laurent expansion of this power series about z = 1 begins

d1+d2+...+dn—n

_ \—n+l1
2did, ... d, (1-2

1
Pr(z) = —— (1 — 7)™
r@ ddy AT

+0((1 = 2)7""),
Comparing with Lemma 2.4.4 completes the proof. «
Proof of Theorem 2.4.1 (only-if part). Suppose that C[x]" = C[6y, ..., 6,1 with

deg(6;) = d,-: Let H be the subgroup of I' generated by all reflections in T".
Then by the if-part of Theorem 2.4.1, we have

CIx1? = Clyy, ..., ¥,
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where deg(¥;) = e;. Clearly C[x]" € C[x]”, so each 6; is a polynomial function

in the ¥’s.
) Since the 6’s and the v’s are both algebraically independent, the Jacobian

determinant det(d6; /dv;) is non-zero. Hence there exists a permutation 77 with

007(1) 00702 00 ()

0.
1 Yy OYn 7

This means that v; actually appears in 0,y = 60, (¥1, ..., ¥,), and conse-
quenily e; = deg ¥ < dr() = deg ().

Let r be the number of reflections in I' and therefore in H. By Corol-
lary 2.4.6, we have

rzi@—nzﬁ@m—n=§m—u

Since ¢; < dr@), we have e; = dy(), so again by Corollary 2.4.5 we have
' =didy...d, =e1ey...e, = |H|, and hence H =T'. <«

The “only-if” part is useful in that it proves that most invariant rings are not
polynomial rings.

Example 2.4.6 (Twisted symmetric polynomials). Let S, denote the set of per-
mutation matrices in GL(C"), and consider its representation I" := {sign(c)-o :
o € Sp}. We call the elements of the invariant ring C[x]" twisted symmetric
polynomials. Note that a homogeneous polynomial f is twisted symmetric if
and only if f oo = sign(c)%8/ . f for all permutations o. Theorem 2.4.1
implies that the ring C[x]" is not a polynomial ring. For instance, for n = 3 we
have the Hironaka decomposition

Clx1, x2, x3] = Cl[61, 62, 03] ® n C[6y, 62, 63],

where 01 := x12 -f—x% —|—x§, 6 1= x1X2 +x1X3 + X2X3, 63 := xlzxz +x§X3 —I—x%xl -
xZx1 — xixs — x3x; and n = x7 + x5 + x5,

Exercises

(1) Consider the full symmetry group I' C GL(R?) of any of the five Platonic
solids. (The five Platonic solids are the tetrahedron, the octahedron, the
cube, the icosahedron, and the dodecahedron.)

(a) Show that I is a reflection group.

(b) Find three algebraically independent invariants 6, 6,, 03 which generate
the invariant ring C[x, y, z]'.

(c) How are the degrees of 6, 0,, 65 related to the order of the group I'?
How are they related to the face numbers of the polytope in question?

(d) Find an explicit formula which expresses each symmetrized monomial
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(x'y/z*)* as a polynomial function in the fundamental invariants
601, 02, 65.
(2) Determine the Molien series and a Hironaka decomposition for the ring
of twisted symmetric polynomials in n variables for n > 4 (cf. Example
2.4.6). Can you generalize your results to the case where “sign” is replaced
by an arbitrary character of the symmetric group?

2.5. Algorithms for computing fundamental invariants

In this section we present algorithms for computing a fundamental set of invari-
ants for any finite matrix group I'. Our input will be a black box which evaluates
the Reynolds operator “x” of I, and our output will be a set of primary and
secondary invariants as in Sect. 2.3. The reason for this assumption is that the
knowledge of the full group I' might not be necessary to compute the invariants:
it suffices to know the Reynolds operator.

We begin with a description of six commutative algebra subroutines based
on Buchberger’s method. The first four of these algorithms are well-known, and
they are discussed in practically every introduction to Grobner bases theory. It
is those four subroutines which we will apply later in this section. The other two
subroutines 2.5.5 and 2.5.6 are perhaps a little less known. These are included
here because they are quite useful for working with Cohen—Macaulay rings such
as invariant rings of finite groups.

Whenever the monomial order is left unspecified, any monomial order will
work for the Grobner bases computation in question. The two most frequently
used monomial orders are the purely lexicographical order “>,1” and the reverse
lexicographical order “>y”. These are defined as follows. We assume that an
order is given on the variables, say x; > x; > ... > xp. We then put x* > xP
if there exists i, 1 < i < n, such that oj = B; for all j < i, and o; > B;.
In contrast to “>n1”, the reverse lexicographic order “>,” is a linear extension
of the natural grading on C[x]. We define x* >, x# if Yoo > Y B, orif
Y a; =Y p; and there exists i, 1 <i < n, such that o; = B; for all j > i, and
o < B;. ‘

Subroutine 2.5.1 (Radical containment).

Input: fi, f2,..., fu, g € C[x].

Question: Let 7 := (f1,..., Jm). Does g lie in Rad(/), the radical of I?
Solution: Let G be a Grobner basis of ( fi, f2, ooy fm, gz — 1), where z is a
new variable. Then g € Rad(/) if and only if 1 € G.

Subroutine 2.5.2 (Solvability of homogeneous equations).

Input: Homogenous polynomials fi, f,, ..., fm € C[x].

Question: Is there a non-zero vector a € C" such that fi@) = fLra)=...=
fm(@) =0.

Solution: Compute a Grobner basis G of the ideal I :=— (f1, for, oo oy fm). We
have Rad(l) = (x1, xp, . ..

PR

, Xn) (i.e., there is no non-zero solution) if and only
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i Ji initi mials in G for
if a monomial of the form x;" occurs among the initial mono

every i, for 1<i<n.

outi .3 (Algebraic dependence).
frllfljlguzﬂfetzé 3=( {Jé;l, f2reee ,pfm} C C%x], considered as subset of the field of
rational functions C(x). ‘
Questions: Is F algebraically dependent over C? If so, find an m-variate poly-
nomial P such that P(f1, f2,..., fin) = 0 in C(x).
Solution: Introduce m new “slack” variables y := (y1, e Ym), and compute a
Grobner basis G of {fi — y1, f2 — Y2, ..., fm — Ym} with respect to the purely
lexicographical order induced from x; > o> X >y > >/ Ym. Let
G’ = GNC[yl. Then F is algebraically independent 1f and only if G’ = @. On
the other hand, if P(y) € G’, then P(f1,..., fn) = 0 in C[x].

Subroutine 2.5.4 (Subring containment).
Input: fla f29 B fm» g€ C[X].
QIII)CStiOHZ Is g contained in the subring C[f1,..., f] of C[x]? If so, find an

m-variate polynomial Q such that g = Q(f; . forenn, f,,',) in C[x].
Solution: Compute the Grobner basis G as in Subroutine 2.5.3, and let Q €

'C[x, y] be the unique normal form of g with respect to G. Then g € C[f1, ...,

f,] if and only if Q is contained in C[y]. In that case we have the identity
g = 0(f1, f2s - -+, fm) in C[X].

Subroutine 2.5.5 (Hironaka decomposition of a Cohen—Macaulay subring).
Input: Homogeneous polynomials f1, f2, ..., fm € C[x]3 generating the ideal /.
Question: Decide whether R = C[x]/I is a d-dlmenS}onal Cohen—Macaulay
ring, and, if so, construct a Hironaka decomposition as in (2.3.1).

Solution:

1. Pick a random 7 x d matrix (@;j)1<i<n,1<j<d Over C, and abbreviate

n n n
Or:= ) ainxi, 0r:=) ap%, ..., 0a:=) aiaxi.

i=l1 i=1 i=1

2. Introduce d new variables z := (zq, ..., zq). Compute a reduced Grobner

basis G with respect to reverse lexicographic order induced from z; < z7 <
. <zZg < X1 <Xy <...<x, for the ideal
Ji=1+{6 —2z1,00—2z2,...,04 —zg) in C[x, z].

3. Does the initial monomial of some element in G contain a new variable ?i?
If so; sToP: R is not a free C[6y, ..., 6;]-module. Otherwise, proceed with
Step 4. ’ ‘

4. Let F be the set of o € N” such that x* is standard (1.e.., no.t a mgltlple of
the initial monomial of some element in G). If F is infinite (i.e., 3i Vs Vg €
G : x; # init(g)), then STOP: R is an infinite-dimensional free C[6, ..., 04]-
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module. If F is finite, then R is a d-dimensional Cohen—Macaulay ring
having the Hironaka decomposition

R = @Xa C[91,92, .. .,Qd].

acF

Subroutine 2.5.6 (Normal form with respect to a Hironaka decomposition).
Input: Generators 6y, ..., 6,, n1,...,n; € C[x] of a Cohen—-Macaulay subring
R with Hironaka decomposition as in Theorem 2.3.1 (1).

Question: Decide whether a given polynomial f € C[x] lies in the subring R,
and if so, find the unique representation

t
f&) =Y0® - pi(61(%), ..., 0,(x). (2.5.1)
i=1
Solution: Introduce n+t new “slack” variables (v, z) := (y1, - -+ Yn> Z15 - - - » Zt),
and compute a Grobner basis G of {61 — y1, ..., 6y — Yn, 11 — 215 -+, Nt — Zt}

with respect to the following monomial order “>" on C[x,y, z]. We define
x?yPzy > x¥yP'zv" if x* > x¥ in the purely lexicographic order, or else if
y? > y#' in the degree lexicographic order, or else if z¥ > z'’ in the purely
lexicographic order.

Then f —¢ Y i_;zi-pi(¥1, .., y») if and only if the identity (2.5.1) holds.
Note that G contains in particular those rewriting relations n;n; — Z/tc=1 zi -
Gijk (yl, ..., Yn) which express the Hironaka decompositions of all quadratic
monomials in the n’s.

We now come to the problem of computing a fundamental set of invariants
for a given finite matrix group I' C GL(C"). Our algorithm will be set up so that
it generates an explicit Hironaka decomposition for the invariant ring C[x]".

In the following we will assume that the group I' is presented by its Reynolds
operator

*: C[x] - C[x]"

b L
o = L),

We recall from Proposition 2.1.2 that the Reynolds operator “x” is a C[x]'-
module homomorphism and that the restriction of “x” to C[x]" is the identity.

In the course of our computation we will repeatedly call the function “x”,
irrespective of how this function is implemented. One obvious possibility is to
store a complete list of all group elements in I', but this may be infeasible
in some instances. The number of calls of the Reynolds operator is a suitable
measure for the running time of our algorithm. As far as asymptotic worst case
complexity is concerned, Proposition 2.1.5 implies that also in this measure we
will not be able to beat Noether’s bound (Theorem 2.1.4).

Let us mention parenthetically that the approach presented here generalizes
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directly to infinite reductive algebraic groups, provided the Reynolds opera-
tor “+” and the ideal of the nullcone are given effectively. The nullcone of any
matrix group is defined as the set of common zeros of all invariants. Finding a
defining set for the nullcone is generally easier than computing a fundamental
set of invariants. For the case of the general linear group I' = GL(C") we will
discuss this in detail in Chap. 4.

Here we are concerned with a finite group I', and the following lemma states
that in this case the nullcone consists only of the origin. Equivalently, the ideal
of the nullcone equals the irrelevant ideal M = (x1, x2, ..., X,).

Lemma 2.5.7. Let I' C GL(C") be any finite matrix group, and let /T denote
the ideal in C[x] generated by all homogeneous invariants of positive degree.
Then Rad(I") = M.

Proof. Each homogeneous polynomial of positive degree lies in the irrelevant
ideal M. Therefore we need only show the reverse inclusion M C Rad(I"). In
view of Hilbert’s Nullstellensatz, it is sufficient to show that the variety of / Tin
C” equals the variety of M, which is the origin. We will do so by constructing,
for an arbitrary nonzero vector a € C", a suitable invariant in /T which does
not vanish at a.

Let a € C" \ {0}. Since every matrix o in the group I' is invertible, the
orbit 'a = {oa € C" | 0 € I'} does not contain the origin. The orbit I'a is a
finite subset of C”, and therefore it is Zariski closed. This means there exists a
polynomial function f € C[x] such that f(0) =0 and f(ca) =1forallo e T.

We apply the Reynolds operator to the polynomial f, and we obtain an
invariant f* which lies in IT because f*(0) = 0. On the other hand we have
[ (a) = “1,—' 2 ser f(oa) = 1. Hence the point a does not lie in the variety of

I". This completes the proof of Lemma 2.5.7. «

We will now present the basic algorithm for computing a Hironaka decom-
position of C[x]". In Algorithm 2.5.8 we do not make use of the Molien series
techniques in Sects. 2.2 and 2.3. A more practical variant based upon the Molien
series will be presented in Algorithm 2.5.14.

We fix any monomial order m; < m; < m3 < my < ... which refines the
partial order given by the total degree on the set of monomials in C[x].

Algorithm 2.5.8.

Input: The Reynolds operator * : C[x] — C[x]' of a finite subgroup I' of
GL(C™).

Output: A Hironaka decomposition for the invariant ring C[x]".

0. Lett:=1and Q :=0.

1. Repeat t :=¢ + 1 until m} ¢ Rad({Q)) (using Subroutine 2.5.1).

2. Let @ := QU {m]}. If Rad((Q)) # M then go to step 1 (using Subrou-
tine 2.5.2).
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3. If Q has cardinality n
3.1. then P := Q;

3.2. else modify Q to an algebraically independent set P of invariants with
Rad((P)) = M (using Subroutine 2.5.3; see Subroutine 2.5.10).

4. Write P = {01,62,...,6,}, let S := {1}, t := 0, and set bound :=
Y i, degree(8;) — n.

5. Let ¢ :=t + 1. If degree(m,;) > bound then sTOP. At this point P and S
are primary and secondary invariants respectively, and their union generates
C[x]" as a ring.

6. Test whether m} lies in the C[P]-module generated by S (see Exercise (3)
below). If no, then S := S U {m}}. Go to 5.

We will explain the details of Algorithm 2.5.8 and prove its correctness
along the way.

Theorem 2.5.9. Algorithm 2.5.8 terminates with finite sets P = {61, 62, ..., 6,)}
(the primary invariants) and S = {91, n2...,n,} (the secondary invariants,
where n; = 1) such that the invariant ring C[x]" is a free C[P]-module with
basis S. In other words, for any f € C[x]", there exist unique polynomials
fi, ..., fr € C[x] such that

¢
f=;ﬁ(91,..-,9n)-m.

Thus we have the Hironaka decomposition C[x]" = @§=1 n; C[P].

The steps 0 to 3 in Algorithm 2.5.8 generate the primary invariants. These
form an h. s. o. p. for C[x]". By Theorem 2.3.5, the invariant ring is a finitely
generated free module over the subring generated by this h. s. o. p. A free module
basis over this subring is then constructed in steps 4 to 6.

In steps 1 and 2 we generate a sequence of homogeneous invariants whose
variety gets smaller and smaller. In step 2 we will in practice first check whether
the symmetrized monomial m} is zero. Only if m} is nonzero we will employ
Subroutine 2.5.1 to test radical containment. This entire process will terminate
once this variety consists of the origin only, and termination is guaranteed by
Lemma 2.5.7.

After the completion of step 2 we have a set Q of invariants whose variety
equals the nullcone, namely, the origin. Moreover, the degree of the polynomial
in Q will be lexicographically optimal with respect to this property, since we
proceed one degree level at a time. The homogeneous ideal generated by Q
contains {xfl, A x,‘f”} for some dj, ..., d,. This implies that the polynomial
ring C[x] is finitely generated as a C[Q]-module, and therefore the invariant
ring C[x]" is finitely generated a C[Q]-module. This implies that Q contains at
least n elements. If Q contains precisely n elements, then Q is an h.s. o. p for
C[x] and hence also for C[x]". In this case (step 3.1) we choose P = Q as the
set of primary invariants. If Q contains more than n elements, then we proceed
as follows.
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subroutine 2.5.10 (Creating a homogeneous system of parameters). Suppose
O = 1{q1.92,---,qm} With m > n and let d; := degree(q;). Let d denote the

oreatest common divisor of di, da, ..., d,. We now choose an n X m-matrix
fai ;) of complex numbers such that the ideal generated by the polynomials
d/d;

pi = Yoi=1dijg;" ", i =1,2,...,n, has the irrelevant ideal M as its radical.
It follows from Noether’s normalization lemma that every sufficiently generic
matrix (a;;) will have this property. In practice it is of course desirable to choosp
(a;;) as sparse as possible. See Eisenbud and ‘Sturmfels (1992) for a systematic
approach to maintaining sparseness during this process.

We now discuss the remaining steps in Algorithm 2.5.8. Upon entering
step 4, we are given an explicit h.s.0.p. P = {01, ...,6,} for the invari?mt
ring. In steps 5 and 6 we determine a set of symmetrized monomials which
forms a free basis for C[x]" as a C[P]-module. In step 4 we assign a degree
upper bound for the possible symmetrized monomials to be considered. The
correctness of steps 4, 5 and 6 follows from Theorem 2.3.1 and the validity of
this degree bound.

Lemma 2.5.11. Let P = {61,6,...,6,} be a set of algebraically independent
invariant generators of /7. Then there exists a finite set of invariants S of degree
bounded by Z;’zl degree(6;) — n such that C[x]' is a free C[P]-module with
basis S.

Proof. Let dy, ..., d, be the degrees of 6y, ..., 6,, and let d be the maximum
degree occurring in any system of secondary invariants. By Proposition 2.3.6 (b),
the Molien series satisfies an identity

o101 - 24) = paCa),

i=1

where py is a polynomial of degree d. We multiply both sides of this identity
with the polynomial
q(z) := [] det(id — zm).

wel

The right hand side p4(z)g(z) is a polynomial of degree d+-n|I"|. The expression
g(z)®r(z) is a polynomial of degree at most n|I"| — n. Therefore the left hand
side is a polynomial of degree at most dq + . ..+ d, +n|I'| —n. This implies the
desired inequality d < d; + ...+ d, — n, and it completes the proof of Lemma
2.5.11 and Theorem 2.5.9. «

It can happen that the degree d of a system of primary invariants generated
as in Subroutine 2.5.10 exceeds the cardinality of the group I'. The following
approach due to Dade provides an alternative method for computing a system
of primary invariants all of whose degrees are divisors of the group order.
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Subroutine 2.5.12 (Dade’s algorithm for generating primary invariants).

Input: The Reynolds operator * : C[x] — CJ[x]' of a finite subgroup I' of

GL(C™).

Output: An h.s. 0.p. {01, ..., 6,} for C[x]" having the property that degree(6;)

divides || for i =1, ..., n.
For i from 1 to n do

— Choose a linear form £;(x) on C” which does not vanish on the subspace
defined by the linear forms ¢y 007, ..., ¢;_j00;_1, for any choice of matrices
Oly...,071 in I

— Let 6; denote the product over the set {£; oo : o € I'}.

Note that the required choice of the linear forms £; is always possible since
C is an infinite field. All necessary computations are using only linear algebra.
To check correctness, we first observe that the cardinality of the set {¢; o o :
o € I'} divides the order of the group I', and hence so does the degree of the
homogeneous invariants 6;. By construction, the zero set of the linear forms
Lyo0y,...,4, 00, consists only of the origin, for any choice of matrices oy,
..., 0, in T'. This shows that the set of common zeros of the homogeneous
invariants 01, ..., 6, consists only of the origin. This implies, as above, that
01,...,0, is an h. s. o. p. for C[x]".

The method described in Subroutine 2.5.12 can also be rephrased as follows.
Let w = (uy,...,u,) be a new set of variables. We define the Chow Jorm of
the matrix group I" to be the polynomial

R, x) := [] (u, ox),

oel

where (, ) denotes the usual scalar product. This polynomial can be expanded as
R(u, x) = Za re(x)u”, where o € ranges over all non-negative integer vectors
whose coordinates sum to |I'|.

Proposition 2.5.13. A system of primary invariants can be obtained by taking
n sufficiently generic C-linear combinations of the coefficients ry(x) of the
Chow form R (u, x).

Proof. By construction, the polynomials r, (x) are homogeneous invariants hav-
ing the same degree |T"|. It therefore suffices to show that their common zero set
consists only of the origin. Suppose a € C" is a common zero of the r,. Then
R(u, a) = l—[aer(u, oa) vanishes identically as a polynomial in C[u]. Hence
there is an invertible matrix o € I' such that (u, ca) = 0 in Clu]. But this
implies ca = 0 and consequently a = 0. «

In practice we will usually be able to precompute the Molien series of the
group I'. Naturally, we will then use this information to speed up all com-
putations. We close this section with the following general algorithm which
summarizes most of the techniques we have discussed so far in this chapter.
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2.5:

AlgO!‘iihm 2.5.14 (Computing the invariants of a finite matr%x group).
Input: The Reynolds operator * : C[x] — C[x]" of a finite subgroup I'" of

L(C"). o
gut<put: A Hironaka decomposition for the invariant ring C[x]".

0. Compute the Molien series ®(z) of I' as a rational fpnction in z. .

1. Choose a system P = {61, ..., 0,} of primary invariants for I' (using any
of the procedures suggested in 2.5.8, 2.5.10, 2.5.12, or 2.5.13). Abbreviate
d; := degree(6;).

2. Compute the polynomial

n
Or(z)- [11 = 29y =12 + 022 + ...+ ¢ 2%,
i=1

where c1, ..., ¢, are positive integers. . . '

3. Using the Reynolds operator “x”, find ¢; linearly independent invariants
N1, - - N¢; of degree e; which do not lie in the ideal generated by 01, ..., 6y,
fori=1,...,r.

In step 1 we will use the information provided by a partial expansiqn of
the Molien series ®r(z) to skip those degree levels which have no invariants
whatsoever. In step 3 we can consider the ideal (61, ..., 8,) either in C[x]' or
in C[x]. It seems reasonable to precompute a Grobner basis G for (61, ...,6,)
after step 1. Then the ideal membership tests in step 3 amount to a normal form
reduction with respect to G.

Exercises

(1) Verify the correctness of Subroutines 2.5.5 and 2.5.6 for the rings discussed
in Exercises 2.3. (1).

(2) Let I' € GL(C") be a finite matrix group and fix a € C" \ {0}. Give an
algorithm for computing a homogeneous invariant / € C[x]" such that
I(a) #0.

(3) Explain how the test in step 6 of Algorithm 2.5.14 can be
implemented using Grobner bases. (Hint: Use a monomial order like in
Subroutine 2.5.6).

(4) * Implement some version of Algorithm 2.5.14 in your favorite computer
algebra system (e.g., MAPLE, MATHEMATICA, .. ..)

(5) Let I be any subgroup of the group S, of n x n-permutation matrices.
Show that there exists a system of secondary invariants whose degree does
not exceed ().

(6) Let T be the cyclic subgroup of order 210 of the group S;7 of
17 x 17-permutation matrices which is generated by the permutation (in
cycle notation)

o=(1,2)(3,4,5)(6,7,8,9,10)(11, 12, 13, 14, 15, 16, 17).
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(a) Give an example of an invariant of ' which is not invariant under any
permutation group I'” € §;; which properly contains T".

(b) Compute the Molien series ®r(z) of this matrix group.

(c) Identify a system of primary invariants of degree at most 7.

(d) Show that the degree of the secondary invariants is at most 45. Is this
estimate sharp? What is the number of secondary invariants?

(7) * Compile a list of all (isomorphism classes of) five-dimensional
representations of the symmetric group S3. Compute an explicit Hironaka
decomposition for the invariant ring of each representation.

2.6. Grobner bases under finite group action

In the preceding sections we have seen how algorithms from computer algebra
can be used to solve problems in the invariant theory of finite groups. In the
following the reverse point of view is taken: we wish to illustrate the application
of invariant-theoretic methods for solving typical problems in computer algebra.,
Our main attention will be on computing with ideals and varieties which are
fixed by some finite matrix group.

Consider the problem of finding the zeros of an ideal / C C[x] which
is presented in terms of generators. A standard solution method consists in
computing a lexicographic Grobner basis for I, from which the zeros can be
“read off”. It is known that this computation is generally very time-consuming.
Moreover, it has been observed in practice that the running time is particularly
bad if the given set of generators for / happens to be invariant under some finite
group action. This is unsatisfactory because many polynomial systems arising
from applications do have symmetries. It is our first goal to show how invariant
theory can be used to compute a Grobner basis which respects all symmetries.

The problem of solving systems of polynomial equations with symmetry has
recently been addressed by Gatermann (1990). In this work the author shows
how to substantially simplify and solve symmetric polynomial systems using
representation theory of finite groups. The invariant-theoretic ideas to be pre-
sented in this section may lead to useful additions to the representation-theoretic
algorithms introduced by Gatermann.

We fix a finite group I' C GL(C") of n x n-matrices. The set of I'-orbits
in C" is denoted C"/T" and called the orbit space of I'. We have an induced
action of I' on the coordinate ring of C”, which is the polynomial ring C[x] in
n complex variables x = (x1, x2, ..., x,). The invariant subring C[x]" consists
of all polynomials which are fixed under the action of I'.

By Hilbert’s finiteness theorem, there exists a finite set {/;(x), /5(x), ...,
I, (x)} of fundamental invariants which generates the invariant ring C[x]'. In
geometric terms, the choice of these invariants amounts to choosing an embed-
ding of the orbit space C"/T" as an algebraic subvariety into affine r-space C’.
The equations defining the orbit variety C" /T in C” are the syzygies or algebraic
relations among the / i (x).

We have seen in Sect. 2.5 how to use Grobner bases for computing funda-
mental invariants and their syzygies. This preprocessing will be done once for

-
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the given group I'. In the special case where I' equals the symmetric group S,
of n x n-permutation matrices this preprocessing is taken care of by Theorem
1.2.7, and Subroutine 2.6.1 is unnecessary.

Subroutine 2.6.1 (Preprocessing a fixed group I'). Let I’ be any finite matrix
group. We first compute a fundamental set of invariants {/;(x), 2(x), ..., I( x)}
as in the preceding sections. We then compute a Grobner basis Gy for the ideal

generated by
{il(x) - }71, IZ(X) - )’2, e ey Ir(x) - )’r} in C[xl’x2» oo e »x}’h )’1» }72, ee ey yi‘]

with respect to the lexicographic monomial order induced from x; > ... > Xn >
y; > ... > Yr (cf. Subroutine 2.5.3). Then the set Go N Cly1, y2, ..., yr] is a
Grobner basis for the ideal J defining the orbit variety V(J) = C"/T" — C".

Let F = {fix), fo(x), ..., fm(X)} be a set of polynomials which is in-
variant under the action of I', i.e., Vr € I' Vi 3j : f; o = f;. Then its ideal
[ = (F) is invariant under the action of I on C[x], and its variety V(F) = V(I)
is invariant under the action of I" on C". When applying Grobner bases to study
V(I), usually the following happens.

(a) One starts with symmetric input data F. '

(b) The Buchberger algorithm applied to 7 C K|[x] breaks all symmetries, and
one gets a Grobner basis G which is not symmetric at all. ‘

(c) The symmetric variety V(I) is computed from the asymmetric polynomial

set G.

Invariant theory enables us, at least in principle, to replace step (b) by a Grobner
basis computation which preserves all symmetries. Since the variety V(I) C C"
is invariant under the action of I', we can define the relative orbit variety V(1)/ I’
whose points are the I'-orbits of zeros of /. o
We find that V(7)/ T is an algebraic subvariety of C"/ ", and therefore it is
an algebraic subvariety of C”. In order to preserve the symmetry in step (b), we
propose to compute a Grobner basis for the relative orbit variety V(I)/T’ rathe?r
than for V(I) itself. Once we have gotten such a “symmetric Grobner basis”, it
is not difficult to reconstruct properties of V (/) from the knowledge of V(I)/T.

Algorithm 2.6.2 (Computing the relative orbit variety). Let Gy and “>" be as
in Subroutine 2.6.1. The computation of a Grébner basis for the ideal of the
relative orbit variety V(/)/I" in C[yy, 2, ..., yr] works as follows.

— Compute a Grébner basis G; for UGy with respect to the elimination order
“~”.Then G, := G NC[y1, ¥2, ..., yr] is a Grobner basis for the ideal of
v)/r. .

~ Each point § in V(I)/ " gives rise to a unique ["-orbit in V(/). Such an orbit
is a subset of C" of cardinality < |I"|. The points in the orbit corresponding
to § can be computed by substituting the coordinates of y = (31, ¥2, ..., ¥r)
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e C” for the variables y1, ys, ..

cialized Grébner basis Go(§) C C[x].

Example 2.6.3. Let n = 3 and consider the set of polynomial =

C Clxy, x2, x3] where polynomials 7 ={f1, fo. /3
fi) =xf+xF+x2 -1
fHr(x) = x%xz + x22X3 + x32x1 —2x1 — 2x5 — 2x3

fr(x) = xlxg + x2x32 + x3x12 —2x1 — 2x5 — 2x3.

The Grobner basis G of the ideal ] = (F) with res i
' ; = ect to th -
graphic order induced from x; > x» > x3 equals b © fhe purely fexico
{50750x; + 507501, + 54x3' + 585x3 + 1785x] + 17580x3 + 28695x3
+32797x3,  5800x; + 1740x3x + 1740x3x; + 4060123 + 27x3°
+9345x3 — 3825x] + 1110x§ + 75x5 — 3684,  420x%x, — 420x3x;

+ 2940x3x2 — 560x; + 9x}! + 45x3 + 210x] + 165x5 + 1335x3 — 2683
9x3” — 18x3° + 315xf — 4655 + 1860x — 1353x2 + 196 ].

From the underlined initial monomials we see that C[x;. x-. x i
space of dimension 18 (cf. Theorem 1.2.6). This imi)liés il’lat3 ]tflle I\fa?ictctyV(;f(t? )r
consists f)f 18 points in affine 3-space C3, possibly counting multiplicities

The input set F' is invariant with respect to the symmetric group S"3 of
3 x 3-permutation matrices. The invariant ring C[xy, x2, x3]% is the ring of

symmetric polynomials, and it is generated, for i
i : s s instance, by the
symmetric functions ’ elementary

L) =x1+x2+x3, LX) =x1% + x1x3 + X243, I(x) = x1x2x3.

By Theorem 1.2.7, the preprocessed Grobner basis for {77 (x) — vy, Lx) -y,

I3(x) — y3} in the lexicographic order “>” ind
uced fro
Y2 > y3 equals m X; > X > X3 > y; >

— 2
Go = (X1 +x2+x3=y1, X3 +x223 X5 — X231 — X391 + 2, X3 — X291 +x392— y3).

We now compute the Grobner basis for th i i .
Algorithm 2.6.2, and we find e orbit variety V(/)/S3 as in

G = {8260y1 +9y] — 873 + 55153, 1475y, + 9y% — 264y% 4736,
27y5 — 513y5 + 338497 — 784).

1 -, Yr in the precomputed Grobner basis
The desired orbit equals the subvariety of C” which is defined by the sge(:)-.
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The orbit variety V(I)/S3 consists of six points, where each point § = (31, ya,
33) € V) /S3 corresponds to a three element S3-orbit in V(I). If we wish to
explicitly compute each individual orbit {(%x(1), ¥r(2), ¥2(3) : ¥ € S3}, we may
do so by factoring the cubic polynomial ‘

B — 124 Jof — J3 = (t — Bt — F)(t — 53)

in terms of radicals over the rationals. Note that the Grobner basis G, is not
only symmetric (after y; — p;(x)) but it is also simpler than the “ordinary”
Grébner basis G. In this example the computation time for G, is roughly equal
to the computation time for G.

It is a natural question whether each [-invariant ideal / C C[x] can be
generated by a suitable set of invariants. As stated, the answer to this question
is “no”. For instance, consider the action of the symmetric group S, by permuting
the variables in C[x, y]. The irrelevant ideal I = (x, y) is invariant under SH
but this ideal cannot be generated by symmetric polynomials. For, the ideal / !
in C[x, y] generated by all symmetric polynomials in / is the proper subideal
' ={x+y,xy)= (x2, y2, x+y). Note, however, that the radical of I’ equals /.
It is true in general that each I'-invariant ideal has a subideal with the same
radical which is generated by a collection of invariants.

Proposition 2.6.4. Let I C C[x] be a I'-invariant ideal, and let I’ be the subideal
which is generated by all invariants in /. Then Rad(/ "y = Rad(]).

Proof. Since I’ C I, we clearly have Rad(I’) € Rad(/). By Hilbert’s Null-
stellensatz, it suffices to show that the variety V(1) is contained in the variety
V(I). Leta € V(I') and f € I. We need to show that f(a) = 0.

We first note that f o ¢ lies in the ideal / for all 0 € I'. Now consider the
polynomial

ri-1

! )
[1(z—flox) = My pix 2/,
j=0

oel’

where z is a new variable. Each coefficient p; is a linear combination of f oo,
o €T, and hence p; lies in /. Moreover, as in the proof of Proposition 1.1.1,

we see that p; lies in the invariant ring C[x]". Hence each p; lies in the
subideal I’, and therefore p;(a) = 0. This implies [[, (z - f (cra)) =zl
and hence f(a) =0. <

Suppose we are given a set of generators J for an invariant ideal I as
above. Then a set of invariant generators for its subideal /" can be computed
using Algorithm 2.6.2. Thus we have a method for computing a set of invariant
equations for any invariant variety.

In practice we will often be interested in the case where I is a zero-
dimensional radical ideal, which means that V(I) is the union of a finite number
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of orbits 'a in C". We will often find that the ideal I’ of the relative orbit
variety is a radical ideal, in which case we have the equality I’ = I, and the
given ideal 7 is indeed generated by a set of invariants.

Example 2.6.5 (Computing invariant equations for an invariant variety). Con-
sider the two polynomials

f(x,y) :=256y'% — 1536y + 3648y'2 — 4416y'° + 3136y% — 150475
+ 508y* — 92y% + 15

g(x, y) 1= 26233x% + 95744y — 572224y'% 4 13408640 — 1538288y°
+ 913824y — 287484 y* + 84717y% — 33671.

These polynomials form a Grébner basis for their ideal I := (f, g) C Cl[x, y]
with respect to the lexicographic monomial order induced from x > y. Using
the corresponding normal form reduction, it can be verified that the transformed
polynomials f(x+y,x—y) and g(x+y, x—y) also lie in the ideal /. Moreover,
~we see that f(x,y) = f(x, —y) and g(x, y) = g(x, —y). These considerations
show that the ideal / is invariant under the dihedral group Dg which is generated
by the matrices —= (1 ! ) and (1 0 )
V21 -1 0 -1/,
By Proposition 2.2.10, the invariant ring C[x, y]”* is generated by the in-
variants

a(x,y) =x*+y* and b(x,y) = x5+ 14x%y* 4+ )5,

Let us apply the preprocessing of Subroutine 2.6.1 with respect to the lexico-
graphic monomial order induced from x > y = A > B. As the result we obtain
the Grobner basis

Go = {22 + 1% — A, 16y® —324)° +2042y* — 44%)% + 4* — B)

for a generic Dg-orbit.

We now apply Algorithm 2.6.2 to compute the relative orbit variety V(I)/Dg
(in the embedding into C? defined by the fundamental invariants a(x, y) and
b(x, y)). This results in the Grobner basis

G, ={A-B-1, B>~ B}.

We see that V(I)/Dg consists of the two points (A =1,B = 0) and (A =2,
B = 1). Each point corresponds to a regular orbit (i.e., having cardinality 16)
of the dihedral group Dg. For each individual orbit we get a Grobner basis by
substituting A = A and B = B in G. Using the notation of Proposition 2.6.4,
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we conclude that the ideal 7 is equal to /’ and that it has the invariant decom-
position

I = (x2+y2 —1, ¥+ 14x4y4+y8) N (x2+y2 -2, x84 14)(4)14—)—y8 - 1).

We now return to our general discussion with the following question. What
happens if our Algorithm 2.6.2 is applied to a set of polynomials F which is
not invariant under I'? We will see that this operation corresponds to taking the
image of the variety V(F) under the group I'.

Proposition 2.6.6. Let / C C[x] be any ideal and let /” be the subideal which
is generated by all I'-invariants in /. Then V(I') = T'" - V(I), the image of V(/)
under I'.

Proof. We need to show that a point a € C" lies in V(I’) if and only if its
orbit T"a intersects V(I). For the “if”-direction suppose that ca € V(J) for
some group element o € T, and consider any f € I’. Since I’ C I, we have
f(oa) =0, and since f is an invariant we conclude f(a) = f(ca) = 0.

For the “only if”-direction suppose that 'anV () = ¢. By Hilbert’s Nullstel-
lensatz, there exists a polynomial g € / which is identically 1 on the finite set I"a.
Now consider the invariant polynomial f(x) := [[, . g(0x). By construction,
f lies in the ideal I’ but we have f(a) = 1. Therefore a ¢ V(I'), which
completes the proof. <

Note that in the following algorithm the group I' is presented only by the
output of our preprocessing Subroutine 2.6.1. Neither the explicit group elements
nor the Reynolds operator is needed at all. The correctness of Algorithm 2.6.7
is a direct corollary of Proposition 2.6.6.

Algorithm 2.6.7 (Computing the image of a variety under a finite group).
Input: Fundamental invariants /;(x), ..., /,(x) and the preprocessed Grobner
basis Gy of a finite matrix group I' C GL(C"). Any finite set of polynomials
F c Clx].

Output: A finite set H C C[x]" such that V(H) =T - V(F) in C".

— Compute a Grobner basis G; for F UGy with respect to the elimination order
x >y on C[x, y].

— Then G, := G; N Cly] is a Grobner basis for the subvariety (I - V(F))/T
of C". ‘

— Let H C C[x] be the set obtained from G, by substituting y; > I;(x).

Example 2.6.8 (Computing the image of a variety under the symmetric group $3).
The invariant ring of the group S3 of 3 x 3-permutation matrices is generated
by the elementary symmetric functions a := x +y + z, b := xy + xz + yz,
¢ = xyz. We will give six examples of sets of polynomials F C Clx, y, z] and
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H C Cla, b, c] such that the variety of  is the image of the variety of F under
the action of S3. In each case 7 is computed from F using Algorithm 2.6.7.

(D) F=x-1y-22-3sH={c—6b—11,a—6).

(2) F = {xy}; H = {c}.

G)F={x—-1h H={a—b+c—1).

) 7= {xy —zh H = {2ac +c — ¢ — 2cb — b + ca?).

O F={xy—-2,22-3 H={c24¢— 12, —bc — ¢ + 6a).

(0) F = {xy? =2, 22 = 3}; H = {6+ 4¢5 4 4¢* — 126252 4 1 44ch —432, ¢ +
8¢8 +24¢7 3265 + 16¢5 4 216¢4b + 864¢3D + 864c2b — 864¢? — 144ch* +
864b° + 51844}.

Exercises

(1) In Example 2.6.8, give a geometric description of all six varieties and their
S3-images.

(2) Let I C C[x] be a radical ideal which is invariant under the action of a
finite matrix group I, and suppose that the stabilizer in I of each root
of 7 is trivial. Is it true that then 7 is generated by a set of invariant
polynomials?

(3) * Consider the ideals / and I’ in Proposition 2.6.6.

(a) Show that if 7 is principal then [’ is principal.
(b) Compare 7 and I’ with respect to some typical numerical invariants
such as dimension, multiplicity, minimal number of generators, . . .

(4) Let I' C GL(R?) be the the symmetry group of a regular cube
C:={(x,y,2) eR®: -1 < X,¥,z < 1}. Following Algorithm 2.6.2,
compute the relative orbit variety X/ T for the following T"-invariant
subvarieties X of C3.

X = the eight vertices of C,

X = the midpoints of the twelve edges of C,

X = the centroids of the six faces of C,

X = the union of the planes spanned by the six faces of C,
X = the union of the four diagonal lines of C,

X = the “superellipsoid” V(x* + y* + 74 _ 1.

2.7. Abelian groups and permutation groups

By a permutation group we mean a subgroup I" of the group S, of n x n-
permutation matrices. This section deals with specific techniques and algorithms
for computing invariants of abelian groups and of permutation groups. We begin
our discussion with an example which lies in the intersection of these two
classes.

Example 2.7.1 (The cyclic group of order 5). Consider the cyclic subgroup
of Ss generated by the cycle o = (12345), and let T C GL(C®) denote the
corresponding cyclic permutation group. We abbreviate the scaled image of a
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. i Tkl .
monomial x]xj x5xjx2 under the Reynolds operator of this group by

‘ el kel ol kol i D m T kD m
Jyjuam = X1 55428 o o o b g e e k]

By Noether’s theorem 2.1.4, the invariant ring
CIx]" = {f € CIx] : f(x1, x2, x3, x4, x5) = f(x2, X3, X4, X5, 1)}

is generated by the set of invariants {Jijklm 0<i+j+k+1+m< 5}. The
Molien series of I' equals
1+22 4323 +42% + 625 + 420 + 377 28 4 ;10
(1 -2 -22)(1 =231 - zH(1 - 2%)
=14z +32> +72° + 14z* 4 262° 4 422° + 6627 + 9928
14325420120 4 27321

®r(z) =

By the results of Sect. 2.3 we know that the invariant ring C[x]" is a free module
over the subring of symmetric polynomials C[x]% = C[gl, 02, 03, 04, 05]. The
rank of this module equals 24, which is the index of F in Ss. We can read 'oﬂ.”
the degrees in any free basis from the above presentation of the Molien series:
there is one generator in degree 0, one generator in degree 2, three generators
in degree 3, etc. ‘ '
Nevertheless it is quite hard to compute a system of 24 secondary invariants
using the general methods of Sect. 2.5. For instance, we may start by chops—
ing the secondary invariants Jijopp in degree 2, we then‘ continue by choosing
J21000, J11100 and Jijo10 in degree 3 etc. . . Dprmg this process we need to
guarantee that none of the chosen invariants lies in the submodule generated by
reviously chosen ones. o
e SVe will ?nstead pursue an alternative approach to C[x]" y\{hlch is based
on the fact that I' is an abelian group. It is known (cf. Proposmon. 2.7.2) ‘that
the matrices in any finite abelian subgroup I' C GL(C”) can be 'dlagonal}zed
simultaneously. For a cyclic group this diagonalization process is e§§ent1ally
equivalent to the discrete Fourier transform. Let w € ‘C be any primitive Efth
root of unity. We think of @ as a formal variable subject to the relatlop w” +
@’ + @? + w! + 1 = 0. We perform a linear change of variables by setting

Yo =X1+ X2+ x3+ x4+ x5
2
y1 = x1 + o' + w’x3 + @*x4 + wxs
3 4 2
V2 =X1+ @ X+ 0x3 + w x4 + 0°xs
2 4 + oix
V3 =X +0X + 0 X3+ wxs + 0 x5

3 4
V4 = X1 +60X2+Cl)2x3 + w x4 + w Xx5.
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It is easy to see that the cyclic group I" consists of diagonal matrices with respect
to this new basis. More precisely, we have y;oo =o' - y; fori =0,1,...,4.
This implies the following presentation of the invariant ring

CIx]" = spanc{y ¥} ¥ ¥5 ¥y | i1 + 2ip + 3i3 + 4iy = 0 (mod 5)}.

Each linear homogeneous congruence, such as i; + 2i + 3i3 +4is = 0 (mod 5),
is equivalent to a linear homogeneous diophantine equation, such as i; + 2iy +
3i3 +4is — 5i5 = 0.

The problem of solving linear equations over the nonnegative integers is
an important problem in combinatorics and in mathematical programming. We
refer to Schrijver (1986) for a general introduction to integer programming and to
Stanley (1986: section 4.6) for a combinatorial introduction to linear diophantine
equations. An algorithm using Grobner basis was presented in Sect. 1.4.

In our example we find a minimal generating set of eleven lattice points
for the solution monoid of the given congruence equation. From this we obtain
the following presentation of the invariant ring as a monomial subalgebra of

Clyo, y1, 2, 3, y4l:

CxI" = C[yo, y1y4, y293, Y193, Y13, Y232, Ya¥a, Yir Y3+ Y30 ¥a |-

A canonical choice of five primary invariants is given by taking the pure powers
of the coordinate functions. Indeed, the invariant ring C[x]" is a free module of
rank 125 over its subring C[yp, y15, yg, y35, yf]. The degree generating function
for a free basis equals

Or(z)-(1—2)0 —2)*=1+4222 +423 + 724 + 827 + 162° + 1627 + 1728
+162° + 16210 + 821 + 7212 4+ 4213 4 2714 4 716,

The unique generator in degree 16 equals y;‘yg y§ yff, the two generators in de-

gree 14 are yiy3y3y; and yly3y3yy, etc. . ..

It is an easy task to express an arbitrary invariant / (yg, y1, y2, ¥3, y4) in terms
of the eleven basic invariants. For each monomial yg'y{' 72y’ y,* which occurs
in the expansion of I (o, y1, Y2, ¥3, ya) satisfies the congruence i1 +2iy+3i3+4i4
= 0 (mod5) and is therefore a product of some of the eleven basic monomials.

In practice it may be preferable to work in the old variables x1, x2, X3, X4, X5
rather than in the transformed variables yg, y1, y2, ¥3, ya. In order to do so, we
may express the eleven fundamental invariants in terms of the symmetrized

monomials J;jim:

Yo = J10000,

Y14 = J20000 — J11000 + (—=J11000 + J10100)@” + (—=J11000 + J10100)@°,
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_ 2
23 = J20000 — Ji0100 + (J11000 — J10100) @ + (J11000 — J10100)@°,

y15 = J30000 — J21000 — 210200 + 2711010 + (J12000 — J21000 + 220100

— 2J10200)® + (2J12000 — J21000 — 2J11100 — J10200 + 2J11010)@°
+ (21000 + J20100 — 2J11100 — 2710200 + 2J11010)@°,

y2y3 = J30000 — 221000 — J20100 + 2711100 + (212000 — 221000 — J20100

+ J10200)@ + (2J11100 — J21000 — J20100 + 210200 — 2J11010) 0>
+ (221000 + J12000 + J20100 + 211100 — 2J11010)0°, ... etc. ...

From this we get an easy algorithm for rewriting any invariant 7 (x{, X2, X3,
X4, Xs) in terms of symmetrized monomials J;j, of degree at most 5. First
replace the x;’s by y;’s via

Sxi=yo+yi+y2+y3+y

5% = (13 — Y@’ + (72 — ¥a)o* + (y1 — Yo + Yo — Y4
503 = (ya — y2)@’ + (1 — Yo + (3 — Yo + yo — y2
5x4= (1 — y3)@° + (s — y3)” + (y2 — y3)@ + Yo — ¥3

5x5 = (y2 — yD@* + (y3 — yD)@* + (y4 — y1)o + yo — y1.

Write the result as a polynomial function I = I'(yo, y1y4, Y253, ..., yf) in
the eleven basic invariants. Finally, substitute the above expansions in terms of
Jijkim into I'. «

We now consider the case of an arbitrary abelian subgroup I' of GL(C").
The following result from linear algebra is well known. Its proof follows from
the fact that each matrix of finite order can be diagonalized over C and that the
centralizer of the subgroup of diagonal matrices in GL(C") equals the diagonal
matrices themselves.

Proposition 2.7.2. A finite matrix group I' C GL(C") is abelian if and only if
there exists a linear transformation Tt € GL(C") such that the conjugate group
It -T- Ty ! consists only of diagonal matrices.

It is important to note that this theorem is false over the real or rational
numbers. As we have seen in Example 2.7.1, it can happen that each matrix
in T" has rational entries but the diagonalization matrix T has entries in some
algebraic extension of the rationals.

For a given abelian group I' we can use algorithms from representation
theory to compute the matrix 7. In the following we will assume that this
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preprocessing of I" has been done and that our input consists of an abelian matrix
group I' together with its diagonalization matrix Tr. The following algorithm
shows that the invariant theory of finite abelian groups is equivalent to the study
of linear homogeneous congruences.

Algorithm 2.7.3 (Computing fundamental invariants for an abelian group).
Input: A set of generating matrices Q, ..., $2, for an abelian group I' C
GL(C™), and a matrix Tr which simultaneously diagonalizes i, ..., Q.
Output: A finite algebra basis for the invariant ring Crx]".

1. Introduce new variables y = (y1, ..., y,) viay = It x.

2. Fori=1,...,mwrite Tr ; T " = diag(w;1, w2, - . ., win). Let d;j denote
the order of the complex number w;;, and let g; denote the order of the
matrix £2;.

3. Consider the system of m linear homogeneous congruences
diypy +dippa + ...+ dinttn =0 (mod g;) =1, 2,...,m. 2.7.1)

Compute a finite generating set H for the solution monoid of this system.
Then

CIxI™ = Cyl™ " = C[y " 42 -yl s = (1, s - - 1n) € H]-

We need to make a few comments about Algorithm 2.7.3. In step 2 the order of

the complex number w;; is the smallest positive integer d;; such that a)?;j =1
The order g; of the matrix €; then simply equals the least common multiple of
d,‘l, dl‘z, ceey dinc

The generating set H in step 3 is a Hilbert basis of the monoid F. It has
the property that every w = (i1, ..., 4n) € F is a Z' -linear combination of
elements in . The Hilbert basis can be computed using Algorithm 1.4.5.

Let us briefly discuss the structure of the monoid F and its Hilbert basis H.
For the statement and derivation of Corollary 2.7.4 we shall assume that the
reader is familiar with the terminology in Stanley (1986: section 4.6). For any
j € {1,...,n} let ¢; denote the least common multiple of dij, daj, ..., dnj.
Then the scaled j-th coordinate vector (0,...,0,¢;,0,...,0) lies in F, or,
equivalently, the monomial y;j is an invariant. This shows that F is a simpli-
cial monoid with set of quasi-generators Q = {(0,...,0,¢;,0,...,0) : j =
1,...,n}

Consider the “descent set” D(F) = {u = (1, ..., Un) € F 1 p1 < ey,

.., Mn < e,). By Stanley (1986: lemma 4.6.7), every s € F can be written
uniquely as the sum of an element in D(F) and a Z -linear combination of Q.
This implies that the monomials corresponding to Q and D(F) for a system of
primary and secondary invariants.
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Corollary 2.7.4. The invariant ring of the abelian group T" has the Hironaka
decomposition

C[X]F :C[y]TFFTF_I - @ C[yf1,y292’ ’ysn] yiilyén y’,flin
HeD(F)

In Example 2.7.1 this decomposition consists of five primary invariants and
|D(F)| = 125 secondary invariants. From those 130 invariants we were able to
choose a subset of eleven invariants which generate C[x]" as an algebra. Also
in the general setting of Corollary 2.7.4 such a simplification is possible: We
can always find a subset H of QU D(F) which is a minimal Hilbert basis for F.

We now come to the study of invariants of permutation groups. As a mo-
tivation we discuss an application to classical Galois theory. Suppose we are
given a polynomial f(z) = z" + a,_12" "' + ... 4+ a1z + ap with coefficients in
the field Q of rational numbers. Suppose further that the roots of f are labeled
x1,..., %, € C. Such a labeling defines a representation of the Galois group
of f as a subgroup I" of S, C GL(C").

Problem 2.7.5. Suppose the Galois group I" of f(z) is a solvable group for
which an explicit solvable series is given. How can we express the roots x1, ...,
X, in terms of radicals in the coefficients ag, ..., a,—1?

Only few text books in algebra provide a satisfactory answer to this question.
One notable exception is Gaal (1988) where section 4.5 explains “How to solve
a solvable equation”. We will here illustrate how Grébner bases in conjunction
with invariant theory of permutation groups can be used to solve Problem 2.7.5.
In our discussion the Galois group is part of the input, and it is our objective to
compute a formula in terms of radicals which works for a/l polynomials with
that Galois group. We are not proposing to use invariants for computing the
Galois group I' in the first place. For the problem of computing Galois groups
and its complexity we refer to (Landau 1985). We illustrate our approach to
Problem 2.7.5 for the case of a general cubic.

Example 2.7.6 (Automatic derivation of Cardano’s formula). Consider an arbi-
trary univariate cubic polynomial

p@) =2 +az? + a1z +ap = (z — x1)(z — x2)(z — x3)

with both coefficients and roots in the complex numbers. We wish to synthesize
a general formula which expresses the x; in terms of the ;. To that end we
view X = (x1, X2, x3) as indeterminates and a5, ai, ap as generic constants, and
we consider the ideal / in C[x] which is generated by x1 + x; + x3 +as, x1x2 +
X1X3 + X2X3 — a1, X1 + X2 = X3 + ap.

Let I' C S3 denote the alternating group of even permutations. In order
to preprocess its invariant ring, we introduce a new variable w subject to the
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relation w? + w + 1 = 0 and we set
2
Yo=X1H X4 x3, Y1 =X+t exs, =X+ ox+ o
The inverse relations are conveniently encoded in the Grobner basis

Go = {3x1— Yo = y1 = y2, 3x2 — Yo — y1® + Y20 + y2,
3x3 = yo + Y10 +y1 — »o, @’ + o+ 1}.

Using Algorithm 2.7.3 we find the four generators ug = yo, U120 = y1y2, 413 = yf
and up3 = y; for the invariant ring C[x]". In this situation our preprocessing
Algorithm 2.6.1 would generate the Grébner basis

3 2 2 2
Gr = {yo — o, yi — w13, yiuiz — yau13, y1y2 — u1z, yiug, — ysuss,

2 3 3
Yita3 = Y3U12, Y3 — U3, Uiy — Ui3Un3).

This means we embed the orbit variety C3/T" into C* as the hypersurface
u?z — UxzUh13 = 0. . . .

The ideal I which encodes the roots of f is clearly invariant under the
action of I'. Let us compute the relative orbit variety V(/)/I". To this end we
first transform coordinates in the input equations

Xt + X2+ x3+ax =yo+ap

1 1

X1X2 + X1X3 + XpX3 — @y = g)’g - gyU’z —ay

1

D+ L 1 +a
27 1 27)’2 YoYi1y2 05

1
X1X2%3 + ap = ——yg + 9

27

and then we apply Algorithm 2.6.2 to find the Grébner basis

2
G = {u?z—-u23u13, ug +az, up+3a —a;,
uy3 + uzs + 27a0 — 9ara; + 2a§,

u_%é + 27uzza0 — Yuxaras + 21/!2361; — 27a% + 27a%a§ — 9a1a§ + ag}.

Now the combination of the Grobner bases Gy, G; and Gy provides an explicit
formula for the x; in terms of the a;. We first solve for us3, u13, u12 and ug in
G, which involves the extraction of a square root. We substitute the result into
Gg; and we solve for y;, y;, yo which involves the extraction of a cube root.
We finally get the roots xj, xp, x3 as linear combinations as of y,, yi, yo by
substituting into Gp. The resulting formula is Cardano’s formula for cubics.
When does an irreducible cubic polynomial f have the alternating group I"
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as its Galois group? This is the case if and only if the relative orbit variety
V(I)/ T is reducible into [S3 : I'] = 2 components over the ground field. This
can be checked by factoring the fifth element of G, as a polynomial in u,3. This
poiynomial factors if and only if its discriminant is a square, and in this case f
has Galois group I'. <

In order to solve Problem 2.7.5 in the general case we may proceed as
follows. We will only sketch the basic ideas and leave it as a challenging exercise
for the reader to work out the details. For doing so it may be helpful to consult
Gaal (1988: section 4.6).

Let I' =T1 > T2 > ... > I't—1 > I’y = (id) be a composition series
of the given permutation group I' C S§,. This means that each factor group
I';/ Tit1 is cyclic of prime order p;. For each occurring prime number p; we
introduce a primitive p;-th root of unity w;. We may assume that the polynomial
f(z) = > aiz" has distinct roots xi, xa, ..., x,. Let Gy be the Grobner basis
constructed in Theorem 1.2.7 for the vanishing ideal I C C[x] of the S,-orbit
of the point (xq, ..., x,) in C".

— Choose a system of fundamental invariants [;(x), Io(x) ..., I,,(x) for the
tentative Galois group I'. Using the methods of Sect. 2.6 we compute a Grob-
ner basis for the relative orbit variety V(/)/ ' with respect to the embedding
defined by the /;.

— The Galois group of f is equal to I (or a subgroup thereof) if and only if -
the relative orbit variety V(I)/T" factors completely over the ground field.
In this case we can factor the ideal of V(/)/ " as an intersection of [S, : I']

maximal ideals of the form (/; — ¢y, I, —c¢3, ..., I, —cp) where the ¢; are
rational expressions in the a;. This gives us a decomposition of the ideal I as
an intersection of ideals of the form (I;(x) —cy, L(X)—ca, ..., Ly(X) —Cm)
in C[x].

— Compute the invariant ring C[x]' for each intermediate group I';. It follows
from Theorem 2.3.5 that C[x]"*+! is a free module of rank p; over C[x]".
The cyclic group I';/ I'; 11 acts on this module. We can diagonalize the action
via a linear change of variables as in Examples 2.7.1 and 2.7.6 (involving the
primitive root of unity w;). As the result we obtain an element & e C[x]"i+
on which a generator of the cyclic group I';/ [';41 acts via & > w; - &. This
implies that &/ lies in the subring C[x]™ and that {1, &, E2, ..., gl s
a free basis for C[x]"+! as a C[x]"i- module.

— Now each element of C[x]""+! can be expressed by extracting one p;-th root
and by rational operations in terms of elements of C[x]". We iterate this
process from i = 1,...,k — 1 to get an expression for xi, ..., x, in terms
of ¢, ..., cy which involves only rational operations, p;-th roots of unity
w; and extracting p;-th roots.

Next we study the invariant ring of an arbitrary permutation group I' C S,,.
A good choice of primary invariants for I' consists in the elementary symmetric
functions o1, 02, ..., 0,, or any other algebra basis for the ring of symmetric
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polynomials C[x]%. It is therefore natural to study the structure of C[x]" as a
module over C[x]%. Our first theorem is a direct consequence of the results in
Sect. 2.3.

Theorem 2.7.6. The invariant ring C[x]" is a free module of rank ¢ := ! /1T
over the subring of symmetric polynomials. If 1y, s, ..., n, is any free module

basis then
t

YW = Or() - (1= 2)(1 = 22) - (1 - 2.

i=1

The computation of the Molien series ®r of a permutation group is facilitated
by the following easy observation. The cycle type of a permutation o is the
integer vector £(0) = (1, 42, ..., £,) where ¢; counts the number of cycles of
length i in the cycle decomposition of o.

Remark 2.7.7. The characteristic polynomial of a permutation matrix o can be

read off from its cycle type £(0) = ({1, Lo, . . ., £,) via the formula det(1 —zo) =
[Tim (1 =20,
A system of secondary invariants {5, s, ..., nt} as in Theorem 2.7.6 is

called a basic set for T'. Finding explicit basic sets for permutation groups is
an important problem in algebraic combinatorics. A large number of results on
this subject are due to Garsia and Stanton (1984), with more recent extensions
by Reiner (1992). In what follows we explain the basic ideas underlying the
algebraic combinatorics approach.

Let us begin with the seemingly trivial case of the trivial permutation group
I' = {id}. Tts invariant ring equals the full polynomial ring C[x]. By Theorem
2.7.6, C[x] is a free module of rank n! over the symmetric polynomials, and
finding a basic set for {id} means finding n! module generators for C[x] over
C[x]%. The Hilbert series of the polynomial ring equals Piigy(z) = 1 —2)7",
and so we get the following formula for the degree generating function of any
basic set:

1-2)0-2H1 =23 ... 1=z
1=z
=0+ 4z+2) A +z4+22+... +2"),

Let ¢; denote the coefficient of z' in the expansion of this product. This number
has the following two combinatorial interpretations; see Stanley (1986: corollary
1.3.10).

Proposition 2.7.8. The number c¢; of elements of degree i in a basic set for
I' = {id}

(a) equals the cardinality of the set {(v, vy, .. S e 0 < v <i, v+
oot v, =10}
(b) equals the number of permutations 7 € S, having precisely i inversions.
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There are natural basic sets associated with both combinatorial interpreta-
tions. With each permutation w = (71, o, ..., ,) in S, we associate its descent
monomial m (). This is defined as the product of all monomials X, X, - - X,
where 1 <1 < n and m; > m;41. For instance, the descent monomial of the

ermutation 7 = (2, 1,4, 5, 3) equals m(wr) = xa(xox1x4x5) = x1x22x4x5. Itis a
remarkable combinatorial fact that the number of descent monomials of degree i
equals the number of permutations 7 € S, having precisely i inversions. For a
proof see Stanley (1986: corollary 4.5.9).

Theorem 2.7.9.

() The set of monomials x;"'x}* -+ - x," with 0 < v; < i is basic.
(b) The set of descent monomials m(x), & € S,, is basic.

Proof. By the dimension count of Proposition 2.7.8, it is sufficient in both cases
to show that the given monomials span C[x] as a C[x]%*-module. Let us see
that part (a) is an easy corollary to Theorem 1.2.7. Consider any p(x) € C[x].
Its normal form with respect to the Grobner basis G is an expression of the
form ) o<y, <; 9 (¥)X)'x3” - - x;". We may now replace each slack variable y;
by the co-rresponding elementary symmetric function o;(xy, ..., x,) to get a
presentation of p(x) as a C[x]5"-linear combination of the basic set in question.

For the proof of part (b) we refer to Garsia and Stanton (1984). «

We can construct a basic set for an arbitrary permutation group I as follows.
Let Z denote the ideal in C[x] spanned by all symmetric polynomials with zero
constant term. A Grobner basis for 7 can be read off from Theorem 1.2.7.
This means we can easily compute and decide linear independence in the n!-
dimensional vector space V := C[x]/Z. Since the ideal Z is '-invariant, we get
an action of I" on V.

Corollary 2.7.10. A set of ['-invariants C C C[x]" is basic if and only if its
image modulo 7 is a vector space basis for the invariant subspace V7.

Corollary 2.7.10 is a direct consequence of Theorem 2.3.1. We get the fol-
lowing general method for producing basic sets of permutation groups.

Algorithm 2.7.11 (Constructing secondary invariants for a permutation group).
Let B be either of the two basic sets in Theorem 2.7.9. Its image B* under the
Reynolds operator of I' spans the vector space V. Using Grobner basis normal
form modulo Z we can now find a subset C of B* which is a C-linear basis
for VT,

Example 2.7.12 (The dihedral group of order 5). Let Z denote the ideal in C[x] =
Clx1, x2, x3, x4, x5] generated by the elementary symmetric polynomials. By
Theorem 1.2.7, the lexicographic Grobner basis for Z equals
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G = {x1+x2 4 x3 + x4 + x5, x] + x3x5 + 1702 + xqx + 22,
3,2 2 2
X3+ X3X4 + X3X5 + X3X7 + X3X4X5 + x3x52 + xf{ + xfxs + x4x52 + xg’,

2 2
Xy X2X3 + XoX4 + X2X5 + X5 + X3X4 + X3X5 +xf + X4x5 +x52, xs}-

Consider the dihedral group I' C Ss which is generated by the permutations
(12345) and (12)(35). Let us apply Algorithm 2.7.11 to determine a basic set C
for T'. We first compute the Molien series ®r(z) and the degree generating
function for C:

Orz)(1—2)(1 - 251 - 251 - 24 (1 - 25
=1+22+Z3+224+225+226+Z7+28+210.

Note.that IC| = 12 equals the index of T" in Ss. Consider the basic set B =

.{xéxéxi‘xé :0<1i<j<k<1 <5} from Theorem 2.7.9, and let B* be its
image under the Reynolds operator for I'. Using normal form reduction with
respect to G, we can determine the image of all 120 elements in B* modulo 7.
Let C be the subset of the following ten symmetrized monomials. These are
linearly independent modulo Z because their normal forms have distinct initial
terms.

(x4x5)* —¢ 2xx3 — 2x2x5 + 2x32 + 4x3x4 + 2)@% + 2x4X5
(x4x§)* —>G — X2X3X4 + XpX4X5 — x32x5 — X3X4X5 — x3x§ + xf + xfxs
+ x4x52
(x4x53)* —>g — x2x3xf — X2X3X4X5 — 2xyc3x52 — xzxi — xzx‘%x5
— 2x2x4x52 — ...
(x3x4x52)* —g — x2x32x4 + x2x§x5 + Xox3X4X5 + x2x3x§ + x2x2
+ 2x0x3x5 + . ..
(x4x§ ) =g x2x3x§x5 + ZXZ.X3X4x52 + x2x2x5 + xzxfxg + xQX4x§’
- xzxg + ...
(x3x4x§)* —g xzxfxf — xzx_%xsz - 2x2x3xZX5 - 4x2x3x4x52 — 2xpc3x§ - ...
(X3x4x§ ) —>g — xzxg‘xf)g + x2x32x4x52 + 2x2x3x§x52 -+ x2x3X4x53
— xp@,x? + ...
(x2x3x4x§)* —>g — x2x3xfx§‘ + xz)C3x4x§’ + )C2)63)C§t - )szgXSZ - xefxg

4
+ Xoxgxs — ...
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(xgxfxg =g — xzxgxfxg — 2xzx32x4x§ - 2xzx§x§ - 2x2X3x4x§
+ 2xzx2x3 + ...
(x%xfxg ) =g — 2x2x32xfx§’ — 2x2x§x4x§' — 4x2)C3x§x§ — 2xzx2xg + ...
(1222 x3x3)* =g 10x2x3x] x5
This proves that this set C of symmetrized monomials is basic for I".

The work of Garsia and Stanton (1984) provides an explicit combinatorial
construction of basic sets for a large class of important permutation groups.
This class includes the Young subgroups which are defined as follows. Let
T ={t1 <t < ... <t} be any ordered subset of [1,n — 1]. We define I'r
to be subgroup consisting all permutations 7w which fix each of the intervals
[, tip1— 1), i =1, ..., k. (Here ty4+1 := n.) We call I'r the Young permutation
group associated with the descent set T. As an abstract group I'7 is isomorphic
to the product of symmetric groups S;,,—,, i =1,...,k.

Let Cr denote the set of all permutations 7 having the property that each
of the sequences (#;, ¢ + 1,4 +2,..., %41 — 1) appears in increasing order in
(my, 2, M3, ..., y). The set Cr is clearly a system of representatives for the
cosets of I'7, and hence its cardinality equals the cardinality of any basic set
for I'r.

Theorem 2.7.13 (Garsia and Stanton 1984). The set of symmetrized descent
monomials {(m(7))* : m € C7} is a basic set for I'r.

For the proof of this theorem we refer to the article of Garsia and Stanton.
It is based on shellability of posets and the theory of Stanley—Reisner rings.

Exercises

(1) Let I'r = 5, x S5 be the Young subgroup of Ss associated with T = {2}.
(a) Apply Theorem 2.7.13 to compute a basic for this permutation group.
(b) Give an algorithm for rewriting an arbitrary invariant in

C[x1, X2, X3, X4, x5]'7 in terms of these basic invariants.

(2) * Describe an algorithm for solving any fifth degree polynomial with
cyclic Galois group in terms of radicals. Use Example 2.7.1 and the
methods of Example 2.7.6. Apply your algorithm to the polynomial
f(z) = z° — 10z* + 4023 — 8022 4 80z — 29. Describe an extension for
solving quintics with dihedral Galois group (cf. Example 2.7.12).

(3) Determine a minimal algebra basis for the ring of invariants of the cyclic
permutation group of order prime p.



Bracket algebra
and projective geometry

According to the general philosophy outlined in Sect. 1.3, analytic geometry
deals with those properties of vectors and matrices which are invariant with
respect to some group of linear transformations. Applying this program to
projective geometry, one is lead in a natural way to the study of the bracket
algebra.

In Sects. 3.1 and 3.2 we present the two “Fundamental Theorems” of clas-
sical invariant theory from the point of view of computer algebra. These results
will subsequently be used to derive algebraic tools and algorithms for projective
geometry. In the last two sections of this chapter we apply bracket algebra to
the study of invariants of binary forms, and in particular, we prove Gordan’s
finiteness theorem for binary forms.

3.1. The straightening algorithm

One of the most important features of the bracket algebra is the straightening
algorithm due to Alfred Young (1928). The general method of rewriting in terms
of standard Young tableaux plays an important role in representation theory
and has applications in many areas of mathematics. The specific straightening
algorithm to be discussed here will be understood as the normal form reduction
with respect to a Grobner basis for the ideal of algebraic dependencies among
the maximal minors of a matrix. Our presentation follows Hodge and Pedoe
(1947) and Sturmfels and White (1987).

Let X = (x;;) be an n x d-matrix whose entries are indeterminates, and let
C[x;;] denote the corresponding polynomial ring in nd variables. Throughout
this chapter we will think of X as a configuration of n vectors in the vector
space C?. These vectors represent a configuration of n points in projective (d—1)-
space P91 It is our objective to study those polynomial functions in C[x; i1
which correspond to geometric properties of the projective point configura-
tion X.

Consider the set A(n,d) = {[AMr2... Ag]l | 1 <A1 <Ay <...< Ay <n}
of ordered d-tuples in [n] := {1, 2, ..., n}. The elements of A(n,d) are called
brackets. They will serve as indeterminates over C. We define C[A (n, d)] to
be the polynomial ring generated by the ()})-element set A(n, d). Furthermore,
we abbreviate [A] := [AAy... 4] and [Ag Ax, ... Ag,] := sign(w) - [A] for all
permutations  of {1,...,d}.
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Consider the algebra homomorphism

Pna s ClA(n, d)] — Clxy]

xhl x;tlz e x;qd

X)QI X)Qz e .X)Qd
[A] — det

xkdl XAdQ e xkdd

which maps each bracket [A] to the d x d-subdeterminant of X whose rows are
indexed by A. The map ®n,a is called the generic coordinatization. At this point
we stress the distinction between the “formal” bracket [A] and the associated

determinant ®n,a([1]). Later on we will follow the standard abuse of notation
and identify these two objects.

Example 3.1.1. Letd =3 and n = 6. The rows of the matrix

X111 X12 X13

X21 X2 Xo3
X =

X61  X62  X63

can be thought of as six points in the projective plane. Then the determinant

$6,3([146]) = x11x42X63 — X1 1X6p043 — X41X12X63 + X41X62X13
+ X61X12X43 — X61X42X13

vanishes if and only if the points “1”, “4” and “6” lie on a common line. In
Example 3.4.3 it will be shown that the six points lie on a common quadratic

curve in P2 if and only if the polynomial #3,6([123][145][246][356] — [124][135]
[236][456]) vanishes.

The image of the ring map ¢, 4 coincides with the subring B, 4 of Clx;j1
which is generated by the d X d-minors of X. We call B, 4 the bracket ring.
Example 3.1.1 suggests that precisely the polynomials in the bracket ring B, 4
correspond to geometric properties. In the next section we will show that this
is indeed the case. First, however, we analyze the structure of the bracket ring
and we give an algorithm for computing in B, 4.

Example 3.1.2. Even for relatively small parameters, such as d = 3 and 5 — 6, it

is rather cumbersome to compute in 3, ; using the variables x; j- As an example,
we consider the polynomial

F = X11X22X33X41X52X63 — X11X22X33X41X53X6) — X11X22X33X51X42X63

. . 7
3.1. The straightening algorithm

+ X11X22X33X61X42X53 — X11X23X32X41X52X63 + X11X23X32X41X53X62
— X11X23X32X51X43X62 + X11X23X32X61X43X52 — X21X12X33X41X52X63
+ X21X12X33X41X53X62 + X21X12X33X51X42X63 — X21X12X33X61X42X53
+ X21X13X32X41X52X63 — X21X13X32X41X53X62 + X21X13X32X51X43X62
— X21X13X32X61X43X52 — X31X12X23X51X42X63 + X31X12X23X51X43X62
+ X31X12X23X61X42X53 — X31X12X23X61X43X52 + X31X13X22X51X42X63
— X31X13X22X5]1X43X62 — X31X13X22X61X42X53 + X31X13X22X61X43X52
— X11X22X43X31X52X63 + X11X22X43X31X53X62 + X11X22X43X51X32X63
— X11X22X43X61X32X53 + X11X23X42X31X52X63 — X11X23X42X31X53X62
+ X11X23X42X51X33X62 — X11X23X42X61X33X52 + X21X12X43X31X52X63
— X21X12X43X31X53X62 — X21X12X43X51X32X63 + X21X12X43X61X32X53
— X21X13X42X31X52X63 + X21X13X42X31X53X62 — X21X13X42X51X33X62
+ X21X13X42X61X33X52 + X41X12X23X51X32X63 — X41X12X23X51X33X62
— X41X12X23X61X32X53 + X41X12X23X61X33X52 — X41X13X22X51X32X63
+ X41X13X22X51X33X62 + X41X13X22X61X32X53 — X41X13X22X61X33X52.

The geometric meaning of this polynomial is as follows: The three lines “‘12”,
“34” and “56” meet in a common point if and only if F ='0. The polynomial F
lies in the subring Bj 6. It has the two distinct representations (among others)

F = ¢63([1231[456] — [1241[356]) = ¢,3(—[125]346] + [126][3451).

i i is i 1 not injective. Let
This example shows that the ring map ¢, 4 is in genera :

Ing C C[A(n ,pd)] denote the kernel of ¢, 4. This is the 1d§a1 of Callgebtrz}w lczlf);»
: i ] i i f a generic n X d-matrix.
ndencies or syzygies among the maximal minors o

?ﬁestance, in Example 3.1.2 we saw that [123][456] — [124][356] 4 [125][346] +

[126][345] € I¢,3.

Remark 3.1.3. The bracket ring B, 4 is isomorphic to the quotient C[A(n, d)]/
14.

ive an explicit Grobner basis for the ideal I,,,d‘. The projective

van’zr; (;lceogrle%l by the syI;ygy ideal 1, 4 is the (n - d)d-dimensional Grassfmézgn
variety whose points correspond to the d-dimensional vector subspaces o1 - .

We shall need the following abbreviations. The complemen: of ad-tuple A €
A(n, d) is the unique (n —d)-tuple A* € A(n, n .—d) with AUA* = {‘1, 2, hfc}h
The sign of the pair (A, A*) is defined as the sign of Fhe permutation 72’ w
maps A; toi fori =1,2,...,d and)»}* tod+jfor j=1,2,...,n—d.

Letse{l,2,...,d},a e A(n,s—1),B € A(n,d+1) and y € A(n,dd—i).
We define the van der Waerden syzygy [[oBy]1] to be the following quadratic
polynomial in C[A(n, d)]:
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[lefyll =
> sign(z, t) - [ay ... as—l,Brl* - '877;+1~s] B ... Bevi o Vil
TEA(d+1,s)

Example 3.1.4. Letd =3, n > 6, s = 3 and consider the index tuples

o=l o] € An,2),  B=[B1, B, B3 Bul € An, 4), y=1[1€A®,0).

The corresponding van der Waerden syzygy equals

[aBy 1] = [ler0a b1 fobs ful]
= [102841[B1B283] — [a102B831[B1B2B4]
+ [0z 82118183 B4] — [o100B11[B23B4].

In Example 3.1.2 we encountered this Syzygy with indices o = [1,2] and
B =13,4,5,6]

Let us first verify that the van der Waerden syzygies are indeed algebraic
dependencies among the maximal minors of X.

Lemma 3.1.5. The polynomials [[oe,By]] are contained in the ideal Ly.a.

Proof. We need to show that the polynomial ¢, 4([[a ﬁy]]) € Clx;;] evaluates to
zero for every n x d-matrix X. Consider the row VECLOTS Xoy, ...y Xoy i, Xpys -,
XBaris Xyp> .y Xy, of X which are indexed by the tuples o, 8 and y respec-
tively. We specialize the d — 1 row Vectors xy, and x,, to arbitrary elements from
C?, while the d + 1 vectors Xp, are left as indeterminates. After this specializa-
tion, the expression ¢, 4([[«fy]]) defines a multilinear (d+1)-form on C?. We
see that this multilinear form is antisymmetric because the sum defining the van
der Waerden syzygies is alternating. A well-known theorem from linear algebra
states that there is no antisymmetric multilinear (d+1)-form on a d-dimensional
vector space except the zero form. Since the above specialization was arbitrary,
we conclude that Gna(laBy1]) =0 1in Clx;;]. <

Example 3.1.6. The ideal 145 of algebraic relations among the six 2 x 2-minors
of a generic 4 x 2-matrix is principal. It is generated by the quadratic Pliicker
relation [[1234]] = [12][34] — [13][24] + [14][23].

In order to perform computations in the bracket ring B, ; = C[A(n, d)]/
In,q, it is necessary to express every bracket polynomial F by a unique normal
form modulo the syzygy ideal I, 4. In particular, we need a method for deciding
whether a given bracket polynomial F e C[A (n,d)] is contained in L4, ie.,
whether F' vanishes under the generic coordinatization ®n,q4. Such a normal form
procedure is the straightening law due to A. Young (1928). We will present this
classical algorithm within the framework of Grobner bases theory.

. . o1
3.1. The straightening algorithm

We order the elements of A(n,d) lexicographically, that .is, [A] < [u] 1£
here exists an m, 1 < m < d, such that 1; = p; fpr 1 5 j <m—1, an
: < . This specifies a total order on the set of variables in C[A(n, d?]. The
i)\rféiucelcjimdegree reverse lexicographic monomial order on C[A (n, d)] will also

99

enoted by “<”. o
b cj"“he mon(}),mial order “<” is called the tableaux order, as it is customary
S

i i bleaux. Given
ite monomials in C[A(n, d)] as rectangular arrays or fa : en
B)\l?me [A*] € A(n,d) with [A'] < ... < [A*], then the monomial T :=

(A1 [A%]- ... [A¥] is written as the tableau
A AL
2
- AL A
: 3
Mok

. . 1
A tableau T is said to be standard if its columns are sorted, that is, if A; <
A2 < <A forall s = 1,2, ...,d; otherwise it is non-standard.
S <Ay

' i ightening syzygy pro-
der Waerden syzygy [[oBy]] is called a straig : :
Vide]:jhzs‘ﬁn< Bs+1 and B; < y1. Let S, 4 denote the set of all straightening

syzygies.

i 0 is for 7,4 with respect to the
Theorem 3.1.7. The set S, 4 is a Gro.bner basis . n, i pect to
tableaux order. A tableau T is standard if and only if T is not in the initial ideal

init< (In,q)-

i i i 3.1.5. Let M C init< (I, 4)

Proof. The set S, 4 is contained in I, 4 by Leljﬂr'n.a .
derlolo{e the mono’;nial ideal generated by the 1n1t1a1‘ tableaux of the elements
in S,,4. We need to prove the reverse inclusion init(/, 4) < ./\/t .Our proof
procgéds in two steps. We first show each non—sta}ndard tableau lies in M, and
we then prove that each monomial in init<(/, 4) is a non-standard tablegu. .

Let T = [A'1[A%]...[AF] be any non-standard tableau. There exist i €
{2,3,...,k} and 5 € {2,3,...,d} such that Ag‘l > A.. We find th_at the fac-
tor, [AI=1[A1] is the initial tableau of the .straighte.:nilng Syzygy [[Otﬁi)/]] Whel;re
o = AT AT B= AT A L and y = AL AL
Hence T lies in the ideal M. o ‘

For our second step, we consider the polynomial ring C[x,- 7] and we introduce
the lexicographic monomial order “<” induced by the variable Qrder X1 > X1p >

> Xid > X21 > ... > Xp1 > ... > Xpq. We call “<” the diagonal monomial
order on C[x;;]. ' .

Given any tableau 7 = A2, .. M e C[A(n, d)], we.cgl.lmder its im-
age ¢n,a(T) € Clx;;] under the generic coordinatization. The 1plt1a1 monomial
of thig’ product of k& maximal minors in the diagonal monomial order equals

k ,

init gy, g(T) = [Ty X3 1 Xpin - - - Xy g- ' . ‘

Trllle crucial stlep oflourzproof cdonsists in the following combinatorial fact.
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Lemma 3.1.8. Let {A!, ..., ¥} be any multisubset of A(n, d). Then there exists
a unique standard tableau 7 such that

. k
lnlt(ﬁn’d(T) = HXA’IIXA’ZQ'XA;d
i=1

The standard tableau 7 is obtained from the tableau 7 = [A!][A2]... PR by
sorting each column.

Let us now suppose that some standard tableau T lies in the initial ideal
init. (1, 4), say, T = init(F) where F e In,q. Without loss of generality we
may assume that all tableaux occurring in F are standard. For, any non-standard
tableau can be replaced by its normal form (which may not be unique) with
respect to S, 4. Any such normal form is a linear combination of standard
tableaux, by the first part of our proof.

Since F is non-zero but ®n,a(F) = 0, there exists a non-initial standard
tableau T’ in the expansion of F such that ®n,a(T) and ¢, 4(T’) have the
same initial monomial in the diagonal monomial order on Clx;;]. This is a
contradiction to Lemma 3.1.8, and our proof is complete. <

The Straightening Law for bracket polynomials is usually stated in the fol-
lowing form. Corollary 3.1.9 is an immediate consequence of Theorem 3.1.7
and Theorem 1.2.6.

Corollary 3.1.9 (Straightening law). The standard tableaux form a C-vector
space basis for the bracket ring B,.4.

The normal form reduction with respect to the Grobner basis Sp,a is called
the straightening algorithm. Let us see in an example how the straightening
algorithm works.

Example 3.1.10. Letn = 6, d = 3, and consider the tableau T — A3 =
[145][156][234]. This tableau is non-standard because A% =5> Ag = 3. We
can reduce T modulo the straightening syzygy

[[1562341] = [156][234] + [136][245] — [135][246]
— [126][345] + [125][346] + [123][456]

which results in the bracket polynomial

F =T — [145][[1 5623 4]]
= [136][145][245] + [135][145][246] + [126][145][345]
— [125][145][346] — [123][145][456].

The second, fourth and fifth tableau in this expression are standard. The first and
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the third tableau are still non-standard, and we need Fo straighten them pext. This

rocess eventually terminates because all tableaux in the new expression F are
smaller in the tableaux order than 7. The unique representation of T as a linear
combination of standard tableaux equals [123][145][456] — [124][145][356] +

[134][145][256].

The Grobner basis S, 4 of the syzygy ideal is by no means minimal. There
are many proper subsets of S, , which are also Grobner bases of I, 4. For

example, let
St i={llafyll € Spa s < B foralli, 1 <i <s—1}

These syzygies straighten the leftmost violation ‘in a gi.ven pair of rows. ;All our
arguments in the proof of Theorem 3.1.7 are still valid, whence also Spgisa
Gribner basis. However, even S ; is not a reduced Grobner basis. .

We close this section with a description of the unique reduced Grb'bnfer basis
Rn.q for I, 4 with respect to the tableaux order. Since f:ach polynomial in R, 4
muist be in reduced form modulo the other polynomials in R, 4, we see that each
polynomial in R, 4 consists of a two-rowed non-standard _tableau T minus ‘the
linear combination of standard tableaux obtained by applying the straightening
algorithm to T'.

Example 3.1.11 (n = 6,d = 3). The reduced Grobner basis R 3 for the syzygy
ideal I¢ 3 contains, among others, the following syzygies.

[126][345] — [123][456] + [124][356] — [125][346]
[136][245] 4 [123][456] + [134][256] — [135][246]
[145][236] + [125][346] — [135][246] — [124][356] 4 [134][256] + [123][456]
[146][235] + [125][346] — [135][246] + [123][456]
[156][234] + [124][356] — [134][256] — [123][456]

This list, which is ordered with respect to the tableaux order of their initial
monomials, is sufficient to straighten all bracket polynomials with n = 6, d = 3
which are linear in each point, i.e., no number occurs twice in any tableau.
Observe that only the underlined initial monomials are non-standard.

This description of the reduced Grobner bases generalizes to an arbitrary
polynomial ideal I C Cl[xy,...,x,]. Let G be any Grobner basis for [/ and
consider a set of monomials {uq, ..., #,} which minimally generates the ini-
tial ideal init(/). Then the reduced Grobner basis Giq of I equals Qred =
{uy — normal formg(u;), ..., u, — normal formg(x,)}. Here the monomials u;
are called minimally non-standard (see also Exercises (1) and (2) of Sect. 1.2).



84 Bracket algebra and projective geometry

Exercises

(1) The bracket ring B, 4 is a graded subring of the polynomial
ring C[x;;]. Show that the Hilbert series of B, 4 has the form
H(Bypa,2) = Y joyanar z%. Compute the Hilbert series of B4 explicitly
in the case d = 2.

(2) Apply the straightening algorithm to the polynomial

[124] [143] [423]
det | [125] [153] [523] | € C[A(6, 3)].
[126] [163] [623]

Can you generalize your result?

(3) * A van der Waerden syzygy [[a,By]] with s = 1 is called a Grassmann—
Pliicker syzygy.

(a) Show that the ideal 7,4 is generated by the Grassmann—Pliicker
syzygies. (This is sometimes called the Second Fundamental Theorem
of Invariant Theory.)

(b) The Grassmann—Pliicker syzygies form a Grobner basis whenever
d<3.

(¢) The Grassmann-Pliicker syzygies are not a Grobner basis for d — 4,
n=2a.

(4) Consider the ideal 7 in Clx;;] which is generated by ¢,4(B,.4). (What is
its variety?) Compute the reduced Grébner basis of 7 with respect to the
diagonal monomial order on C[x; il

(5) * Here we assume familiarity with face rings of simplicial complexes (cf.
Stanley (1983)).

(a) The initial ideal init_ (Zn,4) is square-free and hence corresponds to a
simplicial complex A, ; on A(n, d). Describe the simplices of A, 4.

(b) Show that A, ; is the order complex of a partially ordered set on
A(n, d).

(c) Show that A, 4 is a shellable ball, and conclude that its face ring
ClA 4l = Cl[A(n, D))/ init<(Z, 4) is Cohen-Macaulay. Find a
Hironaka decomposition.

(d) Show that the bracket ring B, 4 is Cohen-Macaulay. Give an explicit
Hironaka decomposition for B,.a.

3.2. The first fundamental theorem

The group SL(C?) of d x d-matrices with determinant 1 acts by right multi-
plication on the ring C[x; ;1 of polynomial functions on a generic n x d-matrix
X = (xij). The two fundamental theorems of classical invariant theory give

an explicit description of the invariant ring C[x; j]SL(Cd) . It is clear that every
d x d-minor of X is invariant under SL(C?). Therefore Clx; j]SL(Cd) contains the
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pracket ring B, 4 which is generated by all d x d-minors. The main result of
this section states that these two rings coincide.

Theorem 3.2.1 (First fundamental theorem of invariant theory). The invariant
ring Clx; j]SL(Cd) is generated by the d x d-minors of the matrix X = (x; ).

Together with the results of Sect. 3.1, this provides an explicit presentation
CLxj 1™ = ClA G, D))/ lya = Bya.

The Second Fundamental Theorem of Invariant Theory states that the syzygy
ideal I, 4 is generated by certain sets of quadratic polynomials, such as the
quadratic Grassmann-Pliicker relations in Exercise 3.1. (3). An even §tron§er
result was established in Theorem 3.1.7, where we exhibited an explicit Grob-
ner basis consisting of quadratic polynomials. ‘ .

In order to prove Theorem 3.2.1, we introduce the following mu!tzgrad—
ing on the polynomial ring C[x;;]. Let m € C[x;;] be any monomial. For
each column index j € {1, 2,...,d} we define degj (m) to be the total degree
of m in the subset of variables {x;; : 1 < i < n}. The vector deg(m) =
(deg (m), degy(m), ..., deg,(m)) is called the multi—d{zgree of m. Note that if
a polynomial f* € Clx;;] is multi-homogeneous of multi-degree (81, 82, .. ., 84),
then f is homogeneous of total degree §; + 8, + ... —|—28d.

Here are a few examples. The monomial xp1x3)X220X52X13X43X53X33 €
C[x;;] has multi-degree (3,2, 4). The polynomial x21x§1x22x52x13x33x43x53 -
xnxz1x51x§2xi’3x53 is multi-homogeneous of degree (3, 2, 4). The pplynomlal
in Example 3.1.2 is quadratic in each column of the 6 x 3-matrix, which means
that it is multi-homogeneous of degree (2, 2, 2).

Observation3.2.2. Let T := [A'][A%]---[Af] € C[A (n, d)] be any tableau. Then
its expansion ¢, 4(T) in C[x;;] is multi-homogeneous of degree (k, k, k, ..., k).

A polynomial / € Clx;;] is said to be a relative invariant of the general linear
group GL(C?) if there exists an integer p > 0 such that / 0 A = det(A)? - | for
all A € GL(C?). The integer p is called the index of I. Clearly, every relative
invariant of GL(C?) is an (absolute) invariant of SL(C4). But also the converse
is essentially true.

Lemma 3.2.3. Let I € C[x;;] be a homogeneous invariant of SL(C%). Then
there exists an integer p > 0 such that

(i) 7 has multi-degree (p, p, ..., p), and ‘
(i) 7 is a relative invariant of GL(C?) of index p-

Proof. We fix two row indices ji, jo» € {1,...,d}. Let D(jl,j?) denpte the
d x d-diagonal matrix whose j-th diagonal entry equals 2, whose j,-nd diagonal
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entry equals %, and all of whose other diagonal entries are equal to 1. Note that
D(j1, jo) € SL(C?). This matrix transforms a monomial m into m o D(ji, j2) =
m- Hdeg;, (m)_degjz(m).

Since I was assumed to be an invariant, we have I = I o D(ji, j»). This
implies that each monomial m which occurs in the expansion of / must satisfy
deg; (m) = deg;,(m). Since the indices j, and j, were chosen arbitrarily, the
claim (i) follows.

Now let A be an arbitrary matrix in GL(C?). We define the diagonal matrix

A := diag(det(A), 1,1,..., 1), and we observe that A - A~! € SL(C?). Now
part (i) implies

JoA=To(A- A" A)=Uo(A-A)oA=10A=det(A)’ -

This completes the proof of (ii). <

We now extend the n x d-matrix X to a generic (n + 2d) X d-matrix as

follows:
/all ... aid \

aqr ... Q44
X111 ... X1d

A X21 ... X24

X | = . .

B . . .
Xpl .. Xnd
bi1 ... b
bar ... bya

The polynomial ring Cla;;, x;j, b;;] in the (n+2d)d matrix entries is a superring

of C[x;;]. Our strategy is the following: We will prove the first fundamental

theorem (Theorem 3.2.1) for the matrix X by applying the straightening law
A

(Theorem 3.1.7) to the larger matrix { X }. The rows of this matrix are indexed
B

by the ordered set {a1 < ... <ag <x1 <Xy <...<Xy, <b; <...<by}. The

corresponding bracket ring C[A(n+2d, d)] is generated by brackets of the form

lai, ...aixj, ...x;,by, ... J,_,_]. The crucial idea is to study the effect of two

suitable C-algebra homomorphisms C[x;;] — C[A(n + 2d, d)] on the subring

of invariants. These homomorphisms are defined by

Xij = [al e Qi1 X Aj41 ...ad] and Xij = [b] ...bj_l Xi bj+1 ...bd].
J
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Example 3.2.4. Let n = d = 4 and consider the expansion of the determinant

X111 X12 X13 X4
X X

det 21 22 X23  X24
X31  X32 X33 X34
X41  X42  X43  X44

This is a polynomial in C[x;;] of multidegree (1,1, 1, 1), which is a relative
GL(C*-invariant of index 1. If we replace the variable x;; by the bracket
[b1...bj_1xibj41...b4] then we obtain

[x102b3b4]11b1x2b3b4][b1D2x3b4]1[b1b2b3x4]
— [x102b3b4][D1x2b3b4][b1b2x4b4][b1b2b3x3]
— [x102b3b41[b1x3D3b4][b1D2X2b41[b1b2b3x4]
+ [x1b2b3b4][b1x3b3b4][b1b2X4b4][b1 b2b3x5]
+ [x1b2b3b4][b1x4b3b4][b1b2x2b4][b1 b2 b3x3]
— [x1b2b3b4][b1x4b3b4][b1b2x3b4]1[b1b2b3x2]
— [x2b2b3b4]1[b1x1b3b4][b1D2x3b4]1[b1b2b3x4]
+ [x2b2b3b4][b1x1b3b4][b1b2x4b41[b1b2b3x3]
+ [x2b2b3b4][b1x3b3b41[b1b2x1b4][b1b2b3x4]
— [x202b3b4]11b1x3b3b4][b1b2X4b4][b1 b2 b3 x1]
— [%2b203b4]11b1x4b3b4][b1b2x1b4]1[b1b2b3x3]
+ [x2D2b3D4][D1x4b3b4][b1b2x3b4][b1b2b3x1 ]
+ [x362b3b4]1[b1x1b3b4][b1b2x2b4][b1b2b3x4]
— [x3b2b3b4][b1x1b3b4][b1D2x4b41[b1b2b3x5]
— [x3b2b3b4]11b1x2b3b4][b1b2x1b4][b1b2b3x4]
+ [x3b2b3b4][b1x2b3b4][b1b2x4b4][b1b2b3x1]
+ [x3b2b3b4][D1x4b3b4][b1b2x1b4][b1b2b3x5]
— [x3D2b3b4]1[D1x4b3b41[b1b2x2b4][b1 b2b3x1 ]
— [x4b2b3b411b1x1b3b41[b1D2x2b41[b1 b2 b3 x3]
+ [xabab3ba]lbyx1b3b4][b1b2x3b4]1[b1b2b3 3]
+ [xab2b3ba][b1x2b3b4][b1b2x1b41[b1b2b3x3]
— [x4D2b3b4]1[D1x2b3b4][b1b2x3b4][b1 b2 b3 X1 ]
— [x4b2b3b4][b1x3b3b41[D1byx1b41[b1 bab3x5]
+ [xab2b3b4][b1x363b41[b1b2x2b41[b1 b2 b3 x1].

The eight appearing index letters are sorted x| < X3 < X3 < x4 < b; < by <
b3 < b4. The normal form of this large polynomial modulo the Grobner basis
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for Ig 4 given in Theorem 3.1.7 equals the single standard tableau:

[x1x2x3x4][b1b2b3b41[b1D2b3b4][D1b2b3b4].

This example can be generalized as follows.

Lemma 3.2.5. Let ] = I(x;;) € C[x;;] be any relative GL(C%)-invariant of
index p. Then the bracket polynomial
[b1b2 e bd]p(d_l) . I([m < 4j—1 X djy1 - .ad])

- [a1a2 ‘e ad]p(d—l) . I([bl N bj_l Xi bj+1 N bd])‘
is contained in the syzygy ideal /4244 C C[A(n + 2d, d)].

Proof. We need to show that the image of the above bracket polynomial un-
der the generic specialization ¢,424, is zero. For simplicity of notation, we

abbreviate the determinant ¢n+2d,n([)~]) by the corresponding bracket [A].

Let Adj(A) denote the adjoint matrix of A. Its entry Adj(A);i is the correctly
signed (d — 1) x (d — 1)-minor of A which is obtained by deleting the j-th row
and the k-th column of A. By Laplace expansion we obtain

d
[a1 e dj1Xidjyt .- ad] = ink Adj(A)jk,
k=1
and therefore

[a1az ... ag1P“9™D 1 (x;j) = det(A)P9=D . [ (x;))
= det(Adj(A))” - I (x;j)
= (I o Adj(A)) (xi))

d
= I(Yxik Adj(A)jk)
k=1

= I([a1 Ce @i XAy . .ad]).

The same argument holds for the matrix B. This implies the desired identity in
Bpt2d,a:

[b1by ... 5179 Plaray . . .aglP =V - 1 (xi))
= [b1b2 . bd]p(d—l)l . ([a1 . aj_l Xi aj.|.1 ce ad])

=[a1ar...aqlP"O1 - ([by...bj_1x; bjy1...b4)). <

We are now prepared to prove the First Fundamental Theorem, which states
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. . d . . .
that every invariant I € Clx; j]SL(C ) can be written as a polynomial in the
brackets [xilxiz ... x,'d].

Proof of Theorem 3.2.1. By Lemma 3.2.3, we may assume that the given in-

variant I is a relative GL(C%)-invariant of index p. We apply the straightening
algorithm to the polynomial

[biby... b0V I(lar...aj-1 x;aj41 - . .aal) € C[A(n +2d, d)],

that is, we compute its normal form modulo the Grobner basis given in The-

orem 3.1.7. Since all row indices by, ..., by are larger than the row indices
Gi,.--,04d,X1, X2, ..., Xy, the result is a linear combination of standard tableaux
of the form

S Ti(as, ..., a4, X1, X2, .., Xp) - [by ... bg]P @V,
J

where the T; are certain standard tableaux in the row indices ay, ..., aq, x1, X2,
..., Xn. Similarly, the polynomial
laias . .. ad]p(d—l) . I([b] v bj._l X; bj-H e bd])

is straightened to a polynomial

Slar...agP9V Ty, xa, ., Xs by . b)),
%

where the Tk/ are standard tableaux in the indices xi, x2, ..., X4, b1, ..., by.

By Lemma 3.2.5 and the straightening law (Corollary 3.1.9), these two stan-
dard tableaux expansions must be equal in C[A(n + 2d, d)]. But this is only
possible if both sums are of the form

Slai...aqlP4™V T/ (1, x2, .o, %) - [b1 ... bg]P4TD
1

where the Tl” are certain standard tableaux only in the “old” indices x1, xp, .. .,
X,. On the other hand, by the proof of Lemma 3.2.5, both polynomials in
question are equal to

[a1...aq)P 9" Vlby .. b 1P T ().

This implies the desired expansion

I(xlj) = ZT}//('xl’ x29 ey xn),
l

and the proof of Theorem 3.2.1 is complete. <
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Our proof of the First Fundamental Theorem implies the following algo-
rithm for rewriting a given SL(C%)-invariant polynomial / € C[x;;] in terms of
brackets. We replace each variable x;; in /(x;;) by the corresponding bracket
lai...aj_1Xx;aj41...a4], and then we apply the straightening algorithm for the
enlarged bracket ring C[A(n 4 d, d)] with respect to the order a; < ... < ag <
X1 < X2 <...< X, on the row indices. If / is a relative invariant of index p,
then [a1as ... ay]P@=D appears as a factor in the resulting standard representa-
tion. Dividing this factor out, we obtain the unique expansion of /(x;;) in terms
of standard tableaux in the row indices x;.

This algorithm for the First Fundamental Theorem turns out to be rather
slow for practical computations. In the remainder of this section we will discuss
an alternative procedure which usually performs much better.

Let “<” denote the lexicographic monomial order on C[x; i1 induced from the
variable order X1} < X12 < ... < X1g < X2] < X202 < ... < Xog < ... < Xpy] <
Xn2 < ... < Xpq. This was called the diagonal order in Sect. 3.1. A monomial
m in Clx;;] is said to be diagonal if its degree is divisible by d and it can be
written in the form

:»

m= 1(’%1 Xpig tte xxj,d) ()
1

where )J'l < Aé < ... < )»ﬁi forall i = 1,2,...,k. It is easy to see that the
initial monomial of any (expanded) tableau is a diagonal monomial.

Lemma 3.2.6. Let T denote the tableau [A'][A%]...[AF] € C[A(n, d)]. Then

the initial monomial of its expansion ¢, 4(7) € Clx; 7] with respect to “<
equals the diagonal monomial m in ().

Conversely, every diagonal monomial is the initial monomial of some tab-
leau. This tableau is unique if we require it to be standard.

Lemma 3.2.7. Let m be the diagonal monomial in (*). Then there is a unique
standard tableau T, such that init_(¢,,q(T,n)) = m.

Lemmas 3.2.6 and 3.2.7 are a reformulation of Lemma 3.1.8. The standard
tableau T, promised by Lemma 3.2.7 is constructed from the diagonal mono-
mial m as follows. Consider the tableau

1 1 1
oAl oAl
2 2 2
. A a2 A2
k k k
Ak

and let 7, denote the unique standard tableau which is obtained from T by
sorting all d columns.
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Lemmas 3.2.6 and 3.2.7 imply the correctness of the following easy algo-
rithm for the First Fundamental Theorem.

Algorithm 3.2.8.
Input: A polynomial / € Cl[x;;] which is an invariant of SL(C?).
Output: A bracket polynomial P € C[A(n, d)] whose expansion equals [ (x;;).

If I = 0 then output the bracket representation P = 0.

Let m := init< (/).

If m is not diagonal, then sTOP and output “I is not an invariant”.
Otherwise: let ¢ be the coefficient of init<(/) in /, output the summand
¢+ Ty, replace I by I — ¢ - ¢.4(Ty), and return to Step 1.

B

Both Algorithm 3.2.8 and the procedure used in our proof of Theorem 1.1.1
are instances of a general method for computing in subrings of polynomial
rings. This is the method of SAGBI bases due to Robbiano and Sweedler (1990)
and Kapur and Madlener (1989), which is the natural Subalgebra Analogue
to Grobner Bases for Ideals. Let R be any subalgebra of the polynomial ring
Clx1, ..., xn], and let “<” be any monomial order. We define the initial algebra
init<(R) to be the C-algebra generated by init.(f), where f ranges over R.
A finite subset {fi, ..., fin} of R is called a SAGBI basis if the initial algebra
init<(R) is generated by the initial monomials init<(f1), ..., init<(fu).

The main difference to the theory of Grobner bases lies in the fact that
init< (R) need not be finitely generated even if R is finitely generated (Robbiano
and Sweedler 1990: example 4.11). In such a case the subring R does not have
a finite SAGBI basis with respect to “<”".

On the other hand, in many nice situations a finite SAGBI basis {f1, ..., fm}
exists, in which case we can use the following easy subduction algorithm to test
whether a given polynomial f € C[xy, ..., x,] lies in the subring R:

While f # 0 and init.(f) € init<(R), find a representation init.(f) =
initL (f1)" - - - init<(f;»)"" and replace f by f — flv1 R

Our proof of Theorem 1.1.1 implies that the elementary symmetric polynomials
form a SAGBI basis for the ring of symmetric polynomials C[xq, ..., X 15, Sim-
ilarly, Lemmas 3.2.6 and 3.2.7 imply the same result for the maximal minors
and the bracket ring I3, 4. Note that in this case the general subduction algorithm
specializes to Algorithm 3.2.8.

Theorem 3.2.9. The set of d xd-minors of the n X d-matrix (x;;) is a SAGBI basis

for the bracket ring B, 4 = Clx; j]SL(Cd) with respect to the diagonal monomial
order on C[x;;].

We close this section with an example from projective geometry.

Example 3.2.10 (Projections of the quadrilateral set). Let C be an arbitrary con-
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figuration of six points on the projective line P!. We write the homogeneous
coordinates of the points in C as the columns of a generic matrix

X:(al by ¢ di e f1>

an b2 c dg () f2

Consider the following polynomial function

I = —aibicidaer fo — a1bicadier fr + arbicadre fo + aibicadaer fi
+ aibycidiey fr — arbacadae fi + asbicidiey fo — axbicadren fi
— abycidiey fr — azbycrdies fi + axbycidaer fi + anbacadie fi.

Is this polynomial invariant under the action of SL(C?)? If so, which geometric
property of the configuration C is expressed by the vanishing of /? The answer
to the first question is affirmative, and we can compute a bracket representation
using either of the two given algorithms for the First Fundamental Theorem.
For the second question see Exercise (1) below and Fig. 3.1.

In the straightening approach we replace X by the extended matrix

X/__<a1 by ¢ di et fi O —1)
a by ¢ d e fr 10

whose last two columns are labeled 1 and 2. We express each matrix entry
of X as a maximal minor of X’ via a; = [al], by = [b1], ..., f» = [f2]. This
transforms the invariant / into the bracket polynomial

— lal][b1][c1](d2][e2][f2] — [al][b1][c2][d1][e2][ f2]
+ [all[b1][c2][d2][e1][ /2] + [al][b1][c2][d2][e2][ f1]
+ [al][b2][c1][d1][e2][ f2] — [al][b2][c2][d2][e1][ f1]
+ [a2][b1][c1][d1][e2][f2] — [a2][b1][c2][d2][e1][ f 1]
— [a2][b2][c1][d1][el][ f2] — [a2][b2][c1][d1][e2][ f1]
+ [a2][b2][c1][d2][e1][ f1] + [a2][b2][c2][d 1][e1][ f1].

We apply the straightening algorithm for C[A (8, 2)] with respect to the order of
column indices a < b <c <d <e < f <1 < 2. In the specific strategy used
in the author’s implementation of the straightening algorithm this computation
requires 58 steps. The output is the following linear combination of standard
tableaux:

— labllcd]lef1[12][12][12] + [ab]lcelldf1[12][12][12]
+ lac][bd]lef 1[12][12][12] — [ac](belldf1[12][12][12]
— lad][be]lcf1[12][12][12].
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Hence the invariant / has the bracket representation
[ = —labllcdllef 1+abllcelldf 1+ [acllbd]lef]—[acllbe]ldf]—[ad][be][cf].

For the same input polynomial / Algorithm 3.2.8 works as follows. The ini-
tial monomial of / with respect to the diagonal monomial order equals m =
—a1bicidacayds. The corresponding standard tableau 75, equals —[ad]lbe]lcf],
and so we replace I by I — ¢ 2(T,,). Now the initial monomial equals —a1b; x
codies fr, S0 we subtract (the expansion of) —[ac][be][df]. The new initial
monomial equals a1bicadseq f2, so we subtract [ac][bd][ef]. The new initial mo-
nomial equals a1bycid;es fr, so we subtract [ab][ce][df]. The new initial mono-
mial equals —aibycidaey fo, so we subtract —[ab][cd][ef]. The result is zero
and we are done. The number of steps needed in Algorithm 3.2.8 — here: five —
is always equal to the size of the output.

Note that the bracket representation found by both methods is in general not
minimal. In our example the minimal bracket representation of / has only two
tableaux:

I = —[ad][cf1lbe] + [af1[bc]led].

For general SL(C?)-invariants, it remains an interesting research problem to find
a good algorithm for computing a bracket representation having the minimal
number of tableaux.

Exercises

(1) A configuration of six points a = (a1 1 a2 : @3), ..., f=(fi: /o : f3) in
the projective plane P? is called a quadrilateral set if the triples ace, adf,
bef and bde are collinear (Fig. 3.1). The one-dimensional configuration
(a1 : az), ..., (f1: f2) in Example 3.2.10 is the projection of a quadrilateral
set if and only if there exist complex numbers as, b, ¢3, ds, €3, f3 such
that (a; : ay : a3), ..., (f1 : fo : f3) is a quadrilateral set. Prove that this
geometric property is equivalent to the vanishing of the invariant /.

Fig. 3.1. The projection of a quadrilateral set
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(2) Let n =4, d = 2, and consider the polynomial

2 2 3
X XX XXy Xp

2 2 3

p _ |2 XXz Xoxp; Xy
(xij) = 5 P

X310 A3A32 0 X31X3 X3
2 2 3

Yo Apte Yaxy Xy

€ C[)C,'j].

Prove that P is an invariant of SL(C?) and find a bracket representation.
Interpreting the x;; as homogeneous coordinates of four points on the
projective line, what is the geometric meaning of the invariant P?

(3) Let n =4, d = 4, and consider the rational function

X111 X12 X13
X21 X2  X23

X111 X122 X4 X111 X12 X4

X21 X2 X4 | — | X21 X2 Xo4 | |X21 X2 X3

X1 X12 x13‘

_ X311 X3p X33 l11X41 X4p  Xyq X31 X320 X341 1X41 X4 X43
O(xi;) =
X33 X34
X43  X44

Show that Q is actually a polynomial in C[x;;]1“€"), and find its bracket
representation. (The resulting formula is called the Bareiss expansion.)

(4) * - Compare the computational complexity of the subduction algorithm
3.2.8 with the straightening algorithm used in the proof of Theorem 3.2.1.
Hint: Compare the number of standard tableaux with the number of
non-standard tableaux.

3.3. The Grassmann—Cayley algebra

The Grassmann—Cayley algebra is an invariant algebraic formalism for express-
ing statements in synthetic projective geometry. The modern version to be pre-
sented here was developed in the 1970s by G.-C. Rota and his collaborators
(Doubilet et al. 1974, Rota and Stein 1976). The main result in this section is
an algorithm for expanding Grassmann—Cayley algebra expressions into bracket
polynomials. As an illustration of these techniques, we give an “automated
invariant-theoretic proof” of Desargues’ theorem.

Let V be a C-vector space of dimension d, and let A(V) denote the exterior
algebra over V. We refer to Greub (1967) for a detailed introduction to the
exterior algebra. For geometric reasons we write the exterior product in A (V)
as “Vv” instead of the usual “A”, and refer to it as the join operation. The join
(= exterior product) is multilinear, associative, and antisymmetric. The exterior
algebra A(V) is a graded C-vector space of dimension 27, namely,

d
A(V) = @AYWV), where dimAF(V) = (Z) (3.3.1)
k=0
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Let {e1,...,eq} be any basis of V. Then a basis for Ak(V) is given by
{eyVve,V...Vej |1 <ji<jp<...<jr=<d} 3.3.2)

Consider any k vectors ay, ..., a; € V and their expansions a; = Zjl:l ajje; in
terms of the given basis. By multilinearity and antisymmetry, the expansion of

their join equals »

airvayVv...Vag

aij a1 --- A
Djy Qjp - D (3.3.3)
= Z . . . . |ern Ve V... Ve,
I<ji<..<jk=d : : :
Akjy  Gkjp -+ Qkji

An element A € A¥(V) is said to be an extensor ( of step k) if it has the form
A=aiVayV...Va for some ay, ...,a; € V. In the following we abbreviate
A=aay...a.

We remark that our choice of basis identifies the ring of polynomial functions
on A¥(V) with the polynomial ring C[A(d, k)] defined in Sect. 3.1. The map
VE > AX(V), (a1, an, ..., ax) > aiay ... ag corresponds to the ring map ¢4 -
Hence the set of extensors in A¥(V) coincides with the affine algebraic variety
defined by the ideal I;; = ker(¢y ). Since the ideal I ; is homogeneous, we
can also consider the projective variety defined by /; ;. This projective variety
is called the Grassmann variety.

The following argument shows that the points on the Grassmann variety are
in bijection with the k-dimensional linear subspaces of V.Let A = a1a;...a; be
a non-zero extensor of step k. Then ay, ay, . . ., ai is the basis of a k-dimensional
linear subspace A of V. The subspace A is determined by the extensor A because
A={veV:AVv=0). On the other hand, the extensor A is determined (up
to scalar multiple) by A, because the expansion (3.3.3) is invariant (up to scalar
multiple) under a change of basis in A.

Let B = b1b, - - - b; be another non-zero extensor of step j. Then the join

AVB=a VayV...VaV b \/...\/bj :a1a2~~akb1---bj 3.3.4)
is an extensor of step j 4+ k. The following lemma explains why we use the
term “join” for the exterior product in A(V). Its proof is straightforward from

the definitions.

Lemma 3.3.1. The extensor A Vv B is non-zero if and only if a1, ay, ..., a, b1,
by, ..., b; are distinct and linearly independent. In this case we have

K—l— B=AVB= span{al,az, ...,ar, by, by, ...,bj}. (3.3.5)
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Lemma 3.3.1 states that the algebraic join of extensors corresponds to the
geometric join of linear subpaces. This raises the question of how to define
an algebraic operation which corresponds similarly to the geometric meet or
intersection of linear subspaces.

We first identify the 1-dimensional vector space A?(V) with the ground field
C via ejey...eq > 1. Hence an extensor of step d can simply be expressed
as the determinant of its d constituent vectors. We denote this determinant
using the familiar bracket notation, say, [ai,ds,...,a4] = ajay...ay. Let
A =ajay---a; and B = biby - - - by be extensors with j + k > d. Then their
meet is the element of A/**~4(V) defined by

AAB:=
> Sigﬂ((f)[aau), s Ao d—k), b1y ooy bk] CAg(d—k+1) ** Ao (j)- (3.3.6)
o

The sum is taken over all permutations o of {1,2,...,j} such that o(1) <

02) <...<od-kadod—-k+1) <od—-k+2) <... <0o(j).
Such permutations are called shuffles of the (d — k, j — (d — k)) split of A.
We have given the definition for both join and meet only for pairs of extensors.
These definitions are extended to arbitrary elements of A(V) by distributivity.
The Grassmann—Cayley algebra is the vector space A(V) together with the
operations V and A.

A useful notation for signed sums over shuffles such as (3.3.6) is the dotted
notation, which we will frequently employ. We simply place dots over the shuf-
fled vectors, with the summation and sign(o) implicit. Similarly, shuffles may
be defined over splits into any number of parts. Here the brackets are always
delimiters which define the parts of the split. If we wish to sum over several
shuffles of disjoint sets, we will use separate symbols over each shuffled set.
Thus (3.3.6) is equivalent to

ANB=1at,...,aq—kb1,..., b Gaiy1 -+~ @ - (3.3.7)

If j + %k = d then we have A A B = lai,...,a;, b1, ..., b]. This is a scalar
of step 0, and it needs to be distinguished from A Vv B, a scalar with the same
numerical value but of step d. Thus A%(V) is a second copy of the ground
field C in A(V). We will now prove that the meet operation corresponds to our
geometric intuition in the case when A and B themselves are non-degenerate

and the dimension of A N B is as small as possible.

Theorem 3.3.2.
(a) The meet is associative and anti-commutative in the following sense:

AAB=(—1d=PU=-D . p 4.

(b) The meet of two extensors is again an extensor.
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(c) We have AA B # 0 if and only if A+ B = V. In that case A A B = AN B,
i.e., the meet corresponds to the intersection of linear subspaces.

Proof. Consider the following quadratic bracket polynomial in C[A (2d, d)]:

L] ® ] ®
lai,....aa-k, b1, ... bll@a—it1s ... aj, c1, o0, Coamj—i]
— (=DYEDy L bajar, 41—t - byl Coae k],
(3.3.8)

Using induction on k + j, it can be shown that this bracket polynomial lies
in the syzygy ideal Io4 4. The syzygy (3.3.8) is equivalent to (A A B) VvV C =
(=1)@=PE=)(B A A) v C for all extensors C of step 2d — j — k. This implies
the statement (a).

It follows from the defining equation (3.3.6) that the meet A A B remains
invariant (up to a scalar multiple) if we replace by, ..., by by any other basis
of B. By the anti-commutativity of the meet operation, the same holds when
ai, ..., a; is replaced by any other basis of A.

In view of our assumption A+ B =V, we can choose a basis V1, V2, ..., U4
of V such that vy, .+, Vj4k—d 15 a basis of AN B, Vi, ..., V; is a basis of A,
and vji1,...,vg, 01, ..., Vj4+k—d 18 a basis for B. There exist nonzero constants
¢y and ¢y such that A = ¢y - Vivy... v and B = ¢3 - vjq1... 00 U e Vjtk—d-
Substituting these representations into the defining equation (3.3.6), we find that

AANB = :I:clcz[vl, vy, ..., vd] “VIV2 . Vjgk—d- (3.3.9)

This proves the statements (b) and (c) of Theorem 3.3.2. <

We now illustrate the translation of geometric incidences into the Grass-
mann—Cayley algebra. Each non-zero vector in V represents a point in the
(d — 1)-dimensional projective space P9~!. This provides an identification of
k-dimensional linear subspaces A of V with (k — 1)-dimensional projective sub-
spaces of P41, Such subspaces are represented uniquely (up to scalar multiple)
by the extensors of step k.

Example 3.3.3. Leta,b,c,d, e, f be any six points in the projective plane P2
such that the lines ad, be and ¢f are distinct (cf. Fig. 3.2). Under which algebraic
condition are these three lines concurrent, i.e., have a point in common?

To answer this question we apply Theorem 3.3.2 (c). In the Grassmann—
Cayley algebra the intersection point of the lines ad and be is represented as
(@avd) A (bVe), an extensor of step 1. This point lies on the line cf if and
only if ((aVvd) A(bVe) A(cVv f) = 0. Using the defining equation of the
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Fig. 3.2. The incidence relation
expressed by (3.3.10)

meet (3.3.6), we obtain the bracket expansion

(avdyAnBVe) AV f)

(3.3.10)
= ([abe]d — [dbe]a) A cf = [abelldcf] — [dbellacf].

Naturally, this quadratic bracket polynomial can be further expanded into a
polynomial in the coordinates of the six points a = (a1 tay a), ..., [ =
(f1 : f> : f3). The resulting polynomial in the coorqutes is homogeneous of
degree 6 and has 48 monomials. It is listed completely in Examplq 3.1.2‘. .

In similar fashion, any incidence relation or incidence theorem in projective
geometry may be translated into a conjunction of simple Grassmann—Caylgy
algebra statements. Here simple means that the expression 1nv01ve§ only join
and meet, not addition. For instance, (@ vV b) A (c Vd) A (e V f) is a simple
Grassmann—Cayley algebra expression. Conversely, every .simple Grassrpann—
Cayley algebra statement may be translated back to projective geometry just as
easily.

1\}IIOW, generalizing the derivation in (3.3.10), every simple Grassmann—Cay—
ley algebra expression of step 0 may be expanded into a bracket polynomial
using only the definitions and basic properties of join and meet.

Algorithm 3.3.4 (Expanding Grassmann—Cayley algebra expressions into brack-
ets).

Input: A Grassmann—Cayley algebra expression C(a, b, ...) of step 0.

Output: A bracket polynomial equivalent to C(a, b, ...).

1. Replace each occurrence of a subexpression (a1 ...4a;) A (by...by) in C by

[@1, ..., @di: D1, - DR) ddis1 -+~ dj. N
2. Erase unnecessary parentheses using the associativity of meet and‘ join.
Using distributivity, write C(a,b,...) as a linear combination of simple
Grassmann—Cayley algebra expressions.
3. Extract bracket factors from each expression. For any remaining Grassmann—
Cayley algebra factor C’(a, b, ...) return to step 1.

When applying Algorithm 3.3.4, we will usually ignore global sigp§ in t.he
intermediate computations and in the output. This is justified by multilinearity
and Theorem 3.3.2 (a).
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Most Grassmann—Cayley algebra statements resulting from geometric inci-
dence relations have step 0 or d, in which case Algorithm 3.3.4 can be applied
directly. If a Grassmann—Cayley algebra statement C(a, b, ...) has step k with

0 <k <d, then C(a,b,...) = 0 is equivalent to the following universally
quantified statement of step d:

VXi,...,X4_} € V:Ca,b,..)Vx V...Vxs_; =0. (3.3.11)

In fact, here it suffices to take xp, ..., x4 from a basis of V, so (3.3.11) is
equivalent to a finite conjunction of bracket statements.

In summary, Algorithm 3.3.4 gives an easy method for expanding sim-
ple Grassmann—Cayley algebra expressions into bracket polynomials. How-
ever, the converse problem, that of rewriting a bracket polynomial as a simple
Grassmann—Cayley algebra expression, whenever possible, is not easy at all.
This is the problem of Cayley factorization, which we will discuss in Sect. 3.5.

An often useful postprocessing to Algorithm 3.3.4 is the straightening al-
gorithm (cf. Sect. 3.1). It rewrites the output bracket polynomial into a unique
normal form, namely, as a linear combination of standard tableaux. In partic-
ular, we thus obtain an algorithm for testing whether two Grassmann—Cayley
algebra expressions are equal. We illustrate these invariant-theoretic techniques
by proving a classical incidence theorem of projective geometry.

Example 3.3.5 (Desargues’ theorem). The corresponding sides of two triangles
meet in collinear points if and only if the lines spanned by corresponding vertices
are concurrent.

The vertices of the two triangles are labeled a, b, c and d, e, f as in Fig. 3.3.
The corresponding sides of the triangles meet in collinear points if and only if
the following Grassmann—Cayley algebra expression vanishes. We compute its
bracket expansion using Algorithm 3.3.4.

Fig. 3.3. Desargues’ Theorem
in the plane
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(ab Ade) Vv (be Aef) vV (ac Adf)
= (lade]b — [bdela) v ([beflc — [cef1b) V (ladf]c — [cdf]a)
= — [adellbef1[cdf]1lbcal + [bdellcef1ladf]1labc].

Applying the straightening algorithm, we get the following standard bracket
polynomial:

— labcllabc]ldef ]ldef] — abcllabellcdf]ldef]
— labcllacd]llbeflldef] + [abcllacellbd f1ldef].

This expression can be rewritten as

[abclldef] - (—[abc][a’ef] — labellcdf] — lacd]llbef] + [ace][bdf])
= [abc]ldef] - ([abe][dcf] — [dbe][acf]) = [abc]ldef] - (ad Abe A cf).

By Example 3.3.3, this expression Va_nish_es if agg only if a, b, ¢ are collinear,
or d,e, f are collinear, or the lines ad, be and cf are concurrent. This proves
Desargues’ Theorem. <

Exercises

(1) Prove that the quadratic bracket polynomial in (3.3.8) is a syzygy.
(2) Expand the following Grassmann—Cayley algebra expressions into bracket
polynomials of rank 3. In each case give a geometric interpretation:
— cdN((fgANhk)Ve)Aab
— (abAcd)V (ad AN bc) V (ac A bd)
— (abAcd)V (ad Nbc)V (ac Ade)

3.4. Applications to projective geometry

In this section we discuss six applications which illustrate the use of Grassmann—
Cayley algebra and bracket algebra as a computational tool in projective geom-
etry.

Example 3.4.1 (Coordinatization of abstract configurations). A main problem in
computational synthetic geometry (cf. Bokowski and Sturmfels 1989) is to find
coordinates or non-realizability proofs for abstractly defined configurations; see
also Sturmfels (1991). The methods of bracket and Grassmann—Cayley algebra
are well suited for this problem. We illustrate this application with an example
which is drawn from Sturmfels and White (1990). In that article it is shown that
all 115 and all 123-configurations can be coordinatized over the field of rational
numbers.

Consider a configuration C of eleven points in the projective plane, labeled
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1,2,...,9,0and A, such that precisely the following eleven triples are collinear:
124 235 346 457 568 679 780 89A 901 0A2 Al3. (3.4.1D

This configuration is called 113 because it consists of 11 points and 11 lines,
with each point lying on 3 lines and each line containing 3 points.

In order to find coordinates for such a configuration we proceed as fol-
lows. Let us suppose that xi, x3, x4, X5, X3, Xg are arbitrary points in P2. The
configuration (3.4.1) translates into the following system of equations in the
Grassmann—Cayley algebra:

xaVx1Vvx3=0, xa=(x3Vx9)A X0V x2),
x0 = (x7Vx8) A (x1Vx9), x7=_(x4Vx5)A (x6V X9), (3.4.2)
X6 = (X3 VXx4) A (xs5Vxg), x2=(x1Vxg)A(x3V X5).
‘We solve these equations by substituting xgxg A xpxy for x4 in xa V x1 V x3,
then substituting x7xg A x1x9 for xg in the result, etc. Proceeding in this fash-

ion, we find that (3.4.2) is equivalent to the vanishing of the following simple
Grassmann—Cayley algebra expression:

(ngg AN ((X4XS AN (X3X4 VAN X5X3)X9))Cg AN X1XQ) (x1X4 VAN X3X5)) VX1V Xx3.
(3.4.3)

We now apply Algorithm 3.3.4 to (3.4.3). This means we successively replace
each subexpression x;x; Axgx; by [kijlx;—[lijlxy, using distributivity after each
replacement. As the result we obtain the following bracket polynomial which is
equivalent to (3.4.3):

— [834][945][958][189][314][513] — [534][845]1[198][314][589][913]
— [834][945][158][314][589][913] + [534][845][198][514]1[389][913]
+ [834][945][158][514]1[389][913] =0 3.4.4)

It remains to find six points in P? which satisfy the equation (3.4.4). We may
assume
x1=(1:0:0), x3=0:1:0), x4q=0:0:1),

(3.4.5)
xs={0:1:1, xsg=0:a:b), xo=0:c:d)

Under this choice of six vectors the bracket equation (3.4.4) specializes to

ad? — APd® + 2a°bcd? — a’bed — a*cd? + a2d® — a2d® — ab*cid
+ abc? — abed? + 2abed — abe — abd? + ad? + b2c® — 2b*c?
+ b%cd + b*c — be? + bcPd + be* — 2bed = 0.
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We choose the solution a = % b = %, ¢ = 2,d =5 to this equation.

Substituting the points (3.4.5) into the Grassmann—Cayley expressions (3.4.2),
we obtain the following coordinates for the configuration (3.4.1):

11001 0 £ 1 1 1 1

(1, %,...,%0,x4) =10 0 1 0 1 —4& A 2 2 18 _2
57 45

oro11 1 1 % 2 0

Example 3.4.2 (Final polynomials). Here is another coordinatization problem
similar to Example 3.4.1. Consider a configuration C’ of eight distinct points
in projective 3-space P3, labeled 1, 2,3,4,5,6,7,8, such that precisely the
following five quadruples are coplanar:

1256 1357 1458 2367 2468. (3.4.6)

Does such a configuration exist?

We claim that the answer is “no”, that is, C’ cannot be coordinatized over
C. Suppose that, on the contrary, there exist vectors xp, ..., xg € C* such that,
for (i, j, k, 1) € A8, 4), det(x;, Xj, Xk, x1) is zero if and only if ijkl appears in
(3.4.6). Then we get a C-algebra homomorphism

¢:Bsa— C, [ijkl]w det(x;,x;, xx, x)

having the property that ¢ ([ijk/]) = 0 if and only if ijkl appears in (3.4.6).
We consider the following bracket polynomial :

= [1256][1734][1284][7234] + [1357][1264][1284][7234]
+ [1458][1264][1237][7234] + [2367][1734][1284][1254]
+ [2468][1734][1254]1[1237] + [3478][1264]1[12541[1237]

in C[A(8, 4)]. Using the straightening algorithm introduced in Sect. 3.1, it can
be verified easily that f lies in the syzygy ideal Ig 4, that is, f = 0 in Bg 4.
On the other hand, the underlined brackets are mapped to zero by ¢, and hence
¢ (f) = ¢([34781[1264][12541[1237]) # 0. This is a contradiction, and the
proof of our claim is complete.

The bracket polynomial f € C[A(8,4)] is said to be a final polynomial
for the configuration (3.4.6). In general, final polynomials provide a systematic
method of representing non-realizability proofs for abstract configurations. This
method is originally due to Bokowski and Whiteley; it has been developed in
detail in Bokowski and Sturmfels (1989).

We remark that the configuration in (3.4.6) is known as the Vamos matroid
in matroid theory. Its non-realizability is equivalent to the following well-known
incidence theorem in projective geometry. This incidence theorem is sometimes
called the bundle condition.
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Theorem. Given four lines £1, {5, £3, {4 in projective 3-space, no three in a
plane, such that five of the six pairs (¢;, £ ;) of lines intersect, then also the sixth
pair of lines intersects.

Proof. Suppose that {1, {5, £3, £4 are lines in P3, no three in a plane, such
that £3 N £4 = @, but each of the pairs (£1, £5), (€1, 43), (£1,44), £y, £3),
(2, 4) intersects. Choose sufficiently generic points x1, x5 € £1, X2, xg € {2,
x3, X7 € €3, x4, x3 € £4. Then precisely the quadruples in (3.4.6) are coplanar.
This is impossible by the final polynomial f. <

Example 3.4.3 (Pascal’s theorem). In this example we outline an algorithm for
both discovering and proving a certain class of geometry theorems in the plane.
Suppose we are given the following problem:

Under which “geometric” condition do six points a, b, ¢, d, e, f in the pro-
jective plane lie on a common quadric? Find such a condition and prove that it
is correct!!

Using homogeneous coordinates a = (a; : ay : a3),b=(by:by:b3), ...,
f= (f1: f2: f3), our problem can be rephrased as follows.

Find a synthetic interpretation or construction for the algebraic condition:

6 .
3 (v200, V020, Voo2, V110, Vioi, vo11) € C°\ {0} :
2 2 2
V200@7 + V02045 + Voozaz + viioaiaz + vioiaiasz + vor1azaz = 0

V20067 + 02063 + Vo023 + vi10b1by + vig1b1bs + vourbobs =0 (3.4.7)

200 £ 4 voso f2 + vooz f5 + Vit0fi f2 + vior fifs + voi1f2f3=0

The existentially quantified variables in (3.4.7) are the coefficients V200 - - -, V011
of the desired quadric ), k=2 Vijk xix%xé. It is our goal to compute an
equivalent simple Grassmann—Cayley expression, which uses only the symbols
a,b,c,d, e f, A and V. In the first step we eliminate the viji’s from (3.4.7),
obtaining

2 2 2
ay a; ay aiay aiaz @a3

b b3 b2 biby biby bybs

2 2 2
o] ¢ 3 Cc1C2 Cc1C3 203

di d} & didy dids dyds

2 2
el 6’2 63 ei1en e1e3 €63

222 AR AR BB/

This elimination step involved only easiest linear algebra. In more general sit-
uations we would need Grébner bases or resultants.

The degree 12 polynomial with 720 summands in (3.4.8) is invariant under
projective transformations and can therefore be rewritten as a bracket polynomial

det =0. (3.4.8)
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in Bg 3. Using Algorithm 3.2.8, we find that (3.4.8) equals the following sum of
two standard tableaux:

—[abc][ade][bdf][cef] + [abd][ace][bcf][def] = 0. (3.4.9)

Our last step is now to find a simple Grassmann—Cayley algebra expression
which is equivalent to (3.4.9). In general, translating bracket expressions into
Grassmann—Cayley expressions is a very difficult problem. As we already re-
marked in Sect. 3.3, this problem is called the Cayley factorization problem. It
will be discussed in Sect. 3.5. For our example Cayley factorization yields the

following expression:

(ab Ande) v (be Aef) v (cd A fa) = 0. (3.4.10)

It is easy to verify that (3.4.10) is equal to (3.4.9), using Algorithm 3.3.4 and
subsequently the straightening algorithm. The expression (3.4.10) is equivalent
to the synthetic statement,

“The intersection points ab Nde, be Nef and cd N fa are collinear.” 3.4.11)

Thus we have “automatically” discovered Pascal’s theorem.

Pascal’s Theorem (see Fig. 3.4). Six points a, b, ¢, d, e and f in the projective
plane lie on a common quadric if and only if the intersection points ab N de,

be Nef and ed N fa are collinear.

A special case of Pascal’s theorem is Pappus’ theorem. It is concerned with
the case of degenerate quadrics, consisting of two lines. It states that if a, e, ¢
and d, b, f are collinear, then ab N de, be N ef and cd N fa are collinear. We
obtain a proof of Pappus’ theorem directly from the equality of (3.4.9) and
(3.4.10). For, if a, e, ¢ and d, b, f are collinear, then the two underlined brackets
in (3.4.9) are zero, and hence (3.4.10) and (3.4.11) hold.

Fig. 3.4. Pascal’s theorem
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Example 3.4.4 (Parametric representation of quadrics in PZ). Let a,b, ¢, d, e
be points in general position in P2, and let C denote the unique quadratic
curve through these five points. In this example we consider the problem of
finding a parametric representation for C, directly in terms of a, b, ¢, d, e. Such

a parametrization must exist because quadrics are known to be rational curves.

éeg f(xX) = f(x1,x2, x3) denote the defining equation of C. From (3.4.9) we
n

J (x) = —[abc][ade][bd x][ce x] + [abd][ace][be x][de x] = 0. (3.4.12)

In order to par.ar.neyrize C, we take a general point Ab + ¢ on the secant line
bv cl, and we join it with a (see Fig. 3.5). A general point of the resulting line
equals

X=a+puAb+c), where A, ueC. (3.4.13)

We now substitute this point into (3.4.12), and we expand the result as a poly-
nomial in u:

fla+uOb+0) =pu® P(;a,b,c,d &)+ O a, b, e d, e, (3.4.14)

where P, Q are homogeneous bracket polynomials of degree 4 with coefficients
in C[A]. Note that (3.4.14) has no constant term with respect to u because
f(a) = 0. Solving the right hand side of (3.4.14) for p and clearing denomina-
tors (all points are given by homogeneous coordinates! 1), we obtain the following
parametrization of the quadratic curve C:

X)) = —P(;a,b,c,d,e)-a+ Q(h;a,b,c,d,e)- (Ab+c). (3.4.15)

Example 3.4.5 (Common transversals of four lines in P3). This example con-
cerns nvariants of four lines ¢y, £, £3, £4 in complex projective 3-space. By a
common transversal of £y, £y, {3, £4 we mean a line ¢ C P3 such that

ENLL#D, £NL# B, €Ny £ 0, and £ £y 5 0. (3.4.16)

Fig. 3.5, Parametrization of the quadric
through five given points
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We will prove that a configuration of lines £1, £,, £3, {4 has either one transver-
sal, or two transversals or infinitely many transversals. Moreover, we will com-
pute the algebraic invariants which discriminate these three cases.

Each line ¢; can be written as the join of two points, say

L1 =x1Vx2, by =Xx3V Xa, U3 = x5V x6, L4 = x7 V Xg. 3.4.17)

As usual, the bracket [ijk/] denotes the determinant det(x;, Xj, Xk, x), and we
have the Grassmann—Cayley algebra identities £1 V£, = [1234], £,V {3 = [1256],
ceey €3 Vily = [5678]

Suppose that £ is a common transversal of £, £, £3, £4. The intersection
point of £ and £; equals Ax; + ux; for some A, u € C. The plane spanned by
this point and the line ¢, is given by the Cayley expression (Axy+ uxy) Vi3V xy,
and the intersection point of this plane with the line ¢3 equals ((kxl + puxy) v
X3V x4) A (x5 V x6). Hence the transversal equals

l= [((Axl + uxy) Va3 Vv x4) A (x5V x6)] VvV (Axy 4+ uxp). (3.4.18)

Since £ also meets the line £4 = x7 V xg, we have the following Grassmann—
Cayley algebra identities:

[((x1+px2) Vs vixg) A (xsVxe)] V x4+ ux2) VX7V xg = 0. (3.4.19)

This is quadratic polynomial in A, 1. We now apply Algorithm 3.3.4 to (3.4.19)
to get

([1345][6178] — [1346][5178])A>
+ ([2345][6278] — [2346][5278]) 2
+ ([1345][6278] — [1346][5278] (34:20)
+ [2345][6178] — [2346][5178])AM =0.

The four lines have infinitely many common transversals if and only if all three
bracket coefficients are zero. Generically, this is not the case and (3.4.20) has
two distinct roots, corresponding to two distinct transversals. The discriminant
of (3.4.20) is a polynomial of degree 4 in brackets; its unique expansion in terms
of standard bracket monomials equals

— 2[1234][1256][3478][5678] — 2 [1234][1256][3578][4678]
+ [1235][1235][4678][4678] — 2 [1235][1236][4578][4678]
— 2[1235][1245][3678][4678] — 2[1235][1246][3478][5678]
+ 4[1235][1246][3578][4678] + [1236][1236][4578][4578]
— 2[1236][1246][35781[4578] + [1245][1245][3678][3678]
— 2[1245][1246][35781[3678] + [1246][1246][3578][3578].

3.4. Applications to projective geometry 107

We conclude that this invariant vanishes whenever there is exactly one transver-
sal. It is instructive to verify that this expression is symmetric with respect to
permuting the pairs of letters {1, 2}, {3, 4}, {5, 6}, {7, 8}, and it is antisymmetric
with respect to permuting letters within each pair.

Here is a specific example of a configuration of four lines which has precisely
one common transversal. Let

1 0 0 0 01 O 1
(x1, X2, X3, X4, X5, X6, X7, X8) = 0 100 1 0 2 -
ey Ty T T Ty 0 01 01 0 1 0
o0 0101 -1 2

Then (3.4.20) specializes to —(A — w)?, which means the lines x; V x7, x3 V X4,
x5 V X6, X7 V xg have precisely one common transversal.

Example 3.4.6 (Common transversals of five lines in P3). We have seen in
Example 3.4.5 that any four lines in P3 have a common transversal. What is
the situation for five lines? When do they have common transversals?

What is the algebraic condition for five lines £1, £, £3, £4, {5 in projective
3-space to be incident to a common sixth line £?

Two equivalent answers to this question will be presented. For our first an-

swer, we identify each line £; with the corresponding extensor £; = ) E{ k
1<j<k<4

ej Vex in ApCH We call (€2, €2, €14, €2, 62*, £3%) the vector of Pliicker co-

ordinates for £. Forming the meet of two lines defines an inner product on the

space of lines:
. 12934 _ p13p24 | p1423 | 423,14 _ 524,13 | 434,12
Wi, €1 =L vV £ = ;707 — 4707 + 6787 + 4767 — 6747 + 677
From our discussion above we derive the two basic facts about the inner product
of lines: '
1. Two lines ¢; and £; are incident if and only if [{;, £;] = 0.
2. An arbitrary six-dimensional vector £ = (£1%, 13 214 023 ¢2* ¢34) is the

vector of Pliicker coordinates of a line if and only if [£, £] = 0.

Here is the first solution to our problem. If £ is a common transversal, then it
satisfies the following system of linear equations:

L hl=106]=[6]=[LLL4]=1LLE]=0.

In the generic case this system has a unique solution vector £ which can be
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found by Cramer’s rule:

{ =
12 13 14 23 24 2 13 14 23 34
El KI gl Z1 ﬁl E% El Z1 51 Z1

( det| : : : o), dety : : : .
12 13 14 23 24 12 13 14 23 34
N A N
2 13 14 24 34 3 23 4 34
et ot gtoq A S E

det | 5 : : o), —dety : : : .

0P et o0t e e P e eg“)
12 14 23 24 34 13 14 23 24 34
et out it g oroat ot g

—det| : : : Do), —det| : : : : )
2 N \5;3 12

This means that the lines £1, £, £3, 4, £5 are incident to common line if and
only if the above vector satisfies

[6,6] =2 (€203 — B¢ + ¢'%%) = 0. (3.4.21)

Notice that this express10n is a polynomial condition of total degree 10 in the

Pliicker coordinates E] of the five given lines. If it is satisfied, then the vector £
is the Pliicker coordlnate vector of the desired sixth line.

Let us now suppose that each line is given as the join of two distinct points

= (4}, 4}, a}, a}), bi = (b}, b}, b}, b}) in projective 3-space. We can easily
express our condmon as a polynom1a1 in the coordinates of these ten points. If
. oo
we replace ¢/ K 5 det (al]'c Z'k) in Eq. (3.4.21), then we obtain the desired
1 4
homogeneous polynomial P(aij , b{ ) in 40 variables of total degree 20.

This situtation is unsatisfactory both from a practical and a theoretical point
of view. First, the polynomial P is so large that it cannot be written down in
a nice way. Secondly, it would be desirable to rewrite the polynomial P as a
polynomial function in the fundamental invariants of projective geometry, which
are the brackets

151 1 gl
a; b, a; bj
2 p2 g2 p?
1 1 ] J
[aib,-ajbj] = det
3 313 3 13
a; b a; bj
4 14 4 24
;b a; bj

We wish to answer the following question.

3.4. Applications to projective geometry 109

Find an algebraic condition in terms of the brackets [a;b;a;b;], 1 <1 < j
< 5, which expresses the fact that the five lines a1b1, a2ba, azbsz, asba, asbs are
incident to a common sixth line.

The following answer is due to Neil White (pers. comm.):

Theorem 3.4.7. Five lines a1b1, axby, azbs, asbs, asbs in projective 3-space
have a common transversal if and only if

0 la1biaxbs]  [arbrasbs]  [arbiaabs]  [a1biasbs]
[azbra1b1] 0 lazbrazbs]  laxbaashbs]  [azbrasbs]
det | [asbzaib1] lazbsazbs] 0 lasbsasbs] [azbzasbs] | = 0.
lasbsa1b1]  [asbsarby]  [asbsaszbs] 0 [asbsasbs]
lasbsaibi]  lasbsazba]  [asbsasbz] [asbsasba] 0

Proof. If we use Pliicker coordinates for the lines ¢; = a;b;, then we can use the
identity [a;b;a;b;] = [£;, £;] to rewrite all brackets as inner products of lines.
The asserted condition translates to det([¢;, £;]) = 0 where ([¢;, {;]) denotes
the 5 x 5-Gram matrix of the five lines. This 5 x 5-matrix can be written as the
product of a 5 x 6-matrix with a 6 x 5-matrix:

34 34 34 34 34
012 p13 plé p23 0 p24 p34 41 & £ 4y 0%

1 1 1 1 1 1 _E24 __£24 _224 __224 —“624
le K13 214 523 £24 £34 1 2 3 4 5

2 2 2 2 2 2 el4 €14 £14 €14 214
le £13 £14 523 524 Z34 1 2 3 4 5

3 3 3 3 3 3 023 223 023 023 £23
EIZ 613 K14 623 624 £34 1 2 3 4

4 4 4 4 4 4 _p13 g3 _p13 i3 g13
wop e e ) 000

¢ £, L5 Ly £

Consider the vectors of 5 x 5-minors of these two matrices. Up to signs and
reindexing, both vectors are equal to £. By the Cauchy-Binet theorem, the dot
product of these two vectors is equal to the determinant in question. Using the
same notation as above, we can thus rewrite this determinant as

Z12£34 +£13(—E24) +el4£23 +£23£14 +£24(_£13) +£34£12‘

This expression equals (3.4.21), and we are done. <

Exercises

(1) Derive (3.4.9) from (3.4.10).

(2) Compute the bracket polynomials P, Q in (3.4.12) and straighten them.

(3) * Consider the condition for ten points a, b, ¢, d, e, f, g, h, i, j in
projective 3-space to lie on a quadric surface. In terms of coordinates this
polynomial equals
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ai a; a3 aj @Gy @143 a1as a3 a4 d3ds
b2 B2 B bY biby bibs bibs bibs biby  bib
€] ¢ ¢ Cf Cica CiC3 €104 €03 CaCa C3C4
L L B ddy dds didy dods dads  dads
e] e e e elex ele3 ejes €03 €6 €364
2R AR KB ffs hfs ffi fifs
81 8 83 84 8182 8183 8184 8283 8284 8384
K2 2 hE R by hihs ks hohs hohs hshs
22 2 2 iy s his  his bis s
Ji Jy Ji Ji 2 ijs s ez J2da J3a

det

(a) Rewrite this projective invariant as a bracket polynomial in C[A (10, 4)]
(Turnbull and Young 1926, White 1990).

(b) Does there exist a synthetic condition analogous to Pascal’s theorem for
10 points in P? to lie on a quadric? (This is an unsolved geometry
problem dating back to the 19th century; see Turnbull and Young
(1926).)

(4) * Consider twelve points x1, X2, ..., Xj2 in general position in the

projective plane, let C; denote the quadric through x1, x, x3, x4, X5, let .

C, denote the quadric through xg, x7, x3, X9, X109, and let £ denote the line

through x;;, x2. Find a bracket polynomial R € Bj, 3 which vanishes if

and only if C; N Cy N € # (. (Hint: This is the synthetic resultant of two

quadrics and a line. The degree of R in brackets equals 16.)

3.5. Cayley factorization

Cayley factorization stands for the problem of (re-)translating bracket polyno-
mials into Grassmann—Cayley algebra expressions, or Cayley expressions, for
short. This problem is much harder than its inverse, which is solved by Al-
gorithm 3.3.4. As of today, no effective algorithm is known for the general
Cayley factorization problem. An important partial result is Neil White’s Cay-
ley factorization algorithm for multilinear bracket polynomials (White 1991).
In this section we give an exposition of this algorithm. QOur first theorem, to be
presented without proof, is the universal factorization result in Sturmfels and
Whiteley (1991).

We have seen that there are four levels of description in projective geometry:

(1) Projective geometry
¢

(2) Cayley algebra
¥ 4 Cayley factorization

(3) Bracket algebra

¢
(4) Coordinate algebra
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We illustrate this diagram for the geometric statement in Examples 3.1.2 and
3.3.3:

(1) “The lines ab, cd and ef are concurrent”

¢
@ avbyrlcvd)yn(ev f=0
N 1 Cayley factorization
(3) labelldcf] — [abf1ldce] =0

¢
4) aibyescida f3 + arbresdicy f3 + ... (48 monomials) ... =0

The translations (1) <> (2) and (3) — (4) are straightforward. The arrow
(4) — (3) is given by the First Fundamental Theorem (Algorithm 3.2.8), and
the arrow (2) — (3) is the Cayley-bracket expansion (Algorithm 3.3.4). In what
follows we will be concerned with the translation (3) — (2).

We define the weight of a tableaux T € C[A(n, d)] as the vector w(T) =
(w1, ...,w,) € N" where w; equals the number of occurrences of the letter i
in T. A bracket polynomial P € C[A(n,d)] is called homogeneous if each
tableau in P has the same weight. Each syzygy in I, s is homogeneous, and
therefore the weight of a tableau and the property of being homogeneous depends
only on the image in B, s = C[A(n, d)]/1.4.

Suppose that C(a, b, c, ...) is a simple Cayley expression, i.e., it involves
only join and meet, not addition. Let P(a, b, ¢, ...) be its expansion in terms of
brackets. Then P(a, b, c, . ..) is homogeneous, and the weight of P(a, b,c,...)

counts the number of occurrences of a,b,c,... in C(a, b, c,...). A bracket
polynomial or a simple Cayley expression is called multilinear if it is homoge-
neous of weight (1, 1, ..., 1). We can now state our problem.

Cayley factorization problem

Input: A homogeneous bracket polynomial P(a, b, c,...).

Question: Does there exist a simple Cayley expression C(a, b, c,...) whose
bracket expansion (modulo the syzygy ideal) is equal to P(a, b, c,...)? If yes,
output C(a, b, c, .. .); if no, output “NOT CAYLEY FACTORABLE”.

A typical example of a successful Cayley factorization is the translation
from (3.4.9) into (3.4.10), the synthetic condition for Pascal’s theorem. Note
that (3.4.9) has weight (2, 2, 2, 2, 2, 2) and is therefore not multilinear. Before
proceeding further, let us see that not all bracket polynomials — not even mul-
tilinear ones — are Cayley factorable.

Example 3.5.1. The multilinear bracket polynomial P = [abc]ldef] -+
[abd]lcef] does not factor in the Grassmann—Cayley algebra of rank 3. This
can be seen by inspecting all possible multilinear simple Cayley expressions
C(a,b,c,d, e, f) of rank 3. None of these expressions is symmetric in two of
its letters. However, the invariant P is antisymmetric in both (a, b) and (e, f)
while it is symmetric in (c, d), and it is therefore not Cayley factorable. Another
proof is given in Example 3.5.7.
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This example has another more subtle aspect. If we multiply the given
bracket polynomial by an appropriate tableau, then the resulting bracket poly-
nomial becomes Cayley factorable. The expression [acd][bcd] - P does factor,
as follows.

{(ac Abd) v (ad Abc)} Aef Acd
= {([acbld — [acd]b) v ([adb]c — [adclb)} A {[efcld — [ef d]c)
{ lacblladbldc — [acd][adblbc — [acb][adc]db)} Aflefcld — [efd]c}
— [acd]ladb]lef cllbed] + [acblladc][ef d][dbc]
[acd][bca’]([abc][def] + [abd][cef]). 3.5.1)

I

This Cayley factorization would not be found by White’s Algorithm 3.5.6 be-
cause the bracket polynomial in (3.5.1) is not multilinear. The multiplier tableau
[acd][bcd] corresponds to the subsidiary condition that both points ¢ and b are
not on the line through ¢ and d. Under this non-degeneracy assumption we get
a synthetic construction.

This example raises the question whether every homogeneous bracket poly-
nomial with integer coefficients can be Cayley factored after a suitable multiplier
has been chosen. Our first theorem states that this is true for rank d > 3.

Theorem 3.5.2 (Sturmfels and Whiteley 1991). Let P(a, b, c, ...) be a homo-
geneous bracket polynomial with integer coefficients of rank d > 3. Then there
exists a simple Cayley expression C(a, b, c,...) and a tableau T'(a,b,c,...)
such that the bracket expansion of C equals T - P.

In this theorem we need the hypothesis d > 3 because there are no sig-
nificant synthetic constructions on the projective line, except for coincidence
of points. A rank 2 bracket polynomial [ab][cd] — [ac][bd] will never factor
to a synthetic construction unless the projective line is embedded into some
higher-dimensional projective space. The proof of Theorem 3.5.2 is based on
the classical construction of the arithmetic operations addition and multiplication
in terms of synthetic projective geometry. We refer to Sturmfels and Whiteley
(1991) and Bokowski and Sturmfels (1989: chapter 2) for details.

This factorization theorem is far too general to be of practical use. Our
proof method generates a multiplier tableau T which has very high degree
relative to P, and, the Cayley expression C does not tell the “true” synthetic
interpretation of P, if such exists. Perhaps the main importance of Theorem
3.5.2 lies in the fact that it suggests the following problem.

Generalized Cayley factorization problem

Input: A homogeneous bracket polynomial P(a,b,c,...).

Question: Find a tableau T'(a, b, c, ...) of minimal degree such that P - T = C
for some simple Cayley expression C(a, b, c, ...).
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We will now concentrate on the Cayley factorization problem for multilinear
bracket polynomials. In order to state White’s algorithm, we first derive a few
structural properties of Cayley expressions. Suppose that C(a, b,c,...) is a
simple and multilinear Cayley expression. We may represent C by a binary
tree T whose leaves are labeled uniquely by a, b, c, ... and whose inner nodes
are labeled V or A. The step of a subtree T’ of T is the step of the corresponding
Cayley expression C’. We say that an operation V or A in 7T is trivial if its
operands have steps j and d — j for some j, or, one of its operands has step 0
or d. We note that, under the numerical identification of steps 0 and d, a trivial
v may be replaced by a A and vice versa. Having a trivial operation amounts
to having a subtree which evaluates to a bracket polynomial which factors out
of C.

Lemma 3.5.3. Let C(a, b, c,...) be a non-zero multilinear simple Cayley ex-
pression. Then C is anti-symmetric in two arguments a and b if and only if a
and b do not have a non-trivial A on the unique path joining them in the tree
T which represents C.

Proof. Since C is multilinear, the tree T has two unique leaves labeled a and b
respectively. If there are no non-trivial A’s on the path from a to b in T, then,
exchanging trivial A’s for V’s, we may assume that there are only V’s on the
path. Since V is an associative, anti-commutative operation, we may rearrange
C so that (a Vv b) occurs explicitly. Thus C is anti-symmetric in a and b.

Conversely, suppose there is a non-trivial A on the path from a to b. Denote
by A the first such. By modifying any trivial A’s as above, we may assume
that C = ((aVv S) A1 Z) ---. We now specialize a few of the indeterminate points
in S, so that S has the form S =b Vv U, witha ¢ U and b ¢ U. This may be
done inductively: if S = X VY then specialize either X or Y to have b as a join
factor, while if § = X A Y then specialize both X and Y to have b as a join
factor. This specialization has replaced some of the original points by b, and
left all others indeterminate. Note that, by multilinearity, only points in S have
been specialized to b. Denote by c=C (a, b, c,...) the image of C under this
specialization. Observe that Cc b,a,c,...) =0, because ithasbvbvUasa
factor. =R

Now we claim that C(a, b, c, ...) # 0, which will prove that C is not anti-
symmetric in @ and b. First note that (@ vV b Vv U) A1 Z) is a nonzero Cayley
expression because b occurs at most once in Z and the operation A is nontrivial.
Since the rest of C contains entirely different letters, we conclude C #0. <«

Let C(a,b,c,...,z) be a simple Cayley expression. A subset of letters
{a,b,...,e}is called an atomic extensor of C if its join (a VbV ...V e) occurs
explicitly in C. This is equivalent to saying that there is no non-trivial meet
on the path (in the tree of C) between any two elements of {a, b, ..., e}. Note
that each atomic extensor has cardinality at least 2. For instance, the Cayley
expression ((a vV b) A (c VvV d)) A (e Vv f) has the atomic extensors {a, b}, {c, d}
and {e, f}.
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Let P(a,b,c,...,z) be a multilinear bracket polynomial. We define an
equivalence relation ~ on the letters occurring in P as follows. We set a ~ b if
P(a,b,c,...,z) = —P(b,a,c,...,z), or, equivalently, if P(a,a,c...,z) =
0. For instance, the bracket polynomial [abc][def] — [abd][cef] has the equiv-
alence classes {a, b}, {c,d} and {e, f}. These are precisely the atomic exten-
sors in its Cayley factorization. Note that the bracket polynomial [abc][def] +
[abd][cef] (discussed in Example 3.5.1) has the equivalence classes {a, b},

{e. 1}, {c} and {d}.

Corollary 3.5.4. Let P be a multilinear bracket polynomial which is Cayley
factorable. Then each equivalence class of ~ is an atomic extensor in some
Cayley factorization of P.

Proof. If C is a simple Cayley expression which expands to P, and if A is an
equivalence class of points under ~, then by Lemma 3.5.3, there are no non-
trivial meets between the points in A. Hence C may be rewritten so that the
points of A are explicitly joined. Conversely, points in the same atomic extensor
must be in the same equivalence class. <

Lemma 3.5.5. Let P be a multilinear bracket polynomial which is Cayley fac-
torable, let A and B be atomic extensors of P, and suppose that P = (AAB)V QO
for some linear combination Q of extensors with bracket coefficients. Then there
exists a Cayley factorization P = (A A B) v U where U is a simple Cayley
expression.

Proof. Let C be any Cayley factorization of P, and let T be its tree. We fix
a generic hyperplane H in the ambient vector space V, and we specialize the
points of A and B to be in generic position in H, with all other points remaining
in generic position in V. Let P C and T denote the i images of P, C and T under
this specialization. We identify A and B with an inner node in T' (resp. T) Our
hypothesis implies P=o.

Suppose that A and B have a non-trivial join on the path between them in 7',
and therefore in T also. Consider the node o; on the path from A to B which is
nearest the root of T. If a non-trivial j join not equal to 01 occurs, then at most
one of its operands is in H, and at least one of its operands is in generic position
in V. The result of such a join is in generic position in V. Thus higher operations
in T never have more than one operand in H, and it follows that c # 0. The
other case is that o itself is a non-trivial join, both of whose operands are in
generic position in H. The non-triviality of the join at 0y in C implies that it
is also non-trivial in C. Thus the result of the join has step at most d — 1, and
is hence non-zero and in generic position in H. Again, higher operations in T
have at most one operand in H, and we again conclude that C s# 0. In both
cases we have contradicted P = C, hence there is no non-trivial join on the
path from A to B. By associativity and anti-commutativity of the meet, we may
rearrange so that (A A B) occurs explicitly in our Cayley factorization. <

<
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Neither Lemma 3.5.3 nor Lemma 3.5.5 generalizes to non-multilinear Cayley
expressions. These two lemmas are crucial for the correctness of the multilinear
algorithm below, and their failure in the general case indicates that the general
Cayley factorization problem is considerably harder than the multilinear prob-
lem. By a primitive factor of a simple Cayley expression C we mean an explicit
subexpression (E A F) in C, where E and F are two atomic extensors. Note that
any simple Cayley expression must have such a primitive factor, and Lemma
3.5.5 gives a criterion for detecting them in Cayley factorable multilinear bracket
polynomials.

Algorithm 3.5.6 (Multilinear Cayley factorization) (White 1991).

Input: A multilinear bracket polynomial P(a, b, c, ...) of rank d.

Output: A Cayley factorization C of P, if it exists; “NOT FACTORABLE” other-
wise.

1. Find all atomic extensors of P. We defined a ~ b by P(a,a,c,...) = 0.
This is checked using the straightening algorithm, where the transitivity of ~
cuts down on the number of pairs of points we have to check. If there do
not exist two atomic extensors whose sizes sum to at least d, then output
“NOT FACTORABLE”.

2. If there is an atomic extensor A of step d, then apply straightening with the
d elements of A first in the linear order. The result has the bracket [A] as
an explicit factor, P = [A] - P’. Remove A, store P = A A P/, and proceed
with the bracket polynomial P’ replacing P. Repeat step 2 as appropriate.
If P = £1, then we are DONE, and the required Cayley factorization may
be reconstructed.

3. Find two atomic extensors £ = {e1,e2,...,ex} and F = {f1, f2,..., fe}
with k + £ > d such that the criterion of Lemma 3.5.5 for E A F to be a
primitive factor is satisfied: Apply the straightening algorithm to P, using
an ordering in which e; < ... < ¢, < f1 < ... < f; comes first. Then the
result has the form

€1 Cee eee ees wes  Ef f1 fd-—k
> | fakrr o foom X2d—k—¢ (3.5.2)

X1sees Y1eee Y1 Ya

That is, every tableau has E in the first row, part of F filling up the rest of
the first row, and the rest of F in the second row. The sum is over various
terms with different choices for the x’s and y’s.

4. If such E and F do not exist, then return “NOT FACTORABLE”. If they do
exist, then choose new letters g1, g2, ..., g§p, where p = k+{—d, and store
G = E A F. Let G replace E and F in the collection of atomic extensors,
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and proceed with

l‘gl e 8 X1 ... X2d—k—t
P= 4 S Yd (3.5.3)
KXlseers Y1seen IV :
where x1, ..., y1, ... are the same as above.

5. Recompute the atomic extensors by trying to extend the current ones. Go to
step 2.

The termination and correctness of this algorithm is implied by our two
lemmas on the structure of multilinear simple Cayley expressions. Termination
is guaranteed because the loops in steps 2 and 3 are over the finite set of
atomic extensors, and both in step 2 and in step 4 the degree of the new bracket
polynomial P’ is one less than the degree of P. As for correctness, Lemma
3.5.3 implies that step 2 finds all atomic extensors of any potential Cayley
factorization. Lemma 3.5.5 guarantees that no backtracking will be necessary
in step 4. Once a tentative primitive factor (E A F) has been found in step 4,
then (E A F) must be part of a Cayley factorization if one exists at all. We now
illustrate how this algorithm works.

Example 3.5.7. We apply Algorithm 3.5.6 to the multilinear bracket polynomial
P = [abc]ldef ]+ [abd][cef] (cf. Example 3.5.1). Its atomic extensors are ab,
ef, c and d. In step 2 we see that there is no atomic extensor of cardinality 3 =
rank(P), and our unique choice in step 3 is the pair of extensors ab and ef. We
apply the straightening algorithm in the orderinga <b <e < f <c <d to P.
The output desired in (3.5.2) would have each monomial equal to [abe][f ...]
or [abf][e...]. This is not the case, because we get the output

labell fcd] — [abf1lecd] + 2[abc][ef d].
Therefore we conclude in step 4 that P is not Cayley factorable. <

Example 3.5.8. We apply Algorithm 3.5.6 to the multilinear bracket polynomial

P = [abc]ldef][ghk] — [abclldeg]l f hk]

354

— labd][cef1lghk] + [abd][ceg][ f hk]. G2

The atomic extensors are ab, cd, e, fg and hk, so we skip step 2. In step 3 we

choose the pair of atomic extensors ab and cd, and we apply the straightening

algorithm in the usual lexicographic order. Here (3.5.4) is already standard, and
it is of the form required in (3.5.2):

P = [ab &1[d ef [ghk] — [ab &11d egl[ fhk].
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In step 4 we now choose a new letter u, we store u = (ab A cd), and we
proceed with P’ = [uef1[ghk] — [ueg][ fhk]. In step 5 we compute the atomic
extensors ue, fg and hk, we skip step 2, and we then apply step 3 to ue and

fg to get P’ = [ue f][é hk]. In step 4 we now choose a new letter u, we
store v = (ue A fg), and we proceed with P” = [vhk]. Now the unique atomic
extensor is vhk, and we are done after a single application of step 2. Our final
result is the Cayley factorization

C=vAhk=(uen fg) Nhk = ({((abrcd)Ve)n fg) N hk. (3.5.5)

In this example it was relatively easy to guess the answer directly from the
input. Note, however, that P could have been presented in a completely different
form. For instance, if we switch a and k in the linear ordering of letters, then
the straightened form of (3.5.4) has 19 tableaux, and the Cayley factorization
(3.5.5) becomes far from obvious. <

The main bottleneck in Algorithm 3.5.6 is the application of the straightening
algorithm in step 1 and step 3. McMillen and White (1991) have given a variant
of the straightening algorithm which performs much better in step 3 — see White
(1991) — and which is also of general invariant-theoretic interest. This variant is
called the dotted straightening algorithm, and it can be understood as a special
case of the straightening law in the superalgebra due to Grosshans et al. (1987).

Exercises

(1) What is the geometric interpretation of the Cayley expression in (3.5.1)?

(2) * Find a bracket polynomial P and a single bracket T such that P is not
Cayley factorable but P - T is Cayley factorable.

(3) A Cayley factorable bracket polynomial generally has many distinct Cayley
factorizations. For instance, another Cayley factorization of (3.5.5) is
(((fg AN hk)V e) Aab) Acd.
(a) Find all distinct Cayley factorizations of the Pascal condition (3.4.9).
(b) Give an algorithm which finds all Cayley factorizations of a multilinear

bracket polynomial.

(4) Compute the (rank 4) bracket expansion of (((cdf Aagh)VvbijyAkim)Aeno,

and apply Algorithm 3.5.6 to the result.

3.6. Invariants and covariants of binary forms

The invariant theory of binary forms is a central chapter of classical invariant
theory. It links the theory of projective invariants which was studied in the
previous sections with the invariants and covariants of general polynomial sys-
tems. It is our principal objective to study binary forms from the perspective of
computer algebra. The general path of our exposition follows Kung and Rota
(1984), with the main difference that we avoid the use of the umbral calculus.



118 Bracket algebra and projective geometry

At this point we also refrain from employing techniques from the representation
theory of GL(C?), as these will be easier to understand (and appreciate) within
the general context of Chap. 4. Instead we discuss many elementary examples,
with a particular emphasis on projective geometry, and we illustrate the use of
Grobner bases as a tool for studying invariants of binary forms. In Sect. 3.7 we
will prove Gordan’s finiteness theorem, derive Kempe’s circular straightening
algorithm, and determine fundamental sets of covariants for binary forms of low
degree.

Our investigations will concern those properties of polynomial functions
on the complex projective line P! which are independent of the choice of
coordinates. A binary form of degree n is a homogeneous polynomial

flx,y) = Z (Z)ak xkyn=k (3.6.1)

in two complex variables x and y. The numbers a; are the coefficients of f(x, y).
For mainly technical reasons the coefficients are scaled by binomial factors (Z)
in (3.6.1). A linear change of variables (c;;) is a transformation of the variables
x and y given by

X =cnuX+cpy, y=cux-+cny (3.6.2)

such that the determinant of the transformation matrix, cj1¢22—c12¢21, iS nonzero.
Under a linear change of variables (3.6.2), the binary form f (x, y) is transformed
into another binary form f(x, y) in the new variables x and y. It is defined by

_ n

fE&H=Y (’,Z)ak (c11% + e (car X + cny)" . (3.6.3)

After expanding and regrouping terms, we obtain a binary form
Foe = S (M= —kon—k
fGE»=21, Jaxy" (3.6.4)
k=0 \k

in the new variables x and y. The new coefficients a; are linear combinations
of the a; whose coefficients are polynomials in the c¢;;. This representation is
described explicitly in the following proposition, whose proof we omit.

Proposition 3.6.1. The coefficients @ of the transformed binary form f(X, ¥)
satisfy

B n min(i,k) k n—k i ke n—k—id
ap = Z( ) ( )( ‘>cflc’12’c21 ! ehy ’“)ai (3.6.5)
i=0 \j=max(0,i—n+k) \J =]

fork=0,1,2,...,n.
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Changing our point of view slightly, we now assume that the coefficients
ag, di, - .., dy in (3.6.1) are algebraically independent variables over the ground
field C. Consider the polynomial ring Clao, a1, ..., a,, x, y] in both the old
variables x and y and the new variables a;. The group GL(C?) of invertible
2 x 2-matrices (¢;;) acts linearly on the (n+3)-dimensional vector space spanned
by ao, ..., dan,x,y. This action x — X, y = y, @; +> a; is described by the
formulas (3.6.2) and (3.6.5). It extends to an action of GL(C?) on the polynomial
ring Clao, ..., ay, x, y].

Example 3.6.2. Consider the case n = 2 of a binary quadric f(x,y) = a»x? +

2a1xy+apy®. The linear transformation group GL(C?) acts on Clag, aj, az, X, y]
via

@ ()= (5)=( o) (%),

- 2
ap agp 5 2¢12¢22 0%2 ap
ap | = | ar | = | caien cricn +ci2ea cric ai
= 2
ar as c5y 2c11¢621 C%l a

Here the coordinate vector (x, y) is transformed by the inverse matrix of (c;;),
while the coefficient vector (ao, a1, a2) is transformed by a 3 x 3-matrix which
is the second symmetric power of (c;;).

It is our objective to study and characterize the subring Clay, ai, . .., a,,

X, y]GL(CZ) of relative invariants with respect to the linear transformation group
GL(C?). A polynomial I € Clag, ay, ..., a, x, y] is said to be a covariant of
index g if

I(ao,ay, ..., an, X,y) = (cricn — c21¢2)® - I(ao, a1, ..., an, X, y).

A covariant I € Clag, ay, ..., ay, x, y] is homogeneous if it is homogeneous
both as a polynomial in the variables ag, aj, ..., a, and in the variables x, y.
In that case the total degree of I in ag, ay, ..., a, is called the degree of the
covariant /, and its total degree in x, y is called the order of I. A covariant of
order 0, that is, a covariant I € Clag, a1, ..., a,] with no occurrences of the
variables x and y, is said to be an invariant.

In many situations it becomes necessary to consider a collection of binary
forms

n; n;
filx,y) = Z( ’)aikxky”""‘, i=1,2,...,r

k=0 \ k

As before we assume that the a;; are algebraically independent over C, and we
consider the natural action of the group GL(C?) of invertible 2 x 2-matrices
on the polynomial ring in x, y and the a;;. A polynomial I € Clayg, a1, . ..,
Alnys + s Ar0s rls -« ., Arn,, X, y] is called a joint covariant of the forms
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f1, f>, ..., fr if it is a relative invariant of the GL(C%)-action. We say that [ is
a joint invariant of fi, fa, ..., fr if I does not depend on x and y at all.

Whenever a (joint) covariant 7 (a;t, x, y) vanishes identically under some
specialization of the a;, this means that a certain geometric condition is satisfied
by the specialized forms fi, f2, ..., f-. Conversely, every geometric (i.e., in-
variant) condition in the coefficients of f1, f2, ..., f- is expressible as a boolean
combination of a finite set of covariants.

Let us take a look at some examples of covariants of binary forms. We will
be particularly interested in the geometric meaning of these covariants. Consider
a binary quadric

fo = ax® +2a1xy + agy”,
a binary cubic

f3 = b3x® + 3byx?y + 3b1xy* + boy”,

and a binary quartic

fa= caxt 4+ 4csx®y + 6cox?y? + 4c1xy3 + coy™.

(a) We consider the polynomial Dy (ag, a1, a2) := apay — a1 in the coefficients
of the binary quadrlc In order to determine whether D, is an invariant,
we replace ag by ap = c%zao + 2cipcmar + clzaz, we replace aj by ap =
C21C200a0 +C11022a1 122141 +C11C12a2, and we replace ap by ay = 021(10 +
2c1162101 + c%lag. As the result we obtain

Dy (ao, ai, az)
2 ) 2 2 5 2
= (ca0 + 2c12ca1 + c1,a2)(c5 a0 + 2c1162101 + €11a2)
2
— (ca1cm0a0 + cr1c02a1 + C12021a1 + €11C12a2)
_ 2 2
= (cpcn — c21c12) (aoaz — ay)

2
= (cpc11 — ¢21¢12)" Dalao, ay, az).

This identity shows that D, is a covariant of degree 2, of order 0, and of
index 2. The invariant D5 is called the discriminant of the binary quadric f>.
It vanishes for a binary quadric f3 if and only if f, has a double root on the
projective line P!

(b) The discriminant

Di(bo, by, by, b3) := —9bb3 — 54bbybsby + 27b5b3 + 108b3bo + 4b3bs

of the binary cubic f3 is an invariant of degree 4 and index 6. It vanishes if
and only if f3 has a double root.
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(c) Our next example is the Hessian

3f 3% f
2 dxdy

Hi(bo, b1, ba, b - ox
3(bo, b1, by, b3, x, y) := det 2h 0
daxdy ay?

of the binary cubic f3. It is a covariant of degree 2, index 2, and order 2.
By expansion we find

%Hg (b3by — b3)x* 4 (—byby + b3bo)xy + (—b? + bybg)y?.

The Hessian vanishes identically (i.e., all three coefficient polynomials are
zero) if and only if f3 has a triple root.
(d) Next consider the polynomial
Ry3(ao, a1, az, bo, by, b, b3) =
bia; — 6boasbrag + 6boarbzaoa; — 6byatbza; — 6aibyazby
— 18arbiazbrag + 9b3a3as + 12albibsag + 12a2brazby — 8a3bsbg
+ 9apbtas — 6aibiazbs + a3b3.
This is the Sylvester resultant of the quadric f, and the cubic f3. The resul-
tant Ry3 is our first example of a joint 1nvar1ant It Vamshes 1f and-only if

Jf» and f3 have a root in common.
(e) The Hessian

f

. ax*  9xdy

Hy(co, c15 €2, 3, ¢4, %, y) i=det | W
dxdy ay?

of the quartic f4 expands to

(cacr — c3)x + (2cq4c1 — 203cz)x3y + (2c3¢1 + cac9 — 3c%)xzy2
+Qe3c0 — 2e2c1)xy” + (cac0 — D)y
after division by the constant 144. The Hessian Hj is a covariant of degree 2,
order 4 and index 6 which vanishes (identically) if and only if all four roots

of f4 coincide.
(f) Our next invariant is the catalecticant

¢ €1 (2
Cy(co, c1,02,¢3,¢c4) :=det{ c1 ¢ c3
¢ 3 Ca

= CpCoC4 — cocg — C%C4 + 2ci1cp03 — cg.
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This invariant cannot be interpreted easily in terms of the roots. For an
interpretation we need the general fact that every binary quartic can be
written as a sum

fa(x, y) = (uix — viy)* + (uax — vay)* + (uax — v3y)*

of three perfect powers. Now the catalecticant C4 of a quartic f4(x, y) van-
ishes if and only if f4(x, y) can be expressed as the sum of only two perfect
powers. A similar invariant Cy,, exists for every binary form of even degree.

(g) Finally, we consider the remainder obtained by dividing f4(x,y) into
f3(x, ) with respect to the variable x. After factoring out y?, this remainder
equals

F34(bo, b1, by, b3, co, 1, €2, C3, ¢4) =

(6b3cy — 3bsbica — 12bybscs + 9b3cy)x?
+ (—bsbocs — 12b1b3cs + 9bybacy + 4b3cr)xy
+ (B3co + 3bobacs — 4bobscs)y?.

This is a joint covariant of the cubic f3 and the quartic f. It vanishes if and
only if f3 divides f4, or, geometrically, if all three roots of f3 are also roots
of f4. In computer algebra (cf. Loos 1982) the polynomial Fz4 is known as
the first principal subresultant in the remainder sequence of f4 and f3.

Since the ground field C is algebraically closed, every binary form of degree n
can be factored into n linear factors. The coefficients ag, a1, . . ., a, of the binary
form

=3 (Z)ak xkynk

k=0
= (u1x — v1y)(ax — v2y) - - - (nX — Vpy)

(3.6.6)

can thus be expressed as polynomial functions in the roots (vi, 1), (vo, t2),
oy (U, ) of f(x,y). Here (v;, u;) is the homogeneous coordinate vector of
the i-th root of f on the projective line P!. In the examples (a)—(e) and (f)
discussed above we gave a geometric interpretation of the given covariant in
terms of the roots of the binary forms. Here we go one step further: Using
the root representation derived from (3.6.6), we shall characterize covariants
as those bracket polynomials in the roots which satisfy an easy regularity and
symmetry condition.

We treat the coordinates (g, vi, (2, V2, . . ., Un, Vy as algebraically indepen-
dent variables over C, and we denote with C[uy, vy, ..., in, Vs, X, ] the ring
of polynomials in both the homogenized roots and the original variables x and y.
The expansion in terms of roots defines a C-algebra homomorphism
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lI’I:C[a(h a19~'~,anax’y] — C[lu’lsvls'~'sl'l’n9 V}’h-x’y]

(—=D*
nf P> === V(1) " VaMrk+1) M)
n: zes,
(_l)k Vi Vy
=1 M Ok(—, ., =),
n! M1 Uy

(3.6.7)

Here o denotes the k-th elementary symmetric function in n variables. The
image W (/) of a polynomial / € Clap, ai, ..., ay, x, y] under the expansion
map W is called the representation of I in terms of homogenized roots. The
following lemma states that each covariant can be recovered uniquely from this
representation.

Lemma 3.6.3. The expansion homomorphism W is injective.

Proof. Let P be any polynomial in the coefficients and suppose that W(P) = 0
as a polynomial in the homogenized roots. Let now ag, ay,...,a, € C be
arbitrary field elements, and factor the corresponding binary form into linear
factors (u;x — v;y) as in (3.6.6). Here w; and v; are elements of the ground
field C. From the definition of W we get the following identity in the bivariate
polynomial ring C[x, y]:

P(..,a¢,....,x,y)
(_l)n—k
= P( ce Z M) - Mrk)Vrk+1) *Vam)s -+ X, y)
n! TES,

= [W(P)](Ml’ vla ey /Jvn, Vna x’ )’) = 0'

This proves that the polynomial P is equal to zero in the ring Clap, ay, ..., ay,
x,y]. <

This embedding raises the question under which conditions a polynomial in the
homogenized roots can be expressed in terms of the coefficients ag, a1, . . ., a,.
The answer is given in our next result, which is a homogenized version of
the main theorem of symmetric functions (Theorem 1.1.1). We first need the
following definitions. A monomial

M g lelug2 .o I’LZ" vijl v;z PPN v;;" xwlyw2
in the homogenized roots is said to be regular of degree d provided

urt+vi=up+uvm=...=u, +v, =d.

A polynomial R € Cluy, vi, ..., Un, Vn, X, y] is regular (of degree d) if ev-
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ery monomial in the expansion of R is regular (of degree d). A polynomial
R(1, Vi, ..., fn, Vn, X, y) is said to be symmetric provided

R(1, Vs ey Mons Vs X, Y) = R(r(1)s Va()s - - 5 Ha(n)s Vr(n)s X5 Y)
for all permutations 7w € ;.

Proposition 3.6.4. A polynomial R € C[u1, vy, ..., Un, Vns X, Y] 18 contain;d
in the image of the expansion map W if and only if R is regular and symmetric.

Proof. We see from (3.6.7) that the images of the variables ag, ai, ..., an, X,y
under ¥ are both regular and symmetric. Since the property to be regular and
symmetric is preserved under addition and multiplication, it follows that every
element of image(W) is regular and symmetric.
To prove the converse, let R be symmetric and regular of degree d. Then R
can be rewritten as
-~ Vi Vy

d
R(iu1, Vi, evny Mny Vny X, 9) = CR(—, ..., —, x,Y),
(1, vi s Vns X, ) = (U1 .- - tn) (m o )

where R is a symmetric function (in the usual sense) in the ratios l‘i—’ By Theo-

i

rem 1.1.1, we can write Rasa polynomial Q with coefficients in C[x, y] in the

elementary symmetric functions ak(-l‘:—‘;, e, %). Multiplying Q by (i1 ... ttn)?
and distributing factors of w1 ...u,, we obtain a representation of R as a poly-
nomial function in the magnitudes ;- - - unak(%, e %). By (3.6.7) this com-

pletes the proof of Proposition 3.6.4. <

In the following we give Grobner bases illustrations of Lemma 3.6.3 and Propo-
sition 3.6.4 for the special case of a binary quadric

Fx, ) = apx® + 2a1xy + agy? = pipa x2 — (ivz + vip2) Xy + viv2 2.
In order to invert the expansion homomorphism
W : Clao, a1, a2, x, y]1 = Clu1, vi, 42, v2, X, ]
we consider the ideal
I := {(ap — pip2, 2a1 + p1v2 + vipe, @ — vivz)

in the polynomial ring Clao, a1, a2, 1, v1, 2, v2]. This ideal is the vanishing
ideal of the graph of the map ¥. We compute the Grobner basis

G={pur—ay, pva+vipgr+2a, piag+ vipg + 2viar,

2
pdvi + 2par + vaar,  plag + 2pavaar + viaz,  vivy — dof
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of I with respect to the lexicographic order induced from p; > ps > vy >
vy > ag > a; > ap. The injectivity of the expansion map ¥ (Lemma 3.6.3)
is equivalent to the fact that no polynomial from C[ag, a1, a2] appears in the
Grobner basis . As an example for inverting W we consider the polynomial

R = uivi — vipipavy + viud € Cluy, vy, pa, v

which is symmetric and regular of degree 2. Taking the normal form of R
modulo G we obtain its unique preimage U-I(R) = 4a% — 3apas.

‘We now return to the general case, and we consider the action by linear substitu-
tion of the group GL(C?) = {(cij)} on the polynomial ring C[u1, v1, ..., tn, Vn,
x, y] in the homogenized roots. For any invertible 2 x 2-matrix (c;;) the resulting
transformation is described by the formulas

(W),_) (1:)1)=< €22 “C12>(Vi) and
Hi Mi —€21 C11/ \ i

X 1 _
5= G) = mmo—am (i ") (5)- e69
y Yy C11C22 — C12C21 \—C21 C11 y

In order to characterize the relative invariants of this GL(C?)-action, we use the
bracket notation for all vectors in question. As in the previous sections we set

[ij]=miv; —vip; and [iu] =y —vix

fori, j € {1,...,n}. The subring generated by these brackets in C[uy, vy, ...,
tn, Vn, X, y] is called the bracket ring. Every homogeneous bracket polynomial
R is a relative GL(C?)-invariant, which means that there exists an integer g € N
such that (¢;;) o R = det(c;;)® - R for all linear transformations (c;;) € GL(C?).
Also the converse is true.

Lemma 3.6.5. A homogeneous polynomial R in C[uy, vi, ..., i, Vn, X, y] is
a relative GL(C?)-invariant if and only if R is contained in the bracket ring.

Proof. If we restrict the linear action to the subgroup SL(C?) of unimodular
matrices, then we obtain the familiar action by right multiplication on the generic
(n 4+ 1) x 2-matrix

Vi M1
Vn Mn
X y

By the First Fundamental Theorem (Theorem 3.2.1), every invariant R(u1, vi,
..., Vp, X, y) can be written as a polynomial in the brackets

[12],[13],...[1nL, [23],...[n —1n],[1u],[2u],...[nu]. <
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We are now ready to prove the main result of this section.

Theorem 3.6.6. The expansion map W defines an isomorphism between the sub-

ring of covariants in Clag, a1, . . ., a,, x, y] and the subring of symmetric regular
bracket polynomials in C[u1, vi, ..., n, Vu, X, ¥]. If I{ag, a1, ..., ay,x,y)is a
covariant of degree d and order ¢, then W (/) is a symmetric bracket polynomial
with each of the indices 1, 2, ..., n occurring d times and the letter u occurring
¢t times.

Proof. Let I be any polynomial in Clag, a1, ..., ay, X, y], and let R = W (/) be
its image in C[uy, v, ..., Un, Yy, X, y] under the expansion map. The expan-
sion map W commutes with the GL(C?)-action on both rings, and hence [ is a
covariant if and only if R is a bracket polynomial (cf. Lemma 3.6.5). By Propo-
sition 3.6.4, R is regular and symmetric. Conversely, every regular symmetric
bracket polynomial R is the representation R = W(/) in terms of homogenized
roots of some covariant /. The fact that W restricts to an isomorphism follows
from Lemma 3.6.3.

Suppose now that the above / is a (homogeneous) covariant of degree d
and order ¢. Since W(x) = x and W(y) = y, also the bracket polynomial R
is homogeneous of order ¢ in (x, y). From formula (3.6.7) we see that, for
all i and k, the total degree of R in (u;, v;) equals the degree of I in aj. This
completes the proof of Theorem 3.6.6. <

Let us illustrate this representation theorem by some examples in the case
n = 3. We consider the seven bracket polynomials

Ry :=[12][2u][3u],

Ry :=[12][13][2u][3 u],

R3 :=[1u] + [2u] + [3u],

R4 := [12][12][13][13][23][23],

Rs :=[1u][2u][3u],

Re = — [12][12][3 u][3u] — [13][13][2u][2u] — [23][23][1 u][1 u]

+ 2[12][3 1][2 w][3 u] + 2[23][1 2][1 u][3 u] + 2[3 1][2 3][1 u][2 u],

Ry := —4[12][1 2][3u][3u] + 4[12][1 3][2u][3 u] — 4[1 3][1 3][2u][2u].
The bracket polynomial R; is neither symmetric nor regular, R is regular of
degree 2 but not symmetric, and R3; is symmetric but not regular. The bracket
polynomial R4 is symmetric and regular of degree 4: it is the root representation
of the discriminant D3 of the binary cubic f3(x, y). Rs is symmetric and regular
of degree 1: it equals the binary cubic f3(x, y), here viewed as a covariant of
itself. Rg is symmetric and regular of degree 2: it equals (up to a multiplica-

tive constant) the root representation of the Hessian of H3 of the binary cubic
Jf3(x,y). The last bracket polynomial R; is regular but it appears to be not
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symmetric. However, we can see that Ry is symmetric if we use some syzygies.
Indeed, R; equals the expansion of R in terms of standard tableaux (for the
order 1 <2 <3 < u) and thus also represents the Hessian.

By suitably extending the notion of regularity, all results of this section
generalize to several binary forms. Let fi(x, y),..., f;(x, y) be binary forms

of degrees ny,...,n,, and let vlgk), ,ul(k), i =1,2,..., ng, be the homogenized

roots of the k-th binary form fi(x, y). The brackets are the polynomials in the

algebra C[vi(k), ,ul(k), x, y] of homogenized roots of the form

(k) Dy ., B D) (OIN(9) (k) 1 o, (&) 0}
Y] = p, V= Y or [i u]._,ul.x—,u,jy.

1

Here a bracket polynomial R is symmetric if it is invariant under permuting the
roots of each form fi(x, y) individually, and R is regular of degree (dy, . .., d,)
if each root of fi(x,y) occurs with the same multiplicity d;. With this defini-
tion of symmetric regular bracket polynomials, the assertion of Theorem 3.6.7
extends to several binary forms.

It was stated in Sect. 1.3 that we wish to provide algorithmic tools for going
back and forth between geometric statements and invariants/covariants. In the
case of binary forms this means that we would like to compute the covariants
for a given geometric property of binary forms, and vice versa. If such a geo-
metric property is presented as a bracket polynomial in the roots, then we can
use the Grobner basis inversion of W to compute the corresponding covariant.
Conversely, whenever we are given a covariant, then we can expand it into
homogenized roots and use Algorithm 3.2.8 for computing the corresponding
bracket polynomial. We close this section by giving examples for these trans-
formations.

Consider two binary quadrics

f@x,y) = apx® 4+ 2a1xy + afy = (u1x — v1y)(uox — v2y) and
g(x,y) = box* 4 2byxy + B3y = (u3x — v3y) (14X — v4y).

The polynomial

R :=[13][14][23][24]
= (Viu3 — u1v3) (Vg — p1va) (V23 — Uov3) (Vapa — Uovs)

is symmetric and regular of degree (2,2). Clearly, R vanishes if and only if
f and g have a root in common. In order to find the coefficient representation
W(R) of the invariant R, we consider the ideal

(ao—v1v2, bo—Vv3va, az— 12, by — 3 i, 2b1+p3v4+v3 04, 2a1+pm1va+vi o)

of algebraic relations between the coefficients and the roots. We compute its
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Grobner basis G with respect to the purely lexicographic order induced from
V] > ] > V) > Up > V3 > U3 > Vg4 > g > dg > dq > dy > by > by > bs.
The normal form of R modulo the Grobner basis G equals

UNR) = 4agarbi + 4alboby — 4agaibiby — 4 ayarboby
— 2 aparbob, + a(z,b% + a%bg.
This is the expansion of the Sylvester resultant of the two quadrics f(x, y) and
g(x,y) in terms of their coefficients.
Next we illustrate the reverse direction for the bilinear invariant L, = agb, —

2a1by + azbg of f(x,y) and g(x, y). In order to “automatically” derive the
geometric interpretation of L;, we first compute its expansion

W(Ly) =  2pipov3va + 2 3jaavivy — [1V2[h3V4 — U1V2V3 U4
— V{J3V4lh2 — V12V L4
in terms of homogenized roots. We apply Algorithm 3.2.8 to find the standard
tableaux expansion
W(Ly) = —[12][34] + 2[13][24]
= —(u1v2 — vipu2) (U3vs — v3pg) + 2 (1v3 — v1u3) (Uavs — Vapg).

Note also the alternative bracket representation

W(Ly) =[13][24] + [14][23]
= (U1v3 — vips) (ave — o) + (1ve — vipa) (23 — v2u3)

which makes the symmetries (“1” < “2” and “3” <> “4”) more transparent.
As the result we conclude that the joint invariant L, of two binary quadrics
vanishes if and only if the projective cross-ratio

[13][24]

1,2;3,4) =
[14][23]
of the two pairs of roots is equal to —1.

Exercises

(1) Prove Proposition 3.6.1.

(2) Find a joint covariant of the binary cubic f; and the binary quartic
f4 which vanishes if and only if f3 and f; have two or more roots in
common.

(3) Define the catalecticant Cy,, of a binary form f5,,(x, y) of degree 2m, and
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show that C,,, vanishes if and only if f5,,(x, y) can be written as a sum of
m or less perfect powers.

(4) Let I be a covariant of degree d and order 7 of the binary form f, (x, y) of
degree n. Prove that the index of 7 equals g = %(dn —1).

(5) The bracket monomial [12][1 3][14][23][24][3 4] represents the
discriminant of the binary quartic

fa = cax® +4e3xy + 60237y + derxy? + coyt

in terms of its homogenized roots. Write this invariant as a polynomial in
the coefficients ¢y, ¢y, ¢3, ¢3, C4.

(6) Express the catalecticant Cy4 of the binary quartic f4(x, y) as a bracket
polynomial in the roots of fj.

(7) Express the first principal subresultant F4 of the binary quartic fi(x, y)
and the binary cubic f3(x, y) as a bracket polynomial in the seven roots
and u.

3.7. Gordan’s finiteness theorem

We now come to the central problem of classical invariant theory: Does there
exist a finite set of generators for the ring of covariants? For binary forms the
affirmative answer to this question was given by Gordan (1863). Gordan’s finite-
ness result is undoubtedly one of the most important theorems of 19th century
constructive algebra. Both Gordan’s original proof and the proof presented here
are algorithmic. They can in principle be used to compute fundamental systems
of (joint) covariants for binary forms of any degree.

Theorem 3.7.1 (Gordan’s finiteness theorem). There exists a finite set of co-

variants {Iq,..., Iz} of a binary form of degree n such that every covariant
I € Clag, a1, ...,an, x,y] can be expressed as a polynomial function / =
pl, ..., I).

In order to prove Theorem 3.7.1, we need one lemma about finite group
actions on quotients of polynomial rings. Let I' C GL{C") be any finite matrix
group, and let / be an ideal in the polynomial ring C[xy, ..., x,] which is fixed
under the action of I" on /. In this situation, we get an induced action of " on
the quotient ring C[x, ..., x.1/1.

Lemma 3.7.2.

(a) Suppose that p1, ..., p, generate the invariant ring C[x1, ..., x,]'.
Then (Clxq, ...,xr]/l)r is generated by the images of pi, ..., p, under
the canonical surjection Clxy, ..., x,] = Clxy, ..., x]/1.

(b) The invariant ring (C[xy, ..., x,]/1)" is generated by the Reynolds images

(x{'xy’...xr)* of all monomials x,'x3...x with degree i; +iy +...+1i,

=T
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Proof. We need to show that every element p € (Clxy,...,x,]/] )I' can be
written as a polynomial in (the images of) py, ..., p. The fact that p is invariant
means that p — p* € I. But the canonical preimage of p* is an invariant in
Clx1, ..., x,] and thus is expressible as a polynomial in pi,..., p,. Hence
p =p"+ (p—p*) € pt 4+ I can be written as in terms of the residues
p1+1,..., pm+ 1, and (a) is proved. Statement (b) follows directly from (a)
and Noether’s degree bound (Theorem 2.1.4). «

As before in Sect. 2.5, we can apply Grobner basis methods to compute
an optimal generating set, which is usually much smaller than the one given
in Lemma 3.7.2 (b). Note, however, that in general we cannot obtain a Hiron-
aka decomposition because the invariant ring (C[x1, ..., x,]/7)" need not be
Cohen—Macaulay.

Proof of Theorem 3.7.1. The bracket subring in C[u1, vi, ..., in, Vu, X, ¥] is
denoted by

B:=C[[12],[13],...[1n],[23],...[n — 1n], [1u],[2u],...[nu]].

We write By, for the subring of regular bracket polynomials in B, and we
write Bieg sym for the subring of symmetric regular bracket polynomials in Bieg.
By Theorem 3.6.6, it suffices to show that Bes oym is finitely generated as a
C-algebra.

A bracket monomial M € B is said to be minimally regular if it is regular
and none of its proper factors are regular. Let M denote the set of minimally
regular bracket monomials in B. By minimality, no two elements of M are
comparable in the divisibility order. Gordan’s lemma (Lemma 1.2.2) implies
that the set M is finite, say M = {My, My, ..., M,}. In other words, the M;
are polynomials in the homogenized roots which generate the subring of regular
bracket polynomials:

Breg = C[M1, M3, ..., M,].

The symmetric group S, acts on the bracket ring 3 by permuting the letters “1”,
“27, ..., “n”. Since minimally regular monomials remain minimally regular after
permuting letters, the symmetric group S, acts on the subring B, of regular
bracket polynomials by permuting its generators My, M>, ..., M,.

In this situation we can apply Lemma 3.7.2 (a) in order to conclude that the
subring

Breg,sym = B, = C[M1, Ma, ..., M,1% (3.7.1)

reg
of symmetric regular bracket polynomials is finitely generated. Lemma 3.7.2 (b)
implies that an explicit finite set of generators for this invariant ring is given by
the Reynolds images (M|' My’ ... M/")* of all monomials M;' M3 ... M/r with
degree i1 +i2 + ...+ i, < n!l. This completes the proof of Gordan’s finiteness
theorem. <

The above proof is not entirely satisfactory because the invocation of Gor-
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dan’s lemma appears to be a non-constructive step. Kung and Rota (1984) sug-
gest two possible algorithms for computing a generating set M = {My, M, ...,
M, } of the subring B, of regular bracket polynomials. The first approach con-
sists in expressing the exponent vectors of all regular bracket monomials as the
non-negative solutions of a linear diophantine system. Using algorithms from
integer programming, we can compute a Hilbert basis for the monoid of all so-
lutions; see Sect. 1.4. The bracket monomials corresponding to these exponent
vectors then generate the ring Beg.

The disadvantage of the general integer programming approach lies in the
fact that it ignores the specific combinatorial structure of our problem. The
second and more efficient algorithm is based on the following result of Kempe.

Theorem 3.7.3 (Kempe’s Lemma). The ring Bie, of regular bracket polynomials
is generated by all bracket monomials which are regular of degree 1 or 2.

The proof of Kempe’s lemma, given in sections 6.2 and 6.3 of Kung and
Rota (1984), is based on the circular straightening algorithm. In the spirit of
Sect. 3.1 we will interpret circular straightening in terms of Grobner bases. This
leads to a new proof of Theorem 3.7.3, based on Proposition 3.7.4 and Lemma
3.7.5 below.

Consider the set S, » of straightening syzygies in C[A (n, 2)],

Piiisigia -= [183]li214] — [i1i2]1li3ia] — [i1ialliziz] (1 <iy < iy < i3z <is < n).

Let <circ be any monomial order on C[A(n, 2)] which selects the underlined
initial monomial for each syzygy P; ;,i,i,. Establishing the existence of such a
monomial order is a non-trivial exercise in solving linear systems of inequalities.
It can also be deduced from the proof of Kung and Rota (1984: lemma 6.1) in
conjunction with the main theorem in Reeves and Sturmfels (1992).

Proposition 3.7.4. The set S, , is a Grobner basis of the syzygy ideal with
respect to <circ-

First proof. Suppose that n is the smallest positive integer for which Propo-
sition 3.7.4 is false. By the Buchberger criterion (Buchberger 1985: theorem
6.2), there exist two polynomials P; ;,;,;, and Pj j,,j, whose S-polynomial with
respect to <. does not reduce to zero. By Exercise 1.2. (6), the initial mono-
mials of P; iy, and Pj j,j,;, cannot be relatively prime, and therefore the set of
indices {i1, i2, i3, i, j1, J2, j3, j4} has cardinality at most seven. After relabeling
we assume that {i, iz, i3, i4, j1, j2, J3, ja} € {1,2,...,7}. Our minimality as-
sumption implies # < 7. It is clear that n > 5 because there are no syzygies for
n < 3 and for n = 4 the syzygy ideal 14, = ([13][24] — [12][34] 4 [14][23]) is
principal. It therefore suffices to verify the Grobner basis property in the three
cases n = 5, 6, 7. This can be done easily by computer. <

Here is an alternative and more conceptual proof, based on enumerative
combinatorics.
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Second proof. Let init.(I, ) denote the initial ideal of I, with respect to the
standard tableaux order in Sect. 3.1, and let init-,_(/, ) denote the initial ideal
with respect to the circular order <. Let J denote the ideal in C[A(n, 2)]
generated by all initial monomials init< . (P iyii,) = [i1i31[i2i4], where 1 <
i1 < iy < i3 < is <n.We need to show that the inclusion J C init- (I,2) is
an equality. This will be done using proposition 7.3 of Sturmfels and Zelevinsky
(1992). In order to apply this result, we need to verify that the monomial order
<cire 1S compatible with the set 5, 5.

Every square-free monomial ideal can be identified with a simplicial complex
(Stanley 1983: section IL.1). Let A, and A) be the simplicial complexes on
A(n, 2) such that

J =15, and init<(ly2) = Ia;. 3.7.2)

Now, by Exercise 3.1.5, the complex A/, is isomorphic to the chain complex of

a poset on A (n, 2). This poset is isomorphic to the graded poset J([n—2] x [2]),
consisting of the order ideals in the product of chains [n — 2] x [2]. It follows

from Stanley (1986: example 3.5.5) that A, is a pure (2n — 4)-dimensional .

complex with n—lT(Zr:’__;) maximal faces. By Theorem 3.1.7, this number equals

the degree of the syzygy ideal I, 5.

Every maximal face of the complex A, contains the set {[12],[23],...,
[n — 1n], [n1]}. Hence A, is the free join of an (n — 1)-simplex with a certain
simplicial complex ¥, of dimension n —4 on the set A\ {[12],[23],...,[n —
1n], [n 1]}. Identify this set with the set of diagonals in a regular planar n-gon.
The faces of the complex X, are precisely the sets of non-crossing diagonals.
It is known (Lee 1989) that ¥, is the boundary complex of a simplical (n — 3)-
polytope Q. The polar to the polytope Q, is the famous associahedron or
Stasheff polytope. We conclude that A, is a pure (2n —4)-dimensional complex.
By Lee (1989: theorem 3), the number of maximal faces of A, equals the
Catalan numbers

1 (2n—4
f2n—4(An) = m( nn_ 2) = f2n——4(A;,)- (373)

We now apply proposition 7.3 of Sturmfels and Zelevinsky (1992) to complete
our proof. <«

As in Sect. 3.6, we work in the polynomial ring C[A(n + 1, 2)], where we
identify the index n + 1 with the letter x. A bracket monomial in C[A(n +1, 2)]
is called cyclically standard if it is standard with respect to the Grobner basis
in Proposition 3.7.4. We call a bracket monomial elemental if it is minimally
regular and cyclically standard. For instance, if n = 5 then the bracket monomi-
als [12][34][(5x], [12][3x][4x][5x], and [1 2][23][34][45][5 1] are elemental.
It follows from Proposition 3.7.4 that the elemental bracket monomials gener-
ate By, as a C-algebra. Therefore Theorem 3.7.3 is implied by the following
lemma.
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Lemma 3.7.5. Every elemental bracket monomial in Bieg is regular of degree
at most 2.

Proof. Suppose M is elemental and regular of degree d. By the second proof of
Proposition 3.7.4, the brackets occurring in M can be extended to a triangulation
of the (n+1)-gon having vertices 1, 2, ..., n, x. We now use the elementary fact
that (the edge graph of) any triangulation of a regular (n + 1)-gon has at least
two 2-valent vertices. This implies that at least one of the indices 1,2,...,n
occurs in at most two distinct brackets of M. Therefore M is regular of degree
at most 2. <

Our results suggest the following algorithm for computing a fundamental
system of covariants {Iy, ..., [y} of a binary n-form. First compile a list of all
elemental bracket monomials, and then apply Lemma 3.7.2 (b) to this list to get
a presentation as in (3.7.1).

Example 3.7.6 (Fundamental system of covariants for the binary cubic). For
n = 3 there are precisely four elemental bracket monomials:

A:=[12][23][31], B:=[12][3x], C :=[23][1x], D :=[1x][2x][3x].
By Lemma 3.7.1, the ring of covariants is generated by the finite set
{(A'B/C*DYY* i, j k1 eN,i+j+k+1<6}, (3.7.4)

where “*” denotes the Reynolds operator for the action of the symmetric group
S3 on the bracket algebra. For instance,

(B*CH* = %([1 20131 2 x1* 3 %1% + [2 11212 31*[1 x1*[3 x]?

+ BIPB2 X2 x]Z).

The set (3.7.4) is by no means a minimal generating set for the covariant ring.
To reduce its size, we first observe that both A2 = (A%)* and D = D* are
covariants already. For, the bracket monomial %AZ equals the discriminant,
and D is the form itself. By Proposition 2.1.2 (c), we have (A'B/C¥D)* =
A=UD . (A"BICky* where i’ = 1 if i is odd and i’ = 0 if i is even. We
conclude that the set

{42, DJU{(A'B/CY* :i, j,keN, i €{0,1}, i+j+k<6} (3.7.5

suffices to generate all covariants. By explicitly evaluating all covariants in
(3.7.5), we can show that the following four covariants are sufficient.



134 Bracket algebra and projective geometry

PI'OPOSiﬁOP 3.7.7. A minimal generating set for the covariants of the binary
cubic consists of the following four covariants:

[ =a3x® +3axx?y + 3axy? + apy?, the form itself;

D= a%a% — bazapaia; — 3‘1%613 + 4a§’ao + 4afa3, the discriminant;

H = (a3a; — a3)x* + (azap — ara)yx + (azag — a?)y?, the Hessian; and

T = (a%ao —3azaza; + 2a§’)x3 + (3a%a1 + 3azazag — 6a3a%)yx2 + (—3a2af +

6;!%31{0 —3a1a3a0)y*x + Baiayag — 247 — aZas)y®, the Jacobian of the form and
the Hessian.

4H;I‘heounique minimal syzygy among these covariants equals f2D — T? —

Proof. We need to show that each covariant in (3.7.5) can be expressed as a
polynomial in f, D, H and T. Using computer algebra, we find the following
presentations:

(BY* = (C*)* = —6H, (BC)* =3H, (BC?" = gT, (B*C)* = —§T,

(BH* = (C*Y* = 54H", (BC%* = (B3C) = —27H?, (B*C?)* = 27H?,

(BCY* = (BYCY) =~ HT, (B°CY)* = (BC)" = —82—1HT,
. 27
(BC)* = (B°C)* = 712 +297H3, (B*CH* = (B*CH* = 277J2 — 189H3,

(B3CY* = 2177 + 135H3,  (AB%)* = (ACY)* = 27DF,
27
(AB*C)* = (ABCH* = —5Df, (ABY)* = (AC%)* = —405DHY,

* * 405 —
(AB*C)* = (ABCH* = ——DHY, (AB*C®* = (AB3C?) = %DHf.

The Reynolds images of all other bracket monomials A’B/C* in (3.7.5) are
ZEro.

It remains to be shown that the ideal of algebraic relations among f, D,
H and T is the principal idea] generated by f 2D — T? — 4H3. The validity
of this syzygy is easily checked, and since f2D — T2 — 4H? is an irreducible
polynomial, it suffices to show that f, D and H are algebraically independent.
But this follows from the fact that their lexicographic initial monomials azx3,

2.2 2 : .
azaj and aza;x” are algebraically independent. <

In closing, we briefly mention the known results for binary forms of higher
degree n. Explicit fundamental systems of invariants and covariants are known
only for n < 8. For details see Meyer (1892), Springer (1977: section 3.4),
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and Dixmier and Lazard (1988). However, as in the case of finite groups, it is
possible for general n to determine a priori the Hilbert series of the invariant
and covariant ring of a binary n-form. This result is based on the representation
theory of GL(C?). It will be presented in Sect. 4.2.

Exercises

(1) Prove that every invariant of the binary quadric f,(x, y) is a polynomial
function in the discriminant D, = aga, — a12. Prove the same result for the
binary cubic.

(2) * Let{l, I, ..., I} be a minimal generating set for the joint covariants
of a binary cubic f3(x, y) and a binary quartic f4(x, y). Find an upper
bound for the degrees of the fundamental covariants /;.

(3) Determine the Hilbert function of the ring of covariants of a binary cubic.

(4) * Find finite generating set for the invariants and covariants of a binary
quartic f4(x, y). Write each element in your generating set as a bracket
polynomial in the roots. (Hint: Use the list 3.4.4 in Springer (1977).)



Invariants of the
general linear group

This chapter deals with methods for computing the invariants of an arbitrary
polynomial representation of the general linear group GL(C"). The main al-
gorithm, to be presented in Sect. 4.6, is derived from Hilbert (1893). We will
discuss Hilbert’s algorithm from the point of view of Grobner bases theory. This
chapter is less elementary than the previous three. While most of the presenta-
tion is self-contained, familiarity with basic notions of commutative algebra and
representation theory will be assumed.

4.1. Representation theory of the general linear group

Throughout this chapter we let I' = GL(C") denote the group of invertible
complex n xn-matrices. This section provides a crash course in the representation
theory of I". All stated results are well known, and we will omit most of the
proofs. This theory is essentially due to I. Schur, with extensions by H. Weyl
and A. Young. A comprehensive introduction with many geometric applications
can be found in Fulton and Harris (1991).

A representation of T (or I'-module) is a pair (V, p) where V is a C-vector
space and

po: T — GL(V),

4.1.1
A = (@<, j<n > p(A) = (pkl(A))15k,15N ( :

is a group homomorphism. The dimension N of the representation (V, p) is the
dimension of the vector space V. We say that (V, p) is a polynomial repre-
sentation (of degree d) if the matrix entries p(A) = pr(ait, a2, - - ., Aun) are
polynomial functions (homogeneous of degree d). If the action p is understood,
then we sometimes write A o v instead of p(A) - v, where v € V and A € T'.

Examples of representations 4.1.1.
(a) The trivial representation: V =C", (N =n,d=1).

(b) The determinant: V = C!, p =det, (N =1,d =n).
(c) The action p by left multiplication on the space of n x s-matrices

V=C"*=C"¢pC"®..eC". (N=s-n,d=1)

s times

(d) The adjoint representation: V = C"*", p = the action by conjugation:
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AoM = AMA™!. This is not a polynomial representation but a rational
representation, i.e., the py (A) are rational functions. Note that det(A)"~! is
a common denominator for the rational functions oy (A).

The following result explains why we restrict ourselves to polynomial
representation.

Proposition 4.1.2. Given any rational representation p : I' — GL(V), there
exists an integer k£ and polynomial representation o’ : I' — GL(V) such that
o =p -det™ .

From now on all representations are assumed to be polynomial represen-
tations of I.

(e) The d-th symmetric power representation: V = §;C" = the space of ho-

mogeneous polynomials of degree d in xi, X2, ..., X,, p = action by lin-

ear substitution, N = ("+g—1). For instance, for d = 3, n = 2 we have

S3C? = binary cubics = span{x>, x2y, xy2, y°} ~ C%, and p is the group

homomorphism
(011 aipp )
a;  ax
3 2 2 3
aiy apdn andy a1

2 2 2 2
3ajja21  ajjaxn + 2ay1a12a01  2anapaxn +apas,  3ai,an

3ania3; 2anandxn +anal; anal, +2ananan  3and,

ai?’l a3 axn azaj, a3

(f) The d-th exterior power representation: V = AyC" = the space of alternat-
ing d-forms on C". A basis of V is {e;, A... A€, 11 <ij <...<ig <n}.
Here N = (Z) and p(A) = NgA, the d-th compound matrix whose entries
are the d x d-minors of A.

(g) The d-th tensor power representation:

V=,C"=C"®C"Q...®C". (N = n%)

d times

(h) Building new representations from old ones: For any two I'-representa-
tions (V, p) and (W, o), we can form their direct sum (V & W, p @ o) and
their tensor product (VQ W, p @ o). If {vy, ..., vy} and {wy, ..., wy} are
bases of V and W respectively, then {vy, ..., vy, wy, ..., wy} is a basis of
VeW,and {vy®w; : 1 <i <N,1 <j<M}is abasis of V® W. The
two new representations are defined by

v = p(A)v;
wj = o (A)w; 4.1.2)
(b ®0)A) v, @wj = (p(A)v) ® (G(A)wj)_~

(o ®o)A): {

4.1. Representation theory of the general linear group 139

A main tool for studying representations of the general linear group is the
theory of symmetric polynomials. We write C[A] = Clai1, @12, - . ., @ny] for
the ring of polynomial functions on n x n-matrices. We consider the action of
I" on C[A] via the adjoint representation (d). Let C[A]" denote the invariant
ring. The character of a polynomial representation (V, p) is the polynomial
tr,(A) := trace(p(A)) in C[A]. Since the trace is invariant under conjugation,

we have tr,(B"!AB) = tr,(A).

Remark 4.1.3. For every polynomial representation (V, p), the character tr, lies
in C[A]".

Let t1, o, ..., t, be new variables representing the eigenvalues of a generic
n x n-matrix A. We write diag(ty, &2, . . . , t) for the corresponding diagonal ma-
trix. Every symmetric polynomial in 1, 2, . .., f, can be written as an invariant
polynomial in the entries of A, and vice versa, by Exercise 1.3. (4).

Lemma 4.1.4. The map f > f(diag(t1, 1, ...,1,)) defines an isomorphism

between the invariant ring C[A]" and the ring of symmetric polynomials C[ty, 2,
..., 1,15, The image of the character tr,(A) under this isomorphism,

folt1, 12, - . ., ty) = trace(p(diag(t1, 2, . . ., 1)), (4.1.3)

is called the formal character of the representation (V, p). Note that the di-
mension of V can easily be read off from the formal character: dimV = N =

A1, .

Examples 4.1.5. The formal characters of the representations in Examples 4.1.1
are:

(a) g“—:g';, ;p=t1+tz+...+tn.

b = , =1Illy... 1.

Ec; V= C”Xs,pfp =51+t +...+ ).

(e) V = S§,C", f, = the sum of all degree d monomials in 1, ..., #, (the d-th
complete symmetric polynomial); for instance, for V = S,C? we have f, =
B+ 2o +nt+1.

() V = nqgC", f, = the d-th elementary symmetric polynomial in #1, 22, . . ., fp.

@V =0C" fr=0t+0+...+t)"

Lemma 4.1.6. The formal characters of the direct sum and the tensor product
satisfy the relations f,es = fp + fo and foge = fp* fo-

Proof. This follows immediately from the rules for traces of matrices: trace(A
@ B) = trace(A) + trace(B) and trace(A ® B) = trace(A) - trace(B). <

A submodule of a representation (V, p) is a pair (W, p|lw), where W is a
[-invariant subspace of V and p|w is the restriction of p to W. We say that
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(V, p) is irreducible if V contains no proper I'-invariant subspace. Otherwise it
is reducible. For instance, the representations S;C" and AyC" are irreducible,
while the representation ®,C" is reducible for d, n > 2.

Theorem 4.1.7 (Schur). Every I'-representation is a direct sum of irreducible
representation, and it is uniquely determined by its formal character (up to iso-
morphism).

A standard problem is to decompose the tensor product of two irreducible
representations into irreducibles. Only in certain extreme cases it can happen
that such a tensor product is again irreducible. For instance, for n = 2 the
representation W(z,l)Cz := AyC? ® C? is irreducible. It has the formal character
fp =ttt + 1).

Example 4.1.8 (Decomposition into irreducible representations).
(a) Every tensor in ®,C" can be written uniquely as a sum of a symmetric tensor
and an antisymmetric tensor. For instance, we have the decomposition

®,C3 = $,C3 @ A, C?
(+h+0) =@+ +2+un+n6+ bi3) + (htr + tts + tot3)

(b) The statement in (a) is false for tensors in ®,;C" with d > 3. For instance,

®3C2 = S3C2 [asy W(z’l)cz (&) W(2,1)C2
(i +n) = +86+n +8) + P+ nid) + o+ nid)

The Grothendieck ring M(T') is the Z-algebra generated by all (isomorphism
classes of) I'-representations, having addition @ and multiplication ®. Theorem
4.1.7 states in other words that the formal character defines a monomorphism
from the Grothendieck ring M (I") into Z[t, ..., t,]5, the ring of symmetric
polynomials with integer coefficients. By Theorem 1.1.1 and Example 4.1.5 (f),
this map is in fact an isomorphism.

Corollary 4.1.9. The Grothendieck ring M (") is isomorphic to Z[z1, . .., t,]%.

We will now describe the irreducible I'-representations. First note that ev-
ery irreducible polynomial I'-representation is homogeneous of some degree d
(Exercise 1 below). The following basic fact is also due to Schur.

Proposition 4.1.10. Every irreducible I'-representation of degree d is a sub-
module of ®,C".

Let A = (A1, A2, ..., A,) be a partition of the integer d. The Ferrers diagram
of Aisthe set {(i, j)eZ?*:1<i<n,1< J < Ai}. A standard Young tableau
of shape X (for short: sYT 1) is a filling T of the Ferrers diagram of A with the
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integers 1,2, ..., d (without repetitions) such that the rows and the columns are

increasing. .
For instance, the partition A = (3, 3, 1) of d = 7 has the Ferrers diagram

.
OO,
|

Examples of sYTA’s corresponding to this partition are

1 2 3 1 2 3 1 2 3 1 2 4 1 4 6
4 5 6, 457, 46 17, 356, ..., 2517
7 6 5 7 3
1 3 6 . . .
The tableau 2 4 5 is not a SYTA because its last column is not increasing.
7

With each syTA T we associate an idempotent linear map cr : ®;C" —
®4C". This map is called the Young symmetrizer of T, and it is defined as
follows. Let rowstb(T) denote the subgroup of permutations of {1,2,...,d}
which preserve the set of entries in each row of T. Similarly, let colstb(?")
denote the subgroup of permutations of {1,2, ..., d} which preserve the entries
in each column of 7. We define c7 by giving its image for decomposable tensors:

r i v®N®- - Qua > Y Y. (5ign0) V(1) ®Vor(2)®- - - OVor(a)-

o €colstb(T') terowstb(T)

Let W7 C" denote the image of the Young symmetrizer c7. Thus WrC" is the
subspace of all tensors in ®,;C" which are symmetric with respect to the rows
of T and antisymmetric with respect to the columns of T. The I'-representation
WrC" is called the Weyl module associated with the syTA T. If T and T’ are
SYT of the same shape A, then Wr and Wy are isomorphic I'-modules, and we
sometimes write W, := Wy >~ Wy,

Theorem 4.1.11. The Weyl modules WrC”" are precisely the irreducible r-
modules of degree d. The Young symmetrizers cr define an isomorphism of
I"'-modules

A=d T syTA

The first direct sum in (4.1.4) is over all partitions A of d, and the sec-
ond direct sum is over all standard Young tableaux T of shape A. The Young
symmetrizer cr is the projection from ®;C" onto WrC". For d = 2 the de-
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composition (4.1.4) looks like

C1 Dy, ,C" — W,C"d WiC" = 5C" @ AC!
2 2 4.1.5)
V1 QU —> (V1 QU2+ 1v2Q@v1) + (V1 ® vy — V2 @ V1)

For d = 3 there are three different partitions and four different syT’s. We have

®3C" ~ W§C"®W;2C”®W;3C"@W123Cn- (4.1.6)
3

As is seen in Example 4.1.8 (b), the last summand in (4.1.6) is zero if n = 2.

We now construct an explicit basis for the Weyl module WrC". As a conse-
quence we will obtain a description of the formal character of Wy C". A semi-
standard Young tableau of shape A - d (for short: ssyT 1) is a filling U of the
Ferrers diagram of A with the integers 1,2, ..., n (repetition is allowed!) such
that the rows of U are weakly increasing and the columns of U are strictly
increasing. A standard bitableau of shape A - d is a pair (T, U) where T is
a sYTA and U is a ssyrA. With each standard bitableau (7T, U) we associate
a basis vector of ®4C" as follows. Set e,y = €;, ® €;, ® ... ® ¢;,, where
ij € [n] is in the cell of U which is occupied by j € [d] in T.

Theorem 4.1.12. The set {cr(er,v)) : (T, U) standard bitableau} is a basis for
®qC".

The proof of Theorem 4.1.12 is based on two important techniques in alge-
braic combinatorics. To show that the set in question is spanning, one uses the
straightening law for bitableaux in Désarmenien et al. (1978). This is a gener-
alization of the straightening law for bracket monomials which was discussed
in Sect. 3.1. To show linear independence, it suffices to show that the number
of standard bitableaux equals n¢. This can be done using the Knuth-Robinson—
Schensted correspondence (Knuth 1970).

Example 4.1.13 (d = 3, n = 2). From Theorem 4.1.12 we get the following
explicit formulas for the isomorphism in Example 4.1.8 (b) or (4.1.6):

Ci23(€123111) = Ci3(e1 ®e1 Qer) =6-¢1 Qe Qe

C123(€123,112) = Ci23(€1 @ €1 ® €2)
=2(e1®@e1Q@e+e1®er®e+er®e; @ep)

C123(€123,122) = C123(€1 @ €2 ® €2)
=2e1Qea®en+erRe1Qer+ex®@er®er)

€123(€123,222) = Cia3(e2 @ €2 ® €2) = 62 ® ez @ e

C;3(€;3;1) =c;3(e1 RerxRe) =21 RQer e —2er Re; e

cisfennn)=ci(e1P®ey®e) =e1RerRer—er Qe Qe
2 22 2
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612(612?) =C§2(€1 ReiRe) =21 Qe ey —2er Qe ey
303

cilenn)=cn(e1Q®er®e) =1 Qer ey —er Qe Qe
3 3 2 3

Theorems 4.1.11 and 4.1.12 have a number of important consequences.
Corollaries 4.1.14. Let d, n be positive integers and A a partition of d.

(1) The set {cr(ecr,vy) : U SSYTA} is a basis for the Weyl module W7 C".
(2) The formal character of the Weyl module W, C" >~ Wy C" equals

n Lo
sttt = Y [ (4.1.7)

Ussyth i=1

The monomial [];_, tfils in U s called the weight of the ssyTA U. It turns
out that the formal character in (4.1.7) is equal to the Schur polynomial s) =
sy(t, ..., 1,) as defined in Sect. 1.1. This result is a non-trivial identity in the
theory of symmetric polynomials; for the proof and many details we refer to
Macdonald (1979).

Example 4.1.15. We consider the case d = 6, n = 3, A = (4,2). There are
precisely 27 ssyTA. Here is a complete list of all of them:

1111 1111 1111 1112 1112 1112
22 23 33 22 23 33
1113 1113 1113 1122 1122 1122
22 23 33 22 23 33
1123 1123 1123 1133 1133 1133
22 23 33 22 23 33
1222 1222 1223 1223 1233 1233
23 33 23 33 23 33
2222 2223 2233

33 33 33

We form the sum of the weights of all 27 ssyTA (in the above order):

Sao =112 + oty + 112 4+ 8313 + 8136 + 301? + 536 + 30tk + 1513
45+ 250 4 th3E 4 23+ 32 + 208 + 1313 + 668
+ 28+ ntin + 0602 + 0862 + 068 + 168 + it + 656
+ 536 + 1315

= +un+HE +nt+ 1) + i +18).



144 Invariants of the general linear group

This Schur polynomial is the formal character of the 27-dimensional Weyl mod-
ule W42 C>. By the above remarks, it satisfies the identity

442 442 442
A I A
241 241 241
5 5 8)
(0404050 z§+°
S4,2) =
’ 2 2 2
o n
oo
1 1 1

Any partition A |- d can be encoded into a monomial w(X) := #;'t,2 - - - £,"

as follows: the exponent v; is the cardinality of the i-th column in the Ferrers
diagram of A. Equivalently, v; = #{;j : A; > i}. It is easy to see that w(}) is the
lexicographically leading monomial of the Schur polynomial s; (¢1, f2, . . . , t,).
This monomial uniquely characterizes the partition A and hence the Weyl module
W, C". We call w(A) the highest weight of W, C". For instance, tf t22 is the highest
weight of the Weyl module in Example 4.1.15.

A main problem in representation theory is to decompose a given represen-
tation (p, V) into a direct sum of irreducible representations

V>~ @ e, W,Cn. (4.1.8)
A

A generally satisfactory solution to this problem is the list of all nonnegative
integers c,, which are called multiplicities. Once the multiplicities are known,
then one may (or may not) ask for a more explicit description of the isomorphism
in (4.1.8).

Our discussion shows that the problem of determining the multiplicities c;
is a problem in the theory of symmetric polynomials. The Schur polynomials
s;. are a Z-basis for the Grothendieck ring M (I") ~ Z[t1, ..., t,]5. We need to
find the coefficients in the expansion

fo=2crs, (4.1.9)

where f, is the formal character of the given representation (p, V). This can
be done using the following subduction algorithm (cf. Algorithm 3.2.8):

Algorithm 4.1.16 (Expanding a Symmetric Polynomial into Schur Polynomials).
Input: A symmetric polynomial f € Z[ty, ..., #,]5 homogeneous of degree d.
Output: The unique representation f = Y, , ¢, s, in terms of Schur polyno-
mials.

1. If f =0 then output the zero polynomial.
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2. Let t,'t,” - -1;" be the lexicographically leading monomial of f, let A - d
be the unique partition with w (1) = #,"#,” - - - #,", and let ¢ be the coefficient
of w(A) in f.

3. Compute the Schur polynomial s, (e.g., using the formula in Sect. 1.1).

4. Output the summand c - s5;, replace f by f — c - s;, and return to step 1.

A much more efficient version of this algorithm and other conversion algo-
rithms for symmetric polynomials have been implemented in J. Stembridge’s
MAPLE package “SF” (available at no cost from J. Stembridge, University of
Michigan, Ann Arbor).

Example 4.1.17. Let S35,C? denote the space of polynomial functions of de-
gree 3 in the coefficients of a ternary quadric

2
az00 X% + ano y* + apoz 2% + ai0 Xy + aio1 Xz + aon yz. (4.1.10)
A basis is given by the set of monomials ayyaghodgndli0@i0 911> Where i1 +

io +i3+ j1+ jo+ j3 = 3 in nonnegative integers. The action of I' = GL(C?) by
linear substitution on (x, y, z) gives rise to a linear action p on S35,C>. Thus

243—1y 2

S35,C® is a I'-module of dimension 56 = (\ 2 3)+3 1). Its formal character
equals

folti, 1o, 13) = > e e A s N (S B )

i1+ix+iz+j1+jo+j3=3

Using Algorithm 4.1.6 we obtain the following decomposition into Schur poly-
nomials
2,22

foti, 1o, 13) = (tf + lower terms) + (¢{13 + lower terms) + 174313 4.1.12)

= s (t1, 12, 13) + 54,2 (t1, 12, 13) + 53,3,3) (11, 12, 13).

Thus $35,C? splits up as the direct sum of three irreducible I'-modules. The
first one (with highest weight t16) has dimension 28 and is isomorphic to SsC>.

The second one (with highest weight tf t22) has dimension 27 and is isomorphic
to the Weyl module in Example 4.1.15. The third and most interesting piece is
the 1-dimensional representation p : A > det(A)?, or, equivalently,

W22 C? = A3C° @ A3C. (4.1.13)

This submodule of S35,C? is spanned by the discriminant of the ternary quadric
(4.1.10):

2 2 2
A = a00a0209002 + 2a011a101@110 — A200401; — 020470, — Ao02d71g- (4.1.14)



146 Invariants of the general linear group

We have thus proved that an element p € S3 S,C3 satisfies Ao p = (det A)?- p
for all A € T if and only if it is a multiple of the discriminant A. Using the
same argument as in Lemma 3.2.3, we conclude that the multiples of A are the
only SL(C3)-invariants in $35,C>.

We have seen in the previous example that quite interesting I"-modules can
be obtained by repeated application of the operators S; and A,. For instance,

—  S,84C" is the space of homogeneous polynomials of degree d in the coef-
ficients of a generic homogeneous polynomials of degree m in x, ..., X,.

—  Su Aqg C" is the space of homogeneous bracket polynomials of degree m in
C[A(n,d)].

More generally, we can build new representations from old ones by applying
the so-called Schur functors W) (-). Suppose that (p, V) is any I'-module. Then
we get anew I'-module (W; (p), Wi (V)) as follows. The underlying vector space
is the Weyl module W, (V) with respect to the representation p; of GL(V). The
new I"-action on this space is defined by the composition W (p) := p; o p.

By Corollary 4.1.9 there must exist corresponding functors in the theory
of symmetric polynomials. These functors are called plethysms. We summarize
this construction in the following proposition. Let f,(f1, ..., ;) be the formal
character of the I'-module (p, V), where I' = GL(C"), suppose that V has
dimension m, and let s;(z1, 22, ..., Zm) be the Schur polynomial which is the
formal character of the GL(V)-module W, (V). We write f, (tl, ..., 1) as the

sum of m not necessarily distinct monomials of the form #,'z)” ...1,".

Proposition 4.1.18. The formal character fw, (o)(f1, 22, . . ., 1,) of the I'-module
(Wy(p), Wi (V)) is obtained by substituting the m monomials #;'t,* ..., for
the m variables z; into the Schur polynomial s, (z1, z2, . .., zZ) (in any order).

We illustrate this proposition by computing the formal character of the

GL(C*-module A3 A, C*. Here V = A2C* has dimension m = 6 and for-
mal character

fp(l‘l, th, 13, 14) = tity + 113 + t1ta + Dotz + Ity + 1314.
The GL(V)-module A3V = W(1,1,1)V has the formal character

4 5

6
san(z1, 22,23, 24, 25, 26) = ) D D ZiZjZ.
i=1j=it+1k=j+1

By Proposition 4.1.18, the GL(C*)-module W1 1,1)(V) = A3 Az C* has the
formal character
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2.,2.2 2
saan (i, hits, ... 3ta) = ittty + (1365 + 20331314 + 120347
+ 200651 + 210087 + (517 + 156t + 208531 + 202112

+ thatits + 2001307 + ot} + 26367

Exercises

(1) Prove that every irreducible polynomial I'-representation is homogeneous.

(2) Verify that the eight Young symmetrized vectors in Example 4.1.13 are a
basis of ®3C?. Compute the determinant of the 8 x 8-transformation matrix
with respect to the standard basis.

(3) * Describe the action of GL(C") on §,, Ay C".

(4) Determine the decomposition of A3 A, C* into irreducible
GL(C*)-representations.

4.2. Binary forms revisited

We can now rephrase the main problem of invariant theory in the language
of representation theory. The techniques developed in the previous section will
then be applied to the rings of invariants and covariants of a binary form. In
particular, we give an algorithm for computing the Hilbert (Molien) series of
these invariant rings.

As before let I' = GL(C"). Let (V, p) be a I'-representation of dimension m.
We assume that (V, p) is homogeneous of degree d. For each integer k > 0
we get a representation (Sx(V), Sx(0)) of degree dk. The symmetric power
Sk (V) is a vector space of dimension (’"+k_1). We identify it with the space of
homogeneous polynomial functions of degree k on V. The ring of polynomial
functions on V is denoted C[V] = B, Sk(V).

A polynomial f € C[V]is an invariant of index g provided Ao f = det(A)$-
f forall A eT. Here Ao f is the polynomial function on V defined by (A o
) = f(p(A)-v) forv € V. This implies that f is a homogeneous polynomial
of degree gn/d; in particular gn/d must be an integer. The invariant ring C[V T
is the C-linear span of all homogeneous invariants. Our main problem is to
determine the invariant ring as explicitly as possible.

To this end we consider C[V] as an (infinite-dimensional) I'-module. Its
formal character is the generating function

o0
fei@s - ) = ) fsan(t, - 1), (4.2.1)
k=0

where each summand fs,(v)(f,...,1,) is a symmetric polynomial of degree
dk. We can compute (4.2.1) using plethysms as in Proposition 4.1.18. Let
fo(t1, ..., t,) denote the formal character of the m-dimensional representation
(V, p). We write the symmetric polynomial f, as the sum of m monomials (not
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necessarily distinct):
Foltls oo ty) = 52 g g2l gl gl (4.2.2)

Proposition 4.2.1. The formal character of the I'-module C[V] is the generating

function
1

Iu1 in2 i :
I“I’::1 (1 _ tlﬁt tzlt . tnpm)

fen @, .o te) = (4.2.3)

Proof. The formal character of S;(V) as a GL(V)-module equals

— i1 iz i
S(k)(Zl,...,Zm)— Z 212y Iy
iy tim=k
iLseenrim =0

Therefore the formal character of C[V] as a GL(V)-module is the generating
function

0 i ; 1
>y fzpeedr = —m———. - (4.2.4)
k=0 i1+-»~‘ljim=()k 1 " HZ:l(l - ZI'L)
I senes im=>
Following Proposition 4.1.18, we now substitute z,, > ti’”lé"z . -t,i," " in (4.2.4)

to get the formal character of C[V] as a '-module. «

Example 4.2.2. Let n = 2 and consider the space of binary quadrics V = §,C?.
This is a three-dimensional I'-module having formal character f, = t12+t1t2 +t22.
By Proposition 4.2.1, the polynomial ring C[V'] is a I"-module having the formal
character

1
fevi(t, ) = =0 -1 -D = (4.2.5)

1+ @ +un+23) + @ + 80+ 3 +u5 + 1) + (1)

+ (0 +1ny + 1} 4 83085 4 P s +19) + (g + 68 + 1)
+ (¥ +opt] + 102+ 158 + i 58 + S+ nd] + 1)
+ (@S2 + 658 + i+ 55+ ) + i)+ . (higher terms).

Let (V, p) be any I'-module of degree d. We can decompose the graded
['-module C[V] into a unique direct sum of the irreducible Weyl modules:

ClVi=BSi(V) =@ P c W, (4.2.6)
k=0 k=0 A-dk

As in (4.1.19), the multiplicities ¢, can be read off from the corresponding
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decomposition of the formal character of C[V'] into a positive linear combination
of Schur polynomials

o0
foista - tn) = 3 Yo easalt, fa, oo ). 4.2.7
k=0 AFdk

For instance, the identity (4.2.5) in Example 4.2.2 translates into the following
irreducible decomposition of GL(C?)-modules:

C[S2C2] = W(o,o)cz@W(z,o)Cz@W@,o)Cz@W(z,z)CZEDW(G,o)CZ@W(4,2)C269 e

For each integer ¢ > O there is a unique partition A = (g,g,...,8)
S —

n times
of gn having a rectangular Ferrers diagram. The corresponding Weyl mod-
ule Wig,..o)C" equals the one-dimensional I'-module defined by p = deté. In
precise terms, the underlying one-dimensional vector space should be written as
(AnC")®8_ Tts Schur polynomial equals S g, g = ti15 - 1.

A homogeneous polynomial in f € C[V] is an invariant of index g if and
only if it lies in a I'-submodule isomorphic to W(g ¢ . C" = ((A,C")®%, det$).
Using the notation in (4.2.6) we let c(gq,.. ¢ denote the multiplicity of this
Weyl module in C[V]. This number counts the linearly independent invariants
of index g and hence of degree gn/d. The following theorem summarizes the
representation-theoretic view on our main problem.

Theorem 4.2.3. Let V be any I'-module. Then its invariant ring has the de-
composition

[e,0)
r
Clvl = G%C(g,g,‘..,g) W.s....)C"
g:

as a ['-module. In particular, the Hilbert function of the invariant ring is given by

dim C[V]}; — { C(g.g,...e) 1f ¢ =kd/n is an integer
0 otherwise .

Example 4.2.2 (continued). Letn =2,d =2and V = $,C2, the space of binary
quadrics. As can be seen from (4.2.5), the multiplicity of the Weyl module
Wie,syC? in C[V] equals c(gq = 1 if g is even and c(gq = 0 if g is odd.
Therefore the invariant ring C[V]' has the Hilbert function 1/(1 — z2). This
proves that C[V]" is generated as C-algebra by one quadratic polynomial, which
is the discriminant of the binary quadric.

For the remainder of this section we fix n = 2. We will develop the rep-
resentation theory of I' = GL(C?) in detail and apply it to the study of binary
forms. We begin with a description of the irreducible I'-modules W, C? and
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their Schur polynomials. Each Weyl module is indexed by a partition A = (i, j)
having at most two distinct parts i > j > 0.

Lemma 4.2.4. The Weyl module W{; ;)C? is isomorphic to S;_;C?® (A,C*)®/.

Proof. For the partition A = (i, j) there are precisely i — j + 1 sSYTA’s with
entries in {1, 2}. A typical such ssyTA looks like

T - 11 -~ 11 .01

1 -~ 1 2 ... 2
By Corollary 4.1.14 (b), the formal character of W;, j)C2 equals the sum of the
weights of all i — j + 1 ssYTA’s:

P i1,
st ) =ty + 171
i—j | i—j—1
="+’

i—2,j+2 J i
+4 T+

o S
N O R GT))

t —l—l‘l
i+1,.J J i+l
_hL b —hh
fH— 1

By Lemma 4.1.6, this Schur polynomial is the formal character of the tensor
product S;_; C2 ® (A2C?H®/, Lemma 4.2.4 now follows directly from Theorem
4.1.7. «

Let V = S;C? denote the space of binary d-forms

d d d _
aoxd + (1)a1 xd_ly + (2)a2 xd_zy2 + (3)a3 x4 3y3 +...+aq yd.

We identify the polynomial ring Clao, ..., ag] with the I'-module C[V] =
@Zio Sk S;C?. More generally, the polynomial ring Clao, ..., a4, x,y] is a
rational I"-module via the natural I"-action defined in Sect. 3.6. For A € I" this
action is given by

(o, a1, ..., aq)" = ps,c2(A) - (ao, ai, ..., az)"  and (4.2.8)

G, ) = AT ()

Let Clag, ..., aq, x,y]" denote the ring of covariants, and let Clay, ..., aq,
X, y]{k n denote the vector subspace of covariants of degree &, order i and index
dk—i
§="73" .
We now determine the decomposition of C[V] into irreducible I"-modules.
Fori=0,1,..., L%j let m(d, k, i) denote the multiplicity of the Weyl module

Wasst a1y C? = 5;C? ® (A*CH®*

4.2. Binary forms revisited 151

in C[V], or, equivalently, in S$;S;C%. We writt Wy =~ m(d,k,i)-
W(@ s )Cz for the corresponding submodule of C[V]. Let f € C[V] and let
g be the largest integer for which there exists / € C[V, A] such that A o f =
det(A)®- f forall A € I'. Then f lies in W4 ) if and only if f is homogeneous
of degree k and the transformation f + f is isomorphic to the action of " on
S;C2.

Given any polynomial f € Clao,...,aq, x, y], we view f as a polyno-
mial in x and y with coefficients in C[V]. The leading coefficient of f is the
polynomial lead(f) := f(ao, ..., a4, 1,0) in C[V].

Lemma 4.2.5. The assignment f > lead(f) defines a vector space monomor-
phism from Clay, ..., aq, x, y]{k,i) into Wy r.i.

Proof. Let f be a covariant of degree k, order i and index g = %. Then

f(ps,c2(A) o (ag, ..., aa), A= o (x,y)) = det(A)® - f(ap, - .., a4, X, y).

Substituting (x, y) + (1, 0) shows that lead(f) is a polynomial of degree k
in C[V], which satisfies the above defining condition of Wt ;). The map
f > lead(f) is injective because every covariant f can be recovered from its
leading coefficient g = lead(f) as follows:

flao,...,aq, x,y) = g(,ogd(; (1)) - (ay, . . .,ad)). < 4.2.9)

Theorem 4.2.6 (Robert’s theorem). The dimension of the space Clay, ..., aq,
X, y]{k,i) of covariants of degree k and order i is equal to m(d, k, i).

Proof. Our argument follows Schur and Grunsky (1968: p. 28). Let m(d, k, i)
denote the dimension of the space of covariants of degree k and order i. By
Lemma 4.2.5, the map f + lead(f) defines a vector space monomorphism

m(d, k, i) - Wg.gC* ~ Clag, ..., ag, x, Yl
— Wk, = m(d, k,i) - W(#,%)Cz.

We need to show that m(d, k,i) =m(d, k,i).
(1) (.f) o€ C} in I'. The action of

U on the I'-module W, diti dii )C2 has a unique fixed vector, up to scaling, say g.

This follows, for instance, from the construction of the irreducible I'-modules in
Theorem 4.1.11. We now define f € Clay, ..., a4, x, y] by the formula (4.2.9).
Then f is a covariant and g = lead(f). This proves m(d, k, i) < m(d, k,i).

Consider the unipotent subgroup U = {(
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Conversely, if f is any covariant, then ¢ = lead(f) is a unipotent invariant.
This implies m(d, k, i) > m(d, k, i), and we are done. <

The multiplicities m(d, k, i) can be expressed in terms of a certain explicit
generating function. This technique is due to Cayley and Sylvester. The g-
binomial coefficient is the expression

(l _ qd+1)(1 _ C]d+2) . (1 _ qd—l—k)
A=) =¢»---(1=g"

[d +k , (4.2.10)

k ](61) =

where ¢ is an indeterminate. The rational function (4.2.10) is a polynomial in
g of degree kd. It is sometimes called the Gaussian polynomial. Its coefficients
have the following combinatorial interpretation. If

(45K @) = Spa@.km g

n=0

then p(d, k, n) equals the number of partitions of the integer # into at most k
parts, with largest part < d. For the proof of this statement and related com-
binatorial interpretations we refer to Stanley (1986: chapter 1). We note that

d Z k ](q) specializes to the usual binomial coefficient (dzk) for g = 1. Many

of the familiar properties of binomial coefficients generalize to g-binomial coef-
d+k

ficients: For instance, we have [d ;: k ](q) = [ d ](q) because p(d, k,n) =
pk,d, n).

Theorem 4.2.7. The dimension m(d, k, i) of the space of covariants of degree
k and order i of a binary d-form is given by the generating function

L% )

- "7 @= > mid.k,dk ~29)-¢* + 0@ . @211
g:

Proof. The formal character of the I"-module C[V] equals

: I R (RS

R T T C R ra o RER R - I = B
(4.2.12)

The identity (4.2.12) follows from known results on the partition function; see,
e.g., formula (29) in Stanley (1986: p. 39). The summand on the right hand side
of (4.2.12) equals the formal character of Sy S,C?. By definition, m(d, k, dk—2g)
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is the multiplicity of Wy, g)C2 in S;S;C2. Therefore we have

By kd—g+1_g g kd—g+1
t 2 7 — 15t
[4T9]E) dd = L.k, ak—2g). 21 =20 (4.2.13)
15) g=0 th—t

We substitute 11 = ¢ and ©, = 1 in (4.2.13), and we multiply both sides by
1 — g. This gives the desired identity (4.2.11). <

Corollary 4.2.8. The number of linearly independent covariants of degree k
and order i of a binary d-form equals

dk —1i dk—i-2
p e —

m(d, k,i) = p(d,k, (4.2.14)

where p(d, k, n) equals the number of partitions of » into < k parts with largest
part < d.

These results provide useful algorithmic tools for precomputing the Hilbert
series (or parts thereof) for the rings of invariants and covariants of binary
forms. For many examples of such calculations see Schur and Grunsky (1968);
see also Springer (1977: section 3.4) for an asymptotic estimate of the number
of fundamental invariants. A typical application of the enumerative method is
the following duality result for invariants of binary forms.

Corollary 4.2.9 (Hermite reciprocity). The number m(d, k, 0) of degree k in-
variants of a binary d-form equals the number m(k, d, 0) of degree d invariants
of a binary k-form.

Proof. The expression in terms of partition functions

dk dk
T pldk 5

m(d, k,0) = p(d, k, 5

shows that this function is symmetric in its two parameters d and k. <

Example 4.2.10. We illustrate the above techniques for the ring of covariants of
a binary cubic (d = 3). The generating function (4.2.11) for the covariants of
degree k equals

(1 _ qk-‘rl)(l _ qk+2)(1 _ qk+3)
(1—=¢>(1 —g3%

(4.2.15)
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For small values of k the generating function (4.2.15) equals
k=1: 1—¢*
k=2: 1+¢-¢ -4
k=3: 14¢°+q¢° —q —q8—g"°
A (4.2.16)
k=4: 1+¢+q° +4*+4¢°~ 0(¢D)
k=5 1+ ++¢* +¢°+4¢° - 04"
k=6: 1+ +¢@ +¢* +°+2¢° +4* — 0(¢")

Consider the four basic covariants of a binary cubic given in Sect. 3.7:

degree order index
covariant k I g=0Bk—1i)/2
f 1 3 0
H 2 2 2
T 3 3 3
D 4 0 6

These four covariants correspond to the four underlined terms in the gener-
ating functions in (4.2.16). We remark that the three covariants f 2D, T? and
H?3 all have degree 6, order 6 and index 6. Are these covariants linearly inde-
pendent? Note that the coefficient of ¢% in the last line of (4.2.16) is only two,
not three. This proves that f 2D, T? and H? are linearly dependent. Indeed, we
have the syzygy f2D = T? + 4H3.

We will now sketch an alternative proof of Proposition 3.7.7. The algebra
of covariants Clag, a1, a2, a3, x, y]F is a bigraded algebra via the degree k and
the order i. Consider the subalgebra C[f, H, T, D]. We need to show that both
algebras have the same Hilbert function, and therefore are equal. Using Grobner
bases, we find that C[ f, H, T, D] has the bigraded Hilbert function:

1 — 55
(1 —se3)(1 — 491 — s22)(1 — s33)

4.2.17)

S dimCLf, H, T, Dl s t* =
i,k>0

Here the term s5¢6 comes from the syzygy f>D = T? +4H?. It remains to be

shown that the coefficient of s'¢* in (4.2.17) equals the coefficient m(3, k, i) of

g@®k=D/2 in (4.2.15). We leave this to the reader.
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Exercises
(1) Show that the following identity holds for all integers d > ¢ > 0:
d+1 e+1 d+e+1-2i
g -1 g7 -1 < (4 —1
(=) () -5 (=)
g—1 g—1 i=0 qg—1

(2) Deduce from (1) that for d > e > 0 there is an isomorphism of
GL(C*)-modules:

54C* ® SeC? = 841:C* & Wiggeo1,)C* © Wiare2C? @ ... & Wi4,0/C.

This identity is called the Clebsch—Gordan formula.

(3) * Compute the complete system of covariants for the binary quartic
(d = 4). See Springer (1977: section 3.4.4).

(4) What is the number of linearly independent covariants of degree k and
order i of the binary quintic (d = 5)?

4.3. Cayley’s Q-process and Hilbert finiteness theorem

The objective of this section is to prove Hilbert’s famous finiteness theorem.

Theorem 4.3.1 (Hilbert’s finiteness theorem). Let (V, p) be any rational rep-
resentation of the general linear group I' = GL(C"). Then the invariant ring
C[V1' is finitely generated as a C-algebra.

Like his contemporaries, Hilbert was mainly interested in invariants of ho-
mogeneous polynomials or forms, that is, relative I'-invariants of the natural
action on the symmetric power V = §;C". We will focus on invariants and
covariants of forms in Sects. 4.4 and 4.5. Throughout Sect. 4.3 we are working
with an arbitrary polynomial I"-module V. The assumption of polynomiality is
no restriction by Proposition 4.1.2.

The first proof of Theorem 4.3.1 appeared in Hilbert (1890). It was based on
a radically new, non-constructive method, namely, the Hilbert basis theorem for
polynomial ideals (Corollary 1.2.5). When Paul Gordan, “the king of invariants”,
first learned about this technique, he made his famous exclamation, “Das ist
Theologie und nicht Mathematik.”

Within three years Hilbert responded to Gordan’s criticism by giving a con-
structive proof. This second proof, published in Hilbert (1893), is considerably
deeper and more difficult than the first one. We will present this second proof and
the resulting explicit algorithm for computing a finite algebra basis for C[V]"
in Sects. 4.6 and 4.7.

In this section we are concerned with Hilbert’s non-constructive 1890 proof.
One main ingredient of this proof is Cayley’s Q-process, a technical tool which
was well-known in the 19th century. The §2-process is a certain differential
operator for the general linear group I' = GL(C") which plays the part of the
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Reynolds operator * in the case of a finite matrix group I'. Since I is a reductive
group, there does exist also a full-fledged Reynolds operator, i.e., a C[V]! -linear
map from C[V] to C[V]' fixing C[V]'. But we will not need this Reynolds
operator here, but instead we use the classical Q-process.

Let C[t] denote the polynomial ring generated by the n” entries in a generic
n X n-matrix t := (;;). With each polynomial

Fn o, tan) = D@y 1)1 - o (4.3.1)
v

we associate a corresponding differential operator

9 3 3 alvl
Dfi= flo—) =)o, —) = D ay

Aty At Otap U TR TS

4.3.2)

In (4.3.1) and (4.3.2) the sum is over a finite set of nonnegative integer matrices
v = (v;;) which serve as exponent matrices for monomials in C[t]. The norm
|[v| of a nonnegative matrix v is the sum of its entries.

Suppose that f is a homogeneous polynomial and hence Dy is a homoge-
neous differential operator. Now apply Dy to the polynomial f itself. When
applying a differential monomial occurring in Dy to a monomial in f, then we
get O unless the monomials correspond to the same exponent matrix v. In this
case the result equals the constant vi{!vip! ... vy, !. These observations prove
the following.

Lemma 4.3.2. Each homogeneous polynomial f = Y ayt}' -ty in C[t]

satisfies
Dr(f) =Y a2 vin!via! -« vl
v

The next lemma states five basic rules for polynomial differential operators.
The bilinearity rules (a), (b) and (c) follow immediately from the definition.
Rules (b) and (c) reduce (d) to the case of differential monomials applied to
monomials, which is easily checked. Property (e) is a consequence of (d).

Lemma 4.3.3.

(@) Dyr(¢1 + ¢2) = Dy(¢1) + D(¢2),

(b) D..f(¢) = Dy(c-¢) =c - Dr(¢) for constants ¢ € C,

(©) Dyig(d) = Dr(p) + Dg(eh),

(d) Dry(¢p) = DyDg(¢), the composition of differential operators, and
©) Dyr(9) = DE(P).

We now choose a specific homogeneous polynomial f(t), namely the deter-
minant of t. The resulting differential operator is called Cayley’s Q2-process
and is abbreviated Q := Dyt = det(%). Using the familiar expansion of the
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determinant, we get

8”
Q(p) = Y sign(m) ¢ (4.3.3)

7Sy 0117, Otp,my =+ Ol

for all ¢ € C[t].

In what follows we consider three generic matrices t = (%), s = (s;;),
u = (u;;). Their 3n? entries are algebraically independent indeterminates over
C. All matrices have an associated Q-process, which we denote with €, €2
and 2, respectively. Given a matrix-valued polynomial function ¢, then the
expression Qst(¢ (st)) stands for the polynomial in s and t which is gotten
by substituting the matrix product u = st into the expression ,(¢(u)). The
expression Q¢(¢(st)) denotes the result of applying the operator ¢ to ¢ (st),
viewed as a polynomial function in t with parameters s.

Theorem 4.3.4 (First main rule for the Q-process). In C[s, t] we have the iden-
tities

Q¢(p(st)) = det(s) - Qe (@ (st)) and Qs(¢p(st)) = det(t) - Qe (P (st)).  (4.3.4)

Proof. We prove the first identity by expanding the left hand side as in (4.3.3).
For each term, corresponding to a permutation w € S, we get

* ¢ (st)
atl,ﬂl 8t2,7'[2 o 8tn:77nk (43.5)
n 0 ¢(u = St)

= X

01,02,...,0,=1

S$61,1809,2 « - -« So,,n-
gy, my OUgy,m, *** Ollg,,m,

Note that on the right hand side of (4.3.5) we have to sum over all index tuples
o and not only over permutations. Now if we antisymmetrize the expression
(4.3.5) with respect to @ € S,, then the left hand side becomes Szt(d) (st)). On
the right hand side we get, after interchanging the two summations,

n % p(u = st) )

> SepiSey2---So ,,,( > sign(mw)
b ! 0oy 7, OUoy,m, *+ oy, m,

01,0'2,...,0‘,,=1 JTES,,
(4.3.6)

The expression in the large bracket equals 0 by antisymmetry whenever the o;
are not distinct. Otherwise o € S, is a permutation, and the bracket equals

k _
sign(o) - ( > sign() 0" ¢u=st)

T ES, 8ul,ﬂl auZ,ﬂz T aun,ﬂn

) = sign(o) - Qi (¢ (st)).
(4.3.7)
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Plugging (4.3.7) into (4.3.6), we get the desired result

> 8561,1802,2 - + - Soy,n - Sign(o) - Qst (@ (st)) = det(s) - Qst(p (s1)).

oESy

The proof of the second identity in (4.3.4) is analogous. <

We can generalize the first main rule to the case of an iterated $2-process.
Application of the operator £ to both sides of (4.3.4) yields

Q2 (p(st)) = det(s) - st (P (st)) = det(s)” - 3 (¢ (st)). (4.3.8)
The second equation in (4.3.8) is gotten by applying the rule (4.3.4) to the

function q?(u) = Qu¢ (u), with the substitution u = st. By iterating (4.3.8) we
obtain the following result.

Corollary 4.3.5 (Generalized first main rule for the Q2-process). For each integer
p > 0 we have the following two identities in Cs, t]:

Q7 (¢ (st)) = det(s)? - QL (o (st))

(4.3.9)
and QP (¢ (st)) = det(t)” - Q5 (¢ (st)).

Theorem 4.3.4 has the consequence that the Q-process preserves the one-
dimensional subalgebra which is generated by the determinant det(s) in C[s].

Corollary 4.3.6. In C[s] we have the identity
Qs (det(s)?) = cp - det(s)?™, (4.3.10)
where ¢, is a non-zero constant depending only on the integer p.
Proof. Applying (4.3.4) to the polynomial function ¢ (u) := det(u)?, we get
Q¢ (det(st)?”) = det(s) - Qs (det(st)?). (4.3.11)
On the other hand, Lemma 4.3.3 (b) implies
Q¢(det(st)”) = Qi(det(s)” det(t)?) = det(s)” - Qq(det(t)”). (4.3.12)
In the resulting identity

Q¢ (det(st)”) = det(s)? ™" - Q¢ (det(t)?) (4.3.13)
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we replace t by the unit matrix 1, and we get the desired identity (4.3.10), where

cp = { Qt(det(t)p)}

t:=1

It remains to be checked that the constant ¢, is indeed non-zero. To this end
we repeatedly apply €2 to (4.3.10). We obtain Qg (det(s)p) =CpCp_1 det(s)P~2,
Qg (det(s)p) = CpCp—_1Cp—2 det(s)?—3, and finally,

Qé’(det(s)p) = CpCp_1Cp—3 ... C2C1. (4.3.14)

By Lemma 4.3.3 (e), QF equals the differential operator Dge(s)» associated with
the polynomial det(s)”. The expression (4.3.14) is a positive integer by Lemma
432. «

We will next derive the Second Main Rule for the ©2-Process. The ring C[V]
of polynomial functions on the '-module V is written as C[v], where v is a
generic vector in V. For any polynomial function f = f(v) we consider its
image to f = f(tv) under a generic linear transformation t € I". Thus f(tv)
is a polynomial in n? 4 dim(V) variables, namely, it is a polynomial both in
t and in v. For every nonnegative integer p the expression det(t)? - f(tv) is a
polynomial function in C[v, t]. The Cayley process €2 acts on these polynomials
by regarding the coordinates of v as constants. After repeated application of €2
to det(t)? - f(tv), we can then replace t by the n x n-zero matrix 0. This
procedure always generates an element in the invariant ring Civlt:

Theorem 4.3.7 (Second main rule for the Q2-process). Let f € C[v] be a ho-
mogeneous polynomial, and let p, ¢ > 0 be arbitrary integers. Then

Ipq(f) = {szf(det(t)" - f (tv))} (4.3.15)
t:=0
is a relative I'-invariant.

Proof. We abbreviate
@(v, t) :=det(®)? - f(tv). (4.3.16)

We will show that

[0 (D)W = {2 (¢, D)}y

is either O or it is a relative I'-invariant of index p — ¢. Let s be a second
n X n-matrix with generic entries. Then we find

¢(v, st) = det(st)? - f(stv)

4.3.17)
= det(t)? - det(s)? - f(s(tv)) = det(t)? - p(tv, s).
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We now apply the differential operator 2} to both sides of (4.3.17), starting
with the right hand side:

det(t)? QL (¢ (tv, 5)) = QL (P(v, st)) = det(t)? QL (¢(v, sp)).  (4.3.18)
Here the second equation is derived from Corollary 4.3.5. In the resulting identity
QL (p(tv, 8)) = det()’ ™7 - QF (4 (v, st)) (4.3.19)

we specialize s to the zero matrix 0. The left hand side then specializes to
[1p.q(f)](tv), while the right hand side specializes to det(t)?~4 [p,q (V).
This proves that I, ,(f), if non-zero, is a relative invariant with index p —¢q. <

Theorem 4.3.7 gives an explicit algorithm for generating an invariant / p.q(f)
from an arbitrary polynomial function f in C[V]. We will illustrate this algo-
rithm in the next section. At this point we just note that /, ,(f) will often be
simply zero. For instance, this is always the case when p < g.

We are now prepared to prove Hilbert’s finiteness theorem.

Proof of Theorem 4.3.1. Let I_l; C CJv] be the ideal generated by all homoge-

neous invariants of positive degree. By the Hilbert basis theorem, there exists a
finite set {Ji, J2, ..., Jr} of homogeneous invariants such that

IV = (J1, Jay .., ). (4.3.20)
We will show that the J; form a fundamental system of invariants, i.e.,
Civl" =ClJ, &, ..., J]. (4.3.21)

Let J € C[v]" be any homogeneous invariant of positive degree, and sup-
pose that all homogeneous invariants of lower total degree lie in the subring
ClJi, Jo, ..., J.]. Write

JW) = Y £ ) 43.22)
i=1

where f1, f2,..., fr € C[v] are homogeneous of degree deg(fi) = deg(J) —
deg(J;). In (4.3.22) we replace v by tv where t is a generic n x n-matrix. If p
and p; are the indices of the invariants J and J; respectively, then we get

det(t)? J(v) = Xr: det(t)”" fi(tv) J; (v). (4.3.23)
i=1

We now apply the differential operator Qf’ to the identity (4.3.23). On the left
hand side we obtain Qf (det(t)p J (V)) = c - J(v), where c is a positive integer,
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by Lemma 4.3.2. By linearity on the right hand side,

c-Jv) =

D) Q7 (det(®)? fi(tv)). (4.3.24)
=1

1

We finally replace the generic matrix t in (4.3.24) by the zero matrix 0, and we
get

c-Jv) = iJi V) - [Lp 5 (D] (). (4.3.25)
i=1

By the second main rule (Theorem 4.3.7), all expressions on the right hand
side lie in C[v]". Since the f; have degree < deg(J), and the operator Iy b,
is degree-preserving, the invariants I, , (f;) have lower total degree than J.
Hence they are contained in C[Ji, Jo, ..., J:]. Since ¢ # 0, the representation
(4.3.25) implies that J lies in C[J1, Jo, ..., J;]. <

Exercises

(1) Show that the invariant ring C[v]" is the C-linear span of the expressions
I, ,(m) where m runs over all monomials in C[v].

(2) Consider the action of GL(C") by left multiplication on the space of
n x s-matrices and on the induced polynomial ring C[x;;]. Verify the First
and Second Main Rule for the Q-process for this representation.

(3) * Give an explicit formula for the operator I, ,( - ) in the case where
V = 8§3C?, the space of binary cubics. Find p, ¢ and a monomial m such
that I, ;,(m) equals the discriminant of a binary cubic.

4.4. Invariants and covariants of forms

A homogeneous polynomial

d o .
1, x2, .00, %) = Z( ) > “Qiyiy..iy ~xilx£2 R 4.4.1)

i1in ... I,

of total degree d in n variables x = (x1, x2, ..., x,) is called an n-ary form
of degree d (or short: n-ary d-form). These terms are traditionally in Latin;
for instance, a binary cubic is a 2-ary 3-form and a quaternary quintic is a
4-ary 5-form. The sum in (4.4.1) is over the (”+Z"1)-element set of nonnegative
integer vectors (i1, i2,...,1,) with iy +i2 + ... + i, = d. The coefficients
@jyi...i, are algebraically independent transcendentals over C. It is customary
(and essential for the symbolic representation in Sect. 4.5) to scale the a;,;,. ;,

by the multinomial coefficients (; ;¢ ) =d!/(i1!-in! -+ in)).
The set of n-ary d-forms is a ("+d_1)—dimensiona1 complex vector space.
We identify it with S;(C"), the d-th symmetric power of C". This means that the

form f is identified with the vector a := (..., @j,i,..;,, ...) Of its coefficients.
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Thus f = f(x) = f(a, x) and a represent the same element of S;(C"). In some
situations it is preferable to distinguish these two objects, in which case we refer
to a as the symmetric tensor of step d associated with the d-form f.

Let C[a, x] denote the polynomial ring in the coefficients and the variables
of f. This is the ring of polynomial functions on the vector space S4(C") @ C".
Its subring C[a] is the ring of polynomial functions on S;(C"). The action of
general linear group I' = GL(C") on C” induces a natural linear action on the
space Sq(C") @ C". For each T € T', the action T : (a,x) = (a,X) is defined
by the equations

x=T-X and f(a,x)=f(@x) forallT = (¢;;) €T. (4.4.2)

It is crucial to note that this ['-module is not the direct sum of the I"-modules
S7(C™) and C". The I'-module defined by (4.4.2) is the direct sum of S$5(C")
and Hom(C", C), the latter being the contragredient representation to C". It is
the rational (but not polynomial) I'-module which has the formal character

(

1 1 1 i ;
—+—+..+—) X .
5] 15) In" i+ Fip=d

A polynomial / € C[a, x] is a covariant of f if it is a relative I'-invariant, i.e.,
(@, X) =det(T)® - I(a, x) (4.4.3)

for some non-negative integer g, which is called the index of the covariant /.
The total degree of I with respect to the coefficient vector a is called the degree
of the covariant I, and its total degree with respect to the old variables x is
called the order of 1. So, every d-form is a covariant of itself, having order d,
degree 1 and index 0. An invariant of the n-ary d-form f is a covariant / € C[a]
of order 0. The covariant ring of f is the graded C-algebra Cla, x]' generated
by all covariants. The invariant ring of f is the subalgebra Cla]" generated by
all invariants.

We also consider joint covariants and joint invariants of a collection of n-ary
forms fi, f2,..., fi of degrees di,da, ..., d;. In that case the underlying I'-
module equals the direct sum V = S;,C" @ 55,C"®...® 54,C" ® Hom(C", C).
This gives rise to the covariant ring C[V]" = Claj, ay, ..., a, X]' and the
invariant ring C[ay, ..., a;]" . Both rings are subalgebras of the polynomial ring
Clai, ..., at, x]. They are multigraded with respect to the “old variables” x and
the coordinates of each symmetric tensor a;.

From Theorem 4.3.1 we infer that C[V]' is finitely generated.

Corollary 4.4.1 (Hilbert’s finiteness theorem). The invariant ring or the covari-
ant ring of one n-ary d-form or of several n-ary forms is finitely generated as a
C-algebra.

This result had been proved in Theorem 3.7.1 for the case of binary forms
(n = 2). But there is an essential difference between both finiteness proofs. In

4.4, Invariants and covariants of forms 163

Sect. 3.7 we gave an explicit algorithm for computing a finite set of fundamental
set of invariants (or covariants). The general finiteness proof in Sect. 4.3 does
not yield such an algorithm. The more difficult problem of giving an algorithm
for Corollary 4.4.1 will be addressed in Sect. 4.6. The present section has two
objectives. We discuss important examples of invariants and covariants, and we
illustrate the practical use of the machinery developed in Sects. 4.1 and 4.3.

Our first example of a covariant of an n-ary d-form f(a, x) is the Hessian

% f

0x;0x;

H (a, x) = det( )- (4.4.4)

Proposition 4.4.2. The Hessian H € C[a, x] of an n-ary form f of degree
d > 2 is a covariant of index 2, degree n, and order n(d — 2).

Proof. We consider a and x as polynomial functions in @, X and T = (s;).
Applying the differential operator % to the identity f(a,X) = f(a,x) in
(4.4.2), we get

2f o Bf

— (a4, X)) =
Bxiaxj k,lzlax,-axj

(a,x) - tig - tj1. (4.4.5)

Forming the n x n-determinant of these expressions for 1 < i, j < n, we obtain

2

L 9
H@X) = det(ax‘ax‘
1 J

(a%)

(4.4.6)

% f
=detT2‘det( , ):d Ty?.
(1) CErrS (a, %) et(T)” - H(a, x).
This shows that the Hessian H is a covariant of index 2. Each expression
92 f/9x;9x; is homogeneous of degree 1 in a and of degree (d — 2) in x, and
hence H has degree n and order n(d — 2). <

In the case d = 2 the Hessian does not depend on x. The resulting invariant
D(a) := H(a, x) is the discriminant of the n-ary quadratic form f(a,x) =
> Z};i a;j x;x;. It is preferable to interpret the coefficient vector a as a
symmetric matrix a = (a;;). The discriminant D(a) equals the determinant
of that matrix. Using matrix products, we write the given quadratic forms as
fa,x)=x"-a-x.

We illustrate this relabeling for the case n = 3. The ternary quadric

— 2 2 2
f (@, x) = ax0 x7 + aoz0 X3 + aoo2 X3 + 2ai10 X1x2 + 2a101 X1X3 + 2ao11 X2X3
4 _ 2 2 2
=Xax = an X{ +anx; +a33x3 + 2a1 X1x2 + 2a13 x1x3 + 2a23 X2X3
4.4.7
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defines a general quadratic curve in the projective plane. Its discriminant

2 2 2
D(a) = axon doo doo2+2a110 a101 dot1 — a1 @002 —A1o1 @020 —dg1; 4200 (4.4.8)

vanishes if and only if the quadric form f factors into two linear factors, or,
equivalently if the curve {f = 0} is the union of two lines. Returning to the
general quadratic form, we have the following solution to the problem of finding
the invariants.

Theorem 4.4.3. The discriminant D generates the invariant ring a quadratic
n-ary form.

Proof. In matrix notation Eq. (4.4.2) becomes
¥ax = x'ax = (TX)'a(TX) =X (T'al)X,

and the T-action on S,(C") is expressed by the matrix equation a = T'aT.
In order to show C[a]" = C[D], we let I (a) be any homogeneous invariant

of index g. Then
[@) = I(T'aT) = det(T)? - I (a). 4.4.9)

Writing 1 for the n x n-unit matrix, we let ¢ := I(1) € C. This implies the
equation

I(T'T) =c-det(T)® for all n x n-matrices T over C. (4.4.10)

Every symmetric matrix a admits a factorization a = T!'T over the complex
numbers C. Therefore (4.4.10) implies

I(a) = c - det(a)®/? in C[a]. (4.4.11)

But / was assumed to be a polynomial function, hence g = 2p is even, and we
conclude I = c¢D? € C[D]. <

An important example of a joint covariant of several forms is the Jacobian
determinant J of n forms

fl(alax)5 fz(az’x) ~~~~ E fn(an,x)
of degrees dj, da, ..., d, in n variables.

Example 4.4.4. The Jacobian determinant

At

of1
0x1 X,

(anx) - gp-(@,x)

J=J(@,...,a,,x) =det : ) :
‘gf:—'i(an» X) et g{c‘: (ana X)
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is a joint covariant of index 1, order di+d>+...+d,—n, and degrees 1,1, ..., 1
in the coefficients.

We have the following general degree relation for joint covariants:

Proposition 4.4.5. Let I (a;, az, ..., a;, X) be a joint covariant of k n-ary forms

fia, x), fr(az,x), ..., fi(a, x)

of degrees di, dy, ..., dr. Suppose that I has index g, order m, and I is homo-
geneous of degrees ry, 72, ..., ¢ in the coefficient vectors ag, ay, ..., a;. Then

rdy+rdy+...+rdy=ng+m.

Proof. Consider the n x n-diagonal matrix T = diag(t, ¢, ¢, ..., t). By definition
(4.4.2) of the induced transformation on the i-th symmetric tensor in question,
we have fi(a;,x) = fi(@;,X) = ﬁ(ﬁi,t"lx). This implies a; = t%a; for i =

1,2, ..., k. The property that / is a covariant now implies
I(tdlal, tdZaz, ceey td"ak, t_IX) =1(a,a,...,a,X) (4.4.12)
=(detT)%-I(ay,...,a,%) =15 - I(ay, ..., a8, X). o

On the other hand, by the homogeneity assumption, the left hand side equals
frde | gtedkg=m [(ay o ay, X), and consequently prdv | prediepmm— gn g

There are two invariants that are of great importance for elimination theory.
These are the (multivariate) discriminant D(a) of an n-ary d-form f, which
vanishes if and only if the projective hypersurface { f = 0} has a singularity, and
the (multivariate) resultant R(ay, ay, ..., a,) of n n-ary forms fi, fo, ..., fa,
which vanishes if and only if the polynomial system {f1(X) = fo(x) = ... =
f2(x) = 0} has a non-zero solution. For detailed introductions and recent results
on resultants and discriminants we refer to Jouanalou (1991) and Gel’fand et al.
(1993).

At this point we have reached a good understanding of the invariant theory
of binary forms and of quadratic forms. Let us therefore proceed to the next
case (n = 3, d = 3). The space V = S3C3 of ternary cubics has dimension 10.
A typical element in V is

fl,y,x) = aspox® + 3agio x>y + 3ax1 x*z + 3aizg xy*
+ 6a111 Xyz + 3a100 X2% + ags0 y° + 3a ¥z (4.4.13)

+ 3ap12 yz* + aoos 2°.

We express the action a > Ta of a linear transformation for 7 = (#;) € I in
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coordinates:

3 2 2 2
azo0 > 1 a300 + 3t t12a210 + 3t 113a201 + 3t11t,a120 + 6t11t12t13a111

2 3 2 2 3
+ 3t11t13a102 + 15a030 + 3ti5113a021 + 3t12t13a012 + 132003

2 2
azo = (t1to + 2ttt azi0 + (81123 + 2t11t13821)a201
2
+ Qniihiatn + Hhh1)ano + Rtttz + 2ti1tiztn + 2tz ain
2 2
+ Qtitiztrs + tjzt1)a102 + t122l2261030 + (tiat3 + 2t12t13122)ao21

2 2 2
+ 2tiat13tas + t3t22)ao12 + t3t23a003 + 11210300  €tc., etc.

In order to get some information about the invariants of a ternary cubic, we
compute the formal character of the I"-module S,,53C> for small values of m.
By Proposition 4.1.18 we need to compute the plethysm #,, o k3, where k3
denotes the complete symmetric polynomial of degree 3 in t1, £, f3, and A,
denotes the complete symmetric polynomial of degree m in 10 = dim(S3C>)
variables. Using Algorithm 4.1.16, we determine the following decompositions
into Schur polynomials s, = s, (1, f2, 13).

ha o h3 = 5(6,0,0) + 54,2,0)>

h3 o h3 = 509,0,00 + 57,2,0) + 56,3,0) + 5(5,2,2) + 54,4,1)»
©.00 ) ) (4.4.13)

ha o h3 = 512,0,00 + 5(10,2,0) + 59,3,0) + 58,4,0) + 58,2,2)
+ 8(7,4,1) + 8(7,3,2) + 5(6,6,0) + 56,4,2) + S(4,4,4).

While there are no invariants in degrees 1, 2 and 3, the underlined term shows
that there exists one invariant of degree 4 and index 4. Continuing this process,
we find that there are no invariants in degrees 5, 7, 9 and 11, while the space
of invariants is one-dimensional in the degrees 6, 8 and 10. In degree 12 there
are two linearly independent invariants.

These enumerative results prove that there exists a unique (up to scaling)
invariant S of degree 4 and a unique (up to scaling) invariant T of degree 6. All
invariants of degree at most 12 lie in the subring C[S, T']. The following result
is to be proved in Exercise 4.7. (2), using the methods developed in Sect. 4.7.

Theorem 4.4.6. The ring of invariants of a ternary cubic is generated by two
invariants S and T of degrees 4 and 6 respectively.

In the remainder of this section and in Sect. 4.5 we will address the question
of how to generate and encode invariants such as § and 7. Our first method
for computing invariants is the Q-process, which was crucial in the proof of
finiteness theorem. We apply it to generate the degree 4 invariant S. The degree 6
invariant 7 will be generated in the next section; its monomial expansion in
given in Example 4.5.3.

In order to find the invariant S we first choose a suitable degree 4 monomial
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ip 8485C3, such as afn. We apply to it the Q2-process an appropriate number of
times. We compute

Lio(aly) = (T od}y)),

a3 83 83
where Qr = — _
! 011101220133 011101230831 01120121133
93 83 83

+ + - .
01120130131 01130110132 011301220133

The expression T o “?11 is a polynomial in the two groups of variables ¢, ...,
133 and aspo, @210, - - - , apo3. It is homogeneous of degree 4 in each group. The
complete expansion of T o ai‘u has 18,630 monomials.

Having computed this expansion, we successively apply the operator Q7.
Each application decreases the degree in the #;; by one while the degree in
the a;j; stays four. Thus Qr (7T o a‘fll) has degree three in the #;. It has 7,824
monomials. The next polynomial QZT(T ° ai‘n) is quadratic in the #;;, and it has
3,639 monomials. The next polynomial Q3T(T ) a‘fll) is linear in the #;, and it
has 150 monomials. Our final result I40(af;;) = Q3(T o af,,) is a polynomial
in the variables a;;; alone. It has only 25 monomials. Each coefficient is an
integer multiple of 18630, which we divide out for convenience.

Proposition 4.4.7. The degree 4 invariant of a ternary cubic equals

1
S=— . Io@
18630 4olany)

= a300412040214003 — a3oo(1120a312 — d300411140302003
+ a300a111402149012 + @300210240304012 — a300a102a321 - 613100021%03
+ a%loaglz ~+ a210420140304003 — d210820140214012 + A210212041114003
— @210a12081024012 — 2a210a7,1d012 + 3A2100111d1020021 — 210871030
- 0501610300!012 + agolagm - 32010%20(1003 + 3azo1a120a111a012
— a201412041024021 — 2612010%1161021 + az01a111a1024030 + ‘1%20“%02

2 4
— 2anoaiy a2 + aj;-

We now explain what it means that the monomial a;‘” was “suitable”. In
what follows V' can be any I'-module. Let T denote the subgroup of diagonal
matrices in I'. This group is isomorphic to (C*)", and it is called the maximal
torus of I'. It can be assumed that a basis of V has been chosen such that T
acts by scaling on the monomials in C[V].

We have the inclusion of graded invariant rings C[V]" ¢ C[V]”. It is easy
to see that the Q2-process preserves the ring of torus invariants C[V]7. Therefore
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the only suitable monomials m (with possibly I, ,(m) # 0) are the monomials
in C[V]".

In order to compute the invariant ring C[V]?7 we apply the methods pre-
sented in Sect. 1.4. Let us first suppose that V = §,C". A torus element
diag(r1, ..., t,) € T acts on a variable a;,;,_;, by multiplying it with 7;'#, - - - .
Thus a monomial ]_[;-":l Ayjyvpp...v;, li€s in C[V]T if and only if

n

ﬁl‘;ﬂ[;jz‘..[’;}j” :[igl‘zg...[g Wheregzmd/n (4414)
j=1

Let r denote the least denominator of the rational number d/n. We abbreviate

A:{I"(il —g,iQ—g""i”_g): . (4415)
it ..., i, > 0 integers with iy + ...+ i, = d}.

We can reformulate (4.4.14) as follows.

Observation 4.4.8. The invariant ring C[V']7 equals the ring of invariants of the
matrix group I' 4, as defined in Sect. 1.4.

This observation extends to an arbitrary I'-module V. In (4.4.15) we need
to take A to be the set of exponent vectors (iy,i2,...,i,) appearing in the
formal character of V. Algorithm 1.4.5 can be used to compute a Hilbert basis
for C[V]T, and thus a vector space basis for the graded components C[V]] =
(SnSsCMT. We summarize our first algorithm for computing all I'-invariants
in S, S4C".

Algorithm 4.4.9.

Output: A spanning set for the C-vector space of I'-invariants in S, S¢C".
1. Using Algorithm 1.4.5, compute all T-invariant monomials in S, S;C".
2. To each T-invariant monomial apply the m-fold Q-process I 0( ).

Exercises

(1) Extend the list (4.4.13) by computing the plethysm %5 o /3 in terms of
Schur polynomials.

(2) Apply Algorithm 4.4.9 to generate the fundamental covariants f, H, T, D
of a binary cubic.

(3) Determine the ring of covariants of an n-ary quadratic form.

(4) * Determine the ring of joint invariants of two ternary quadratic forms.

(5) Compute the resultant R of three ternary quadratic forms.
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4.5. Lie algebra action and the symbolic method

There are three different algorithms for computing a basis for the vector space
of invariants of fixed degree.

(1) The Q-process

(2) Solving linear equations arising from the Lie
algebra action (Theorem 4.5.2)

(3) Generating invariants in symbolic representation (Algorithm 4.5.8).

(Algorithm 4.4.9)

In this section we introduce the second and the third method. Both of these
outperform the Q2-process in practical computations.

Let p : I' — GL(V) be any rational representation of I' = GL(C"). The Lie
algebra Lie(I") can be identified with the vector space C"*" of n x n-matrices.
We choose the canonical basis {E;;} of matrix units for Lie(I"). The group
homomorphism p induces a homomorphism of Lie algebras

p* : Lie(T') — Lie(GL(V)). (4.5.1)

By C-linearity, it suffices to give the image of basis elements under p*. We
have

d
p*(Eij) = {%p(z’)}T=1 45.2)

where 1 denotes the n X n-unit matrix.

Lemma 4.5.1. A vector v € V is a I'-invariant of index g if and only if
p*(Eij) -v=0foralli,je{l,...,n},i # jand p*(E;)-v = g - v for all
iefl,...,n}

Proof. A vector v € V being a I'-invariant of index g means that p(T) - v =
det(T)¢ - v for all T = (t;;) € I'. Differentiating this identity with respect to
the variables #;; and substituting T = 1 thereafter, we obtain the only-if part of
Lemma 4.5.1.

For the converse suppose that v is not a I'-invariant. This means there exists
an element in the Lie group o(I") NSL(V') which moves v. Since this Lie group
is connected, we can find such an element in any neighborhood of the identity.
This implies that v is not fixed by the Lie algebra of p(I") N SL(V). «

We work out an explicit description of the linear map (4.5.1) for the case
V = 8,C", p = pg. Let f = f(x) be any n-ary d-form. By (4.5.2), its image
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under pj(E;;) is the n-ary d-form
(o3 - 1)) = [ F ()
81,']' T=1

_ {E(TX) 'X"}H (4.5.3)

an

_
= X; o, (x).

On the monomial basis of S;C" this action is given by
PH(E)(XY) = aj - x> =), (4.5.4)

where x* = x]'xJ2---x," and e;,e; are unit vectors. This formula can be
rewritten in terms of the canonical basis {E, g} of the Lie algebra Lie(GL(V)).
We have

0i(Eij) = 3 j Eqi(ei—ep)a- (4.5.5)

a:a;>0

We now iterate this construction and consider W = S, V, first as a GL(V)-

module and then as a I'-module. These two representations are denoted p,, and
Pm © pa tespectively. In the following we represent forms f = Y, (¢)aox®
in V by their symmetric tensors a = (a,). Elements in W are homogeneous
polynomial functions P = P(a). By (4.5.3) the Lie algebra Lie(GL(V)) acts on

W via )
(pm(E%ﬁ))(P) =dqg - @P(a).

The action of the smaller Lie algebra Lie(I") on W is described by the formula

oP
p:l(p;(Eij))(P) = Z O - Aot(ej—ej) " 7

o >0 day

(4.5.6)

Lemma 4.5.1 now implies the following theorem.

Theorem 4.5.2. Let V = S;C". An element / = I (a) € C[V] is a I'-invariant
of index g if and only if it satisfies the linear differential equations

al
icQg—— =g-1 fori=1,2,...,
20 g =g 1 for !

5] 4.5.7)

and ) o 'aa+(ei—ej)3_— =0 fori,je{l,2,....n},i#j.
o a(x

The differential equations (4.5.7) translate into a system of linear equations
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on W = §,,S;C". The solution space to this system is precisely the vector space
of degree m invariants of an n-ary d-form. The first group of equations in (4.5.7)
states that 7 is invariant under the action of the maximal torus 7 >~ (C*)" in I".

By the discussion at the end of Sect. 4.4, we can assume that a basis for
the linear space of torus invariants W7 has been precomputed (e.g., using the
methods in Sect. 1.4). We can restrict ourselves to the second group of n*> — n
differential equations. These translate into a system of linear equations on W7,
whose solution space is W'

Example 4.5.3 (Ternary cubics). The degree 6 invariant 7 of the ternary cubic
equals

30008300003 — 630080304021 40120003 + 430080304015 + 443008214003
— 3a3y,aty a3, — 6a300a210a120030a503 + 18a30042104120402130120003
— 12a300a210812003;5 + 12a30032104111@030d012d003 — 24a3008210411193,1 003
+ 12a300021001114021a31, + 6a30082108102803090214003
— 12a30022100102d0304315 + 63300210@1023,1 @012 + 6a3002201@12080309012003
- 12a300a20101200321a003 + 6a300a20101206102161(2)12 + 12a300a201a111203090219003
- 2403000201011100300(2)12 + 12@300020161111613210012 - 603000201(110203300003
+ 18a300a20141024030d021d012 — 12a300420101020001 + 4830003200503
— 24a300a2ya111d012d003 — 12a300a350a1020021d003 + 2430003210203
+ 36a300a120a%, 30214003 + 1243000120031 1a315 + 12a300a1204111310200304003
— 60a300a120411141028021d012 — 12430012007 d030012 + 24a300a1200502 8021
— 20300431 a030d003 — 12a300a7,a021d012 + 36a300a711d1024030d012
+ 12a300a%,,a10205y, — 24a300a111d302030d021 + 4a300a3 00530 + 443100300803
- 12&%10%21001261003 + 8a§’10a812 — 12a3,0@201903090128003
+ 243104201005, 8003 — 1231042014021, — 3031001204503
+ 12a3,ga120a111d0120003 — 24a%y0ai atg, + 24412001102
+ 6a2,0a120102a021 003 — 12a310a120a10205 15 + 12a3,4a%,,a021d003
— 24a2 4}y ady, — 24a310a111a1028030a003 — 27a310810,801
+ 36a3,0a111010200214012 + 2443007, a0300012 — 12a210a50 3030021 @003
+ 24112100%0161030(1312 — 12a10a30,a8, 9012 + 642104201 @720 @0120003
— 60az10a201a120411190214003 + 36&210@0161120(11110312

+ 18a210a201a120410200304003 — 6@21002014120210240214012
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+ 36a210a201711 00304003 — 12210020147 A0214012

— 60az10a201@1114102a0304012 + 36a2100201a11101020521 + 6a210a201af02a030a021
+ 12a210a%50a111@1028003 — 12a210a}50a7 020012 — 12210412043 114003

- 126121001200%1161162%12 + 3621001200111 @1gp 021 — 1261210611200%0261030

+ 24a210a?11a012 - 36021061%11&1020021 + 12612100%1161%0261030 + 4a§01a§30a003
— 12a3y,a030a021d012 + 830031 + 243, aTr0@0210003 — 27a301d 120012

— 2442y, a120a11100304003 + 36a39,a120a1114021d012 + 63, @120010200304012
— 12a3y 12010008y, + 128501a111d030d012 — 24a3,a311901

+ 12a3y,a111@1028030d021 — 330183029030 — 12a201a350@1024003

+ 12a201a350a} 1003 + 36a201A150a11141024012 — 12a201af20a%02a021

- 360201012061%110012 — 12a301a1200%1,@1024021 + 1240101204111 502030

+ 24(120161‘111161021 — 12(12()1(1‘;’116110261030 + 80%20(1%02 — 861?11.

This invariant was generated as follows. We first computed all monomials of
degree 6 which are invariant under the action of the maximal torus, using Obser-
vation 4.4.8. There are precisely 103 such monomials, namely, the monomials
appearing in the above expansion of T. We then made an “ansatz” for T with

103 indeterminate coefficients. By Theorem 4.5.2 the invariant T is annihilated
by the following six linear differential operators:

0 0
& = 3azio0 + 2a120 + 2ain + ap3o + ap1
dazoo daz10 dan dai20 dain
+ ap12
daio
0 0
&1 = a1 + 2a111 + 2a102 + am1 + ao12
0azoo dan1o a0 daino dain
+ aopos
daio
0 0
E12 = azoo + 2az10 + azo1 + 3a120 + 2a111
0anio daino dain daozo dap21
0
+ a2
dao12
d
&3 = axo1 + 2a1m1 + ajm + 3ap1 + 2a012
dazio daizo daini dapzo da1
0
+ apo3
0ap12
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E13 = az0 + a0 + 2a01 + ao + 2a111
dazo1 dai daio2 dap1 dao12
+ 3a12
9apo3
& = a0 +aip + 2a111 + aozo + 2ap21
dan1 daiii 0ai02 dap21 0ao12
+ 3ao12
dapo3

Applying these operators to our ansatz for T, and equating the result with zero,
we obtained a system of 540 linear equations in 103 variables. The solution
space to this system is one-dimensional, in accordance with Theorem 4.4.6. The
unique generator for this space, up to scaling, is the vector of coefficients for
the above invariant.

We close Example 4.5.3 with a remark concerning the geometric significance
of two invariants derived from § and T. The zero set defined by the ternary
cubic (4.4.13) in the projective plane is a cubic curve. This curve is singular
if and only if the discriminant A vanishes. Otherwise the curve is an elliptic
curve. A classical invariant for distinguishing elliptic curves is the j-invariant J.
This is a ['-invariant rational function. We have the following formulas for the
discriminant and the j-invariant in terms of the two basic invariants:

S3
A=T2_64S8> and J = < (4.5.8)

Thus Theorem 4.4.6 implies the well known geometric fact that the moduli
space of elliptic curves is birationally isomorphic to projective line Pl

We now come to the symbolic method of classical invariant theory, which
provides our third algorithm for computing invariants and covariants. One par-
ticularly nice feature of the symbolic method is a compact encoding for large
invariants. Indeed, many of the 19th century tables of invariants are presented
in symbolic notation. Familiarity with the subsequent material is thus a precon-
dition for accessing many classical results and tables.

For simplicity of exposition we restrict ourselves to the I'-module V = §,C",
which is the case of invariants of a single form. The generalization to joint
invariants and to covariants is straightforward and left as an exercise. Other
generalizations, for instance to V = A4C", are more difficult, as they involve
the use of non-commutative algebras. For the state of the art regarding the
symbolic method we refer to Grosshans et al. (1987).

It is our objective to construct the I'-invariants in the vector space Sy S4C".
Recall that the index g of these invariants satisfies the relation g -n = m - d.
Consider the ring C[x;;] of polynomial functions on a generic m X n-matrix (x;;),
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and let C[x;;]«,....q) denote the subspace of polynomials that are homogeneous
of degree d in each row (x;1, Xj2, ..., Xin)-

The natural monomial basis in C[x;;](4,...4) is indexed by all non-negative
m x n-matrices (v;;) having each row sum to d. We define the C-linear map

¢ : Clxijla,...ay = SmSaC"
mono o m (4.5.9)
xijj = navil,viz ..... Vin*
=1 i=1

i=1j

The map ¢ is sometimes called the umbral operator.

The symmetric group S, acts on C[x;;] by permuting rows. Images under ¢
are invariant under this action, that is, ¢ (o P) = ¢(P) for all P € C[x;;],...,
and o € S,,. Let * denote the Reynolds operator of the symmetric group S,.

Lemma 4.5.4. The restriction of ¢ to the subspace of S, -invariants defines a
vector space isomorphism

¢ Clxij 105 4 = SmSaC™. (4.5.10)

.....

AL Vo (i), j
I ITxG5 <

We next show that ¢ preserves the invariants under the I'-action on both
spaces.

.....

only if its image ¢(P) in S, S4C" is a I'-invariant of index g.

Proof. We consider the action of the Lie algebra Lie(I') on both spaces. By
Lemma 4.5.1 and Theorem 4.5.2, it suffices to show that these two actions
commute,

For S, S4C" the Lie algebra action had been determined above. We can
rewrite (4.5.6) as follows:

m m av 1 1 m
. jlsees Vikt+ 1o, vii—1,..., Vin
kl - navn,vn ..... vin Zvjl H Av;i1,vin, .., . (4.5.11)
i=1

Jj=1 avjl,vjz ..... Vin i=1

The action on C[x; J](d ,,,,, 4) can be described as follows. The image of a mono-
mial m = []72, J —1%; "I under the basis elements Ej; of Lie(I") is the coeffi-
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cient of the variable ¢ in the expansion of
m i n Uij
[TGear + txi)™ [T
i=1 j=1
i
This coefficient equals

Vi1 vk +1 vji—1 Vin

X ‘ .
j1 Tk jl jn
Zvﬂ Sm = Zvﬂ R o - m. (4.5.12)
]1 J 1 jl jl x]n

The image of (4.5.12) under ¢ is equal to (4.5.11). This completes the proof. <«

Recall from Sect. 3.2 that the I'-invariants in C[x;;] are precisely the rank n
bracket polynomials on m letters. Using the First Fundamental Theorem 3.2.1,
we may thus replace C[x,~j]F by Bn., = C[A(m,n)l/l, ,, the bracket ring
modulo the syzygy ideal. Let B, , o denote the subspace of all rank n bracket
polynomials of total degree g that are symmetric in the letters 1,2, ..., m.

Corallary 4.5.6. The space B,, , ¢ is isomorphic to the vector space of invariants
(SmSaCMT.

Example 4.5.7 (Cubic invariants of a ternary quadric, n = 3, d = 2, m = 3,
g = 2). The space B33, consists of rank 3 bracket polynomials in {1, 2, 3},
homogeneous of bracket degree 2. This is a one-dimensional space, spanned by
the bracket monomial [1 2 3]%. Therefore the space (53 $,CHT is spanned by the
invariant ¢ ([1237?).

We evaluate this invariant in terms of the coefficients of the ternary quadric
(4.1.10). In the following table the first column lists the monomial expansion
of [1231% = (X11x22%33 — X11X23%32 — X12X21X33 + X12X23X3] — X13X21X32 +
x13x22x31)%. To each monomial we apply the operator ¢. The results are listed
in the second column:

Xt X5x3 20020204002
—2X%, X0 X23X32X33 —2a0at;,
X X53%3, +a20040204002
—2X11X12X21 22X, —2a?,,a002
+2X11X12X21X23X32X33 +2a110a1014011
+2X11X12X22X23X31 X33 +2ai10a1014011
—2X11X12X3,X31 X3 —2a?,,a002
+2X11X13X21X22X32X33 +2a10@1014011
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—2X11X13X21X23%, —2a?y,a020
—2X|1X13X3,X31X33 —2a}y, a0
+2x11X13X22X23X31X32 +2ar10ai01a011
+x1,X3, X3 +a2004020@002
—2x%, X1 X23%31 X33 —2a?y a0
+x122x223x§1 +a20040204002
—2X12X13X3, X32X33 —2a300a3,
+2x12X13%21 X22X31 X33 +2ay10a101a011
+2x12X13X21X23X31X32 +2ar10a101a011
—2X12X13X22X23 %5 —2ax00a,,
+x (303,13, +a200a0202002
— 2301 X0 X31 %32 —2a?,4a002
+xix3,x 20040204002

The sum over the second column in this table equals ¢ ([12 31%) = 6- A, where
A equals the discriminant (4.1.14).

From Theorem 4.5.5 and Corollary 4.5.6 we derive the following algorithm.

Algorithm 4.5.8.
Input: Integers m, d and n such that g = de is an integer.
Output: A basis Z for the space of I'-invariants in S,,S,;C", in symbolic notation.

1. Let 7 be the set of rank n standard bracket monomials in the letters {1, 2,
..., m} having degree g.

2. For each standard bracket monomial ¢+ € 7 compute its S,,-symmetriza-
tion t*.

3. Compute a basis 7 for the C-linear span of the bracket polynomials {* :
teT}.

Example 4.5.9 (Ternary cubics revisited, m = 4, d = 3, n = 3). The space of
symmetrized rank 3 standard bracket polynomials on {1, 2, 3, 4} having degree 4

is one-dimensional. It is spanned by the bracket monomial [123][124][134][234].
Therefore the space of degree 4 invariants is spanned by

¢([123][124][134][234]) =24-8. (4.5.13)

Here § denotes the familiar invariant given in Proposition 4.4.7.
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Exercises

(1) Describe the action of the Lie algebra Lie(I") on the spaces S,, A; C" and
AmSaC".

(2) Give a symbolic representation for the degree 6 invariant of the ternary
cubic.

(3) Compute a basis for the degree 8 invariants of the binary quintic.

(4) What is the smallest degree for an invariant of the ternary quartic?

(5) * Formulate the symbolic method for joint invariants and joint covariants
of forms. State the map ¢ explicitly. Determine symbolic representations
for the resultant and for the Jacobian of two binary cubics.

(6) * Determine the ring of joint invariants of & binary quadrics.

4.6. Hilbert’s algorithm

We give an algorithm for computing a finite generating set for the invariant ring
C[V1" of an arbitrary polynomial I'-module. Our discussion follows closely
the original work of Hilbert (1893). One of the key concepts introduced in
Hilbert (1893) is the nullcone. Computing the nullcone will be our theme in the
first half of this section. Later on we need to pass from invariants defining the
nullcone to the complete set of generators, which amounts to an integral closure
computation. The complexity analysis, based on results of Hochster and Roberts
(1974) and Popov (1981, 1982), will be presented in Sect. 4.7.

Let Zr denote the ideal in C[V] that is generated by all homogeneous I'-
invariants of positive degree. Let N1 denote the affine algebraic variety defined
by Zr. This subvariety of V is called the nullcone of the I'-module V. The
following result is crucial for our algorithm. Its proof is the very purpose for
which Hilbert’s Nullstellensatz was first invented.

Theorem 4.6.1 (Hilbert 1893). Let /i, ..., I, be homogeneous invariants whose
common zero set in V equals the nullcone Ar. Then the invariant ring C[V]"
is finitely generated as a module over its subring C[/1, ..., I,].

Proof. By Theorem 4.3.1, the invariant ring is finitely generated as a C-algebra:
there exist invariants Ji, ..., J; such that

CIVI' =ClJy, b, ..., . (4.6.1)

Let d denote the maximum of the degrees of Ji, Ja, ..., J;. The nullcone AT,
which is the variety defined by the fundamental invariants Ji, ..., J;, coincides
with the variety defined by /i, ..., I,,. By Hilbert’s Nullstellensatz, there exists
an integer r such that

J, Iy, e, .. ). 4.6.2)
1> 72 s
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Let / € C[V]" be any invariant of degree > drs. By (4.6.1) we can write
I as a C-linear combination of invariants of the form J;'J,> - - - J;°, where i1 +

ip + ...+ 15 > sr. Each such invariant lies in the ideal (I, I», ..., I,;), and so
does 7, by (4.6.2). We can write

I =fil+ o+ ...+ JmIn Where fi, o, ..., fs € C[V]. (4.6.3)

Applying the Q-process to the identity (4.6.3) as in (4.3.23), we see that the co-
efficients f1, f2, ..., f,, may be chosen to be invariants. We now iterate this pro-
cedure for those invariants f; € C[V]" whose degree is larger or equal to drs.

This proves that I is a linear combination of [-invariants of degree <
drs, with coefficients in C[[y, ..., I,,]. Hence C[V]' is finite over its subring
Clh, ..., I,]. <

Corollary 4.6.2. Under the hypothesis of Theorem 4.6.1, the invariant ring
C[vyr equals the integral closure of C[/y, ..., I,] in the field C(V) of rational
functions on V.

Proof. The ring C[V]' is finite and therefore integral over C[/y, ..., I]. For
the converse suppose that f € C(V) is any rational function on V which is
integral over C[/, ..., I,,]. This means there exists an identity in C(V) of the
form

fn"{‘pn—l(]l,-u,lm)'fn_l+-~-+p1(11»-~'alm)'f+p0(11,--~»1m):O7
(4.6.4)

where the p; are suitable polynomials. We write f = g/h, where g, h are
relatively prime polynomials in C[V]. The resulting identity

g/ h=—=pui(li,.... In) - gV — ... = pi(Ly, ..., L) - gh"2
— poll1, ..., Ly)h"™! (4.6.5)

shows that g"/h is actually a polynomial in C[V]. This means % divides g”.
Since g and h are assumed to be relatively prime, also 4 and g" are relatively
prime. This implies that 4 is a constant, and therefore f = g/ lies in C[V].

It remains to be seen that f is a I'-invariant. Since I is a connected group, it
suffices to show that the orbit of f under I is a finite set. Consider the # roots of
the polynomial in (4.6.4) in the algebraic closure of C(V'). Since each coefficient
pi(l1, ..., I,) is T-invariant, the set of roots is I'-invariant. Therefore the orbit
of f has at most n elements. <

The problem of computing fundamental invariants now splits up into two
parts:
— Compute homogeneous invariants /i, ..., I,, whose variety equals the null-
cone N.
— Compute the integral closure of C[/y, ..., I,] in C(V).
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We first address the problem of computing the nullcone. Let T ~ (C*)"
denote the maximal torus in I', and consider its ring of invariants C[v]T. We
know that C[V]7T is a monomial algebra, whose minimal generating set 7, the
Hilbert basis, can be computed using Algorithm 1.4.5. Let Zr denote the mono-
mial ideal in C[V] that is generated by H or, equivalently, by all homogeneous
T-invariants of positive degree. The affine algebraic variety defined by Z; is
denoted Cr r and called the canonical cone. It is a union of linear coordinate
subspaces of V.

For algebraic geometers we note that in geometric invariant theory (Mu.mfor‘d
and Fogarty 1982) the points in A are called I'-semistable and the points in
Crr are called T -semistable. The following theorem relates the nullcone to the
canonical cone.

Theorem 4.6.3. The nullcone equals the I'-orbit of the canonical cone, i.e.,

VvoeV:vgeNr < FApeTl :Agovpelrr. (4.6.6)

We will not present the proof of Theorem 4.6.3 here, but instead we refer to
Hilbert (1893: § 15-16). Other proofs using modern algebraic geometry language
can be found in Krafft (1985: § I1.2.3) and in Mumford and Fogarty (1982).

The condition (4.6.6) can be rephrased in ideal-theoretic terms. Let A = (a;;)
be a generic n x n-matrix, and let C[V, A] denote the polynomial ring generated
by the variables a;; and the coordinates of the generic point v of V. Let AoZr
denote the ideal in C[V, A] gotten by substituting A ov for v in Z7. Then (4.6.6)
is equivalent to

Ideal(NT) = Rad(Zr) = Rad((A oZr)N C[V]), (4.6.6")

where Ideal(-) stands for “the vanishing ideal of”” and Rad(-) refers to the radif:al
of ideals in C[V]. As a consequence of Theorem 4.6.3 we get the following
algorithm.

Algorithm 4.6.4 (Computing the nullcone).
Input: A polynomial I"-module V.
Output: Homogeneous invariants whose affine variety in V' equals the nullcone

Nr.

1. Compute the Hilbert basis H of the ring C[V1T of torus invariants (Algo-

rithm 1.4.5). ' .
2. Using Grébner bases, eliminate the variables A = (a;;) in the ideal

AoIr ={(Aom:m e H) C C[V, A].

Let g1, g2, ..., gs be the resulting (non-invariant!) generators of (A o Zr) N
C[V].
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3. Generate invariants Iy, I, I, ... degree by degree until

g1, 82, ...,8s € Rad({I1, Ip, ..., I,)) for some m > 0.

Step 3 is formulated rather vaguely, as is the specification of the input.
One reasonable assumption is that the action of the Lie algebra Lie(I') on
C[V] is given explicitly, that is, we know the system of differential equations
(4.5.7). Equivalent to this is the knowledge of the system of linear equations
Lie(V)-S,, (V) = 0 for each degree level m. The latter is the working assumption
in Popov (1981). From the first group of equations in (4.5.7) we can read off
the set of weights .A C Z", which is the input for step 1.

Another possibility is that we might have an efficient subroutine for the
symbolic method, which supplies a stream of invariants as in Algorithm 4.5.8.
A third possibility is that we are given a subroutine for performing the 2-process.
This is closest in spirit to Algorithm 2.5.8 for finite groups. In all three cases
we will naturally proceed one degree at a time in step 3, similar to Algorithm
2.5.8.

In order to improve Algorithm 4.6.4 and to analyze its complexity, we need
to study the nullcone and the canonical cone more closely. Let C[A] denote the
polynomial ring on the generic matrix A = (a;;). The determinant det(A) is
an element of degree n in C[A]. For each fixed vector vo € V we let C[Avy]
denote the subring of C[A] generated by the coordinates of the transformed
vector A o vy.

Lemma 4.6.5. A vector vo € V does not lie in the nullcone Nt if and only if
det(A) is integral over C[Avg].

Proof. Suppose that vy does not lie in M. Then there exists a homogeneous
invariant / € C[V]' of positive degree such that I(vp) # 0. We have the
identity

det(A)? = I(Avp)/1(vo) in C[Avp], (4.6.7)

where p > 0 is the index of I. This shows that det(A) is integral over C[Avp].
For the converse, suppose there exists an identity

-1
det(A) +'5 fi(Avo) det(A) =0 in C[Avp]. (4.6.8)
j=0

We may assume that this identity is homogeneous, in particular each f; is homo-
geneous. We replace vy by the generic vector v and consider the homogeneous
polynomial
p—l .
det(A)” + > fi(Av)det(A)’ in C[V, A]. (4.6.9)
Jj=0

We apply the p-fold Q2-process Qﬁ to (4.6.9). By the results of Sect. 4.3, this
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transforms (4.6.9) into an expression

p—1
c+ X%)Ij(v) in C[V, A], (4.6.10)
j=

where ¢ is a non-zero constant and Io, 1, ..., ] p—1 are homogeneous invariants
of positive degree. Moreover, if in (4.6.10) the generic element v is replaced by
the specific vo, then we get zero by (4.6.8). Since ¢ is non-zero, there exists an
index j € {0, 1, ..., p — 1} such that I;(vo) # 0. Therefore vo & Nr. <

We next give a criterion for vo to lie in the canonical cone. Let t =

diag(#, f2, ..., t,) be a generic element of the maximal torus T = (cHn.
For each fixed vector vo € V we let C[tvy] denote the subring of C[t] =
Clt, 1o, ..., t,] generated by the coordinates of the transformed vector t o V0.

Lemma 4.6.6. For any vector vo € V the following statements are equivalent:
(a) det(t) =112 . .1, is integral over C[tvy];

(b) (t1t2.. . 1,)P lies in C[tvo] for some integer p > 0;

(c) vg does not lie in the canonical cone Crr.

Proof. The algebra C[tvy] is generated by monomials in #, ...,#,. Another
monomial, such as #1#,...¢,, lies in the integral closure of C[tvy] if and only
if one of its powers lies in C[tvp]. To see the equivalence of (b) and (c), we
note that a non-constant monomial m € C[V] is T-invariant if and only if
m(tv) = det(t)? - m(v) for some p > 0. Now, (b) states that there exists a
monomial m € C[V] such that det(t)? = m(tvo) = £i'¢22- .-t - m(vp). This
relation implies iy = p,...,i, = p,m(vy) = 1; so (b) is equivalent to the
existence of a non-constant monomial m € C[V]T with m(vy) = 1, and hence
to (¢). «

The two previous lemmas suggest the following more refined approach to
computing invariants. The correctness of Algorithm 4.6.7 follows from Theorem
4.6.3 and Lemma 4.6.5, and the elimination property of the chosen Grobner basis
monomial order.

Algorithm 4.6.7 (“The geometric invariant theory alternative™).

Input: A I'-module V' of dimension N, and a point vo € V.

Output: Either a non-constant homogeneous invariant / € C[V]' such that
I(vo) # 0, or a matrix Ay € I" such that Agvg lies in the canonical cone Crr.

1. Introduce new variables D, yq, ...
basis G for the relations

, yn and compute the reduced Grébner

det(A) — D, Avo — (1, ..., yN)
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with respect to an elimination monomial order {a;;} > D > {y;} and let
G =6NC[D,yi, ..., ynl
2. Does there exist a relation of the form

p-l ‘
DP 4+ ¥ fi,...,yn)D’ inG"?
j=0

If yes, then det(A) satisfies the integral relation (4.6.8). Proceed as in (4.6.9)
and (4.6.10) to compute an invariant with [ (vg) # 0.

3. If no, compute the minimal generating set H' of Rad(Zr), by taking the
square-free part in each monomial in the Hilbert basis H of C[V]7.

4. Compute a common zero (Ag, Do, b1, ..., by) of GUH such that Dy = 1.
Then Ag € I', and Agvy = (b1, ..., by) lies in Cr .

In many examples of I'-semi-stable points vo € V \ A it happens that the
relation found in step 2 equals

D? — I(y1,¥2, .-+ YN),

where [ is already an invariant. It clearly satisfies / (vy) # 0, so we do not need
to invoke the second part of step 3 at all. We illustrate this nice behavior in the
following example.

Example 4.6.8 (Two binary cubics). Let V = S3C?, the space of cubics in two
variables x; and x,. We consider the following two elements in V:

Vo = xf — 6x%x2 + llxlxg — 6x;5 = (x1 — x2)(x1 — 2x2)(x1 — 3x7)

(4.6.11)
Vo = X3 — 8x3xy 4 21x1x5 — 18x3 = (x1 — 2x2)(x1 — 3x2)%.
Let A = (a11 a12) denote a generic matrix of I'. The relations
a2 an
det(A) — D and Aovy—(y1,¥2, ¥3, y4), (4.6.12)

in the polynomial ring Cla11, a12, a21, a2, D, y1, y2, y3, y4] are explicitly giv-
en as:

3 2 2 3
anay —appay — D, (aj; — 6ajjai2 + 1ayiaj, — 6aiy) — yi,
2 2 2
(36121011 - 126121011(112 - 6a11a22 + 11021012 -+ 2261116222012

— 18axadl,) — y2,

.
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2 2 2
(Baz a1 — 6aya1n — 12axnar1a2 + 22az1a2a12 + 1layay,
2
— 18ayaiz) — y3,

(ag1 - 6a§1a22 + llaglagz — 6a§2) - Y4. (4.6.12)

The analogous relations for the second binary cubic v; are

3 2 2 3
anay —apay — D, (aj; — 8aj a2 + 2layay, — 18aj,) — y1,

(Baniai, — 16azianar — 8ajiax + 2lazial, + 42ai1axar
— 54ayal,) — y2,

(361%16111 - Sa%lalg — 16az1ai1a2 + 42ax1axa12 + 21a11a§2
— S54az,a12) — y3,

(@3, — 8a3 ax + 2lay a2, — 18a3,) — y4. (4.6.13)

Using the monomial order specified in step 1 of Algorithm 4.6.7, we now com-
pute Grobner bases G and G’ for (4.6.12) and (4.6.13) respectively. In G we find
the polynomial

1 9 27
DS — Zy§y§ + y1Y3 + y3ya — SY2yaye+ ?ylzyf-

This trailing polynomial in y;, y,, ¥3, y4 is a multiple of the discriminant of the
binary cubic. The discriminant is an invariant of index 6, which does not vanish
at vop.

The other Grobner basis G’ contains no such integral dependence, so we

enter step 3 in Algorithm 4.6.7. The minimal defining set of the canonical cone
equals

74
H' = {x1x3, X1X4, X2X3, X2X4}.

From the Grobner basis for ' U H’ we can determine the following common
zZero:

D=1, an=3,apn=1a1=2,an=1, y1=0, =0, y3=1, y4 =0.
This tells us that the matrix Ag = (g }) transforms v;, into the binary cubic
A() o V6 = X1X22 € CT,F‘ <

We now come to the problem of passing from the invariants Iy, ..., I,



184 Invariants of the general linear group

to the complete system of invariants. Equivalently, we need to compute the
integral closure of C[/y,..., I,] in C(V). The second task is related to the
normalization problem of computing the integral closure of a given domain in
its field of fractions. They are not quite the same problem because the field of
fractions of C[[y,..., I,,] is much smaller than the ambient rational function
field C(V). The normalization is a difficult computational problem in Grob-
ner basis theory, but there are known algorithms due to Traverso (1986) and
Vasconcelos (1991). It is our objective to describe a reduction of our problem
to normalization. It would be a worthwhile research problem to analyze the
methods in Traverso (1986) and Vasconcelos (1991) in the context of invariant
theory. In what follows we simply call “normalization” as a subroutine.

Algorithm 4.6.9 (Completing the system of fundamental invariants).

Input: Homogeneous invariants /i, ..., I,, whose affine variety equals the null-
cone Nr.

Output: A generating set {J, Jo, ..., J;} for the invariant ring C[V]' as a C-
algebra.

1. Compute the integral closure R of the domain C[det(A), Av, I1(v), ...,

Iy (V)] in its field of fractions.
2. Among the generators of R choose those generators Ji(v), Jo(V), ..., J (V)
which do not depend on any of the variables A = (g;;).

The correctness of Algorithm 4.6.9 is a consequence of Corollary 4.6.2 and the
following result.

Proposition 4.6.10. The invariant ring equals the following intersection of a
field with a polynomial ring:

CIV]" = C(det(A), Av, Iy(v), ..., [n(v)) NC[V].

Proof. The inclusion “C” follows from the fact that every homogeneous invari-
ant J(v) satisfies an identity

J(v) = J(Av) .
det(A)P

To prove the inclusion “2” we consider the I"-action on C(A, V) given by
T:A—A-T L visTov.
The field C(det(A), Av, 1 (v), ..., Im(v)) is contained in the fixed field C(A,

. Tl}‘erefore its intersection with C[V] is contained in C(A4, V)I' N C[V]
=C[V]'. «
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Exercises

(1) Compute the canonical cone for the following I'-modules. In each case give
the irreducible decomposition of Cr 1 into linear coordinate subspaces:
(a) V = S,C?, the space of binary d-forms
(b) V = §,C3, the space of ternary d-forms
(c) V = S3C*, the space of quaternary cubics (Hint: see Hilbert (1893:
§19))
(d) V= nC*
(2) This problem concerns the action of I' = GL(C?) on the space of
2 x n-matrices C2*",
(a) Compute the canonical cone.
(b) Compute the nullcone, using Algorithm 4.6.4.
(c) Choose one matrix in the nullcone and one matrix outside the nullcone,
and apply Algorithm 4.6.7 to each of them.
(d) Find a system of 2n — 3 algebraically independent bracket polynomials,
which define the nullcone set-theoretically. (Hint: see Hilbert (1893:
§11).)
(e) Apply Algorithm 4.6.9 to your set of 2n — 3 bracket polynomials in (d).
(3) * In general, is the invariant ring C[V]" generated by the images of
the Hilbert basis H of C[V]” under the Q-process? Give a proof or a
counterexample.
(4) * Compute a fundamental set of invariants for the I'-module V = A CH

4.7. Degree bounds

We fix a homogeneous polynomial representation (V, o) of the general linear
group I' = GL(C") having degree d and dimension N = dim(V). It is our goal
to give an upper bound in terms of n, d and N for the generators of the invariant
ring C[V]'. From this we can get bounds on the computational complexity of
the algorithms in the previous section. The results and methods to be presented
are drawn from Hilbert (1893) and Popov (1981).

We proceed in two steps, just like in Sect. 4.6. First we determine the
complexity of computing primary invariants as in Theorem 4.6.1.

Theorem 4.7.1. There exist homogeneous invariants [y, ..., [, of degree less
than n?(dn + 1)"2 such that the variety defined by I} = ... = [, = 0 equals
the nullcone AT.

Note that this bound does not depend on N at all. For the proof of Theorem
4.7.1 we need the following lemma.

Lemma 4.7.2. Let fo, fi1,..., fs be homogeneous polynomials of degree ¢ in
s variables yi, ..., ys. Then there exists an algebraic dependency P (fo, f1,- ..,
fs) =0, where P is a homogeneous polynomial of degree < s(¢ + s,
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Proof. Let us compute an algebraic dependency P of fy, fi, ..., fs; of minimum
degree r, where r is to be determined. We make an “ansatz” for P with ("'S”)
indeterminate coefficients. The expression P(fy, fi1, ..., fs) is a homogeneous
polynomial of degree ¢ in s variables. Equating it to zero and collecting terms

with respect to yi,...,ys, we get a system of (”:_sl_l) linear equations for

the coefficients of P. In order for this system to have a non-trivial solution, it
suffices to choose r large enough so that

(r+s)_(r+1)---(r+s)>(rt+1)--~(rt+s—1)__(rt+s—1>
s ) 1-2---5 = 1-2---(s=1) U s—=1 )
“4.7.1)

If we set r = s(t + 1)}, then (r + 1)* > st +s5s — 1)’ ! and (4.7.1) is
satisfied. <

Proof of Theorem 4.7.1. We need to show the following statement: For any
vo € V \ Nr there exists an invariant I of degree < n’(dn + 1)”2 such that
I(vo) # 0. We apply step 1 of Algorithm 4.6.7 and identify yq, ..., yy with the
coordinates of Avy.

Let s denote the Krull dimension of C[Avy] = Clyy,..., yn]. Clearly,
s < n%. By the Noether normalization lemma, there exist s algebraically inde-
pendent linear combinations z; = Z;V:I Aijyj, such that C[Avo] is integral over
Clzi, ..., z;]. By Lemma 4.6.5, D = det(A) is integral over C[Avy], and hence
it is integral over Cl[zy, ..., z].

Each of the polynomials D?, zy, 2y, ..., 2y is homogeneous of degree nd
in the variables A = (a;j). Since D? is integrally dependent upon the alge-
braically independent polynomials z7, 23, ..., z7, there exists a unique homoge-

neous affine dependency of minimum degree of the form
p-1 .
P(D?, 20,25, ..., 2" = D% — Eopi(z;’, Z,...,ZODP =0.  (4.7.2)
1=

By Lemma 4.7.2, the degree of this relation and hence the degree of each P;
is bounded above by s(nd + 1)*~! < n%(nd + 1)"". Applying the Q-process as
in the proof of Lemma 4.6.5, we obtain a homogeneous invariant of degree <
n%(nd + 1) which does not vanish at vy. <

In order to derive degree bounds for the fundamental invariants from The-
orem 4.7.1, we first need to state a very important structural property of the
invariant ring C[V]', for I' = SL(C").

Theorem 4.7.3 (Hochster and Roberts 1974). The invariant ring C[V]' is a
Cohen—Macaulay and Gorenstein domain.
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The Cohen—Macaulay property for invariants of finite groups was proved in
Sect. 2.3. We refer to Hochster and Roberts (1974) or Kempf (1979) for the
general proof in the case of a reductive group, such as I' = SL(C"). The fact
that C[V]' is an integral domain follows from the connectedness of T, similarly
to the proof of Corollary 4.6.2.

What we need here is the fact that C[V]' is Gorenstein. For a Cohen—
Macaulay ring the Gorenstein property is equivalent to an elementary symmetry
property of the Hilbert series. Recall that the Hilbert series of any finitely gener-
ated graded C-algebra is a rational function (Atiyah and Macdonald 1969). The
following theorem combines results of Stanley (1978) and Kempf (1979). The
Hilbert series H(C[V], z) is also called the Molien series of the T'-module V.

Theorem 4.7.4. The Molien series satisfies the following identity of rational
functions:

H(C[v1', %) =427 HCC[VT, 2), (4.7.3)

where ¢ is a non-negative integer.

The fact that ¢ is non-negative is due to Kempf (1979). Stanley (1979a) has
shown that for most representations we have in fact g > dim(V).

Just like in the case of finite groups, one would like to precompute the Molien
series H(C[V]', z) before running the algorithms in Sect. 4.6. In practise the
following method works surprisingly well. As in (4.2.2) let

fo =g g g2 gl gt gl 4.7.4)

be the formal character of the given representation. Consider the following
generating function in #1, ..., ?, and one new variable z.

. n i—1
[l<icjen@ — 1) [Tz b

L e (4.7.5)
[T (=275 0)

Algorithm 4.7.5 (Precomputing the Molien series).

Input: The formal character (4.7.4) of a polynomial I"-module V, and an integer
M = 0.

Output: The truncated Molien series H<y (C[V]", z) = M dimc(C[V5)z2".

1. Compute the Taylor series expansion of (4.7.5) with respect to z up to
order M.

2. Let P(z, 1y, ..., t,) denote its normal form with respect to {t1#,--- ¢, — 1}.
(This singleton is a Grobner basis.)

3. The constant term P(z, 0,0,...,0) equals the desired truncated Molien
series.
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By studying the truncated Molien series for increasing M it is sometimes pos-
sible to guess (and then prove) a formula for the rational function H(C[V]', z).
We present two alternative proofs of correctness for Algorithm 4.7.5.

Proof 1. We multiply the both sides of the identity (4.2.7) by the Vandermonde
determinant [, <i<j<n(ti — ;). The truncation of the resulting formal power
series equals

L4 , L)

X antun,..n) 1 G—t)=> 3 cal,t... 0),

k=0 Abdk I<i<j<n k=0 rrdk
where a, denotes the antisymmetrization of the monomial tlA 1+"_1t§ =2 e
as in Sect. 1.1. Multiply the right hand side by [/_, #/~'. After the reduction
ity- -1, — 1 in step 1, the only terms free from ¢y, ..., 1, are those arising
from partitions of the form A = (g, g, ..., g). Theorem 4.2.3 now implies the

correctness of Algorithm 4.7.6. <«
Proof Il. The continuous generalization of Molien’s Theorem 2.2.1 states that

dg

—, 4.7.6
er det(l —zg) @70

H(C[VT, 2) :f
14

where dg denotes the Haar probability measure concentrated on the maximal
compact subgroup of I'. Using Wey!’s character formula (Weyl 1926), the inte-
gral (4.7.6) can be expressed as an integral over the maximal compact torus in
T' =T NSL(C") = {diag(t1, t2, ..., tp) 1 tity - -1, = 1}. Denoting elements of
T’ by t = diag(ty, ..., t,), we have

HC[VI', 2) = f AL dt 4.7.7)

teT’ det(l - Zt) ’

where A(t) = [],.;_ jen(d — %) This integral is with respect to the Haar
probability measure concentrated on the maximal compact subgroup of T’. Such
an integral can be evaluated formally using the following rule: the integral of
any non-constant character ¢,'t,> - - - 2, over T’ is zero. Noting that det(1 — zt)
equals the denominator in (4.7.5), we find that evaluating the integral in (4.7.7)
is equivalent to Algorithm 4.7.5. «

Example 4.7.6 (The number of invariants of a ternary quartic). We compute the
Molien series of V = §4C3. The generating function (4.7.5) equals

(11 — )11 — 1) (12 — B3)1xt}
(1 —z2t)(1 — z28)(1 = z32) (1 — z8513)(1 — z6) (1 — z1183) - - - (1 — z2)
4.7.8)

4.7. Degree bounds 189

Using Algorithm 4.7.5 we easily compute the Molien series up to degree M =
21:

HCIVI , o) =14+22 +22°4+42° + 7212 4+ 1125 419218 42921 + .

For analyzing the ternary quartic this suggests that we start by looking for one
fundamental invariant in degree 3 and another fundamental invariant in degree 6.

Let us return to our discussion of general degree bounds. The bound given
in the subsequent Theorem 4.7.7 is doubly-exponential, and it is certainly not
best possible. At present, it is unknown whether there exists a degree bound for
Hilbert’s finiteness theorem which is single-exponential in n2, the dimension of
the group I.

Theorem 4.7.7 (Popov 1981). The invariant ring C[V]' is generated as a C-
2
algebra by homogeneous invariants of degree at most N (nz(dn + 1" )!.

Proof. .
Let Iy, ..., I, be homogeneous polynomials of degree at most n’(dn + 1)"
such that C[V]' is integral over C[Iy, ..., I,,]. Both algebras have the Krull
dimension, say r. Clearly, r < N.

We perform a homogeneous Noether normalization: we replace Iy, ..., Iy
by pure powers [ {i ' ..., If" which are homogeneous of the same degree, say S.
The integer S can be generously bounded above by the factorial (n?(dn+1)"")!.
Let 6y, ..., 6, be generic C-linear combinations of / 1d Lo, I,(f{”. Then 64, ..., 0,
are algebraically independent polynomials of degree S such that C[/, ..., I,]
is integral over C[6y, ..., 6,].

In summary, we have found a homogeneous system of parameters 6y, ..., 6,

of the same degree S < (nz(dn - 1)”2)! for the invariant ring C[V]'. By
Theorem 4.7.3, the invariant ring is Cohen—Macaulay, which means there exists
a Hironaka decomposition as in (2.3.1). Let ny, n2, ..., n; be a basis for Cc[vir
as free C[6y, ..., 6,]-module, and let ¢; < e; < ... < ¢, denote the degrees of
N1, N2, - . -, 0. It suffices to prove that ¢, < N - S.

By Corollary 2.3.4, the Molien series equals

€1 4z 4 2

Nz = 479
H(C[V] , 2) =5y (4.7.9)
From Theorem 4.7.4 we get the following identity of rational functions:
gater 4 4 g4te 77 ZS—el .+ ZS—e

(1 —z5)y == (1—z=5r (1 —z5)y

Clearing denominators results in an identity of polynomials. Equating highest
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terms on both sides, we see that ¢ + ¢, = rS — e; and consequently
ee=rS—e;—qg<rS<N-S.

This completes the proof of Theorem 4.7.7. <

Exercises

(1) Compute the unique degree three invariant of the ternary quartic. What
does its vanishing mean geometrically?

(2) Prove Theorem 4.4.6, using the following steps:
(a) Show that the invariants S and T are algebraically independent.
(b) Show that the invariants § and T define the nullcone set-theoretically.
(c) Using Theorem 4.7.4, give an upper bound M for the degrees in a

minimal fundamental set of invariants.

(d) Using Algorithm 4.7.5, compute the Molien series up to order M.

(e) Conclude that H(C[VI",2) = g—pb—s.
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