Übungsblatt 4

Mathematische Grundlagen, Prof. Dr. Nebe, WS 2013/14

Präsenzaufgabe

Aufgabe 1 (4 Punkte). Auf $\underline{12}$ definieren wir die Relation \sim über

$$a \sim b \iff \exists k \in \mathbb{Z} \text{ mit } a - b = 5 \cdot k.$$

(Hierbei sei a - b als Rechnung in \mathbb{Z} aufgefasst.)

Zeige, dass \sim eine Äquivalenzelation ist, bestimme die Äquivalenzklassen und gib eine Vertretermenge an.

Tutoriumsaufgaben

Aufgabe 2. Zeige durch vollständige Induktion: Für alle $n \in \mathbb{N}$ gilt

- (i) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- (ii) a + n = n + a für alle $a \in \mathbb{N}$.

Aufgabe 3. Sei $m \in \mathbb{Z}$. Zeige, dass $\{z \in \mathbb{Z} \mid z \leq m\}$ die Peano-Axiome erfüllt. Formuliere das Prinzip der vollständigen Induktion für diese Menge.

Aufgabe 4. Eine Ordnung R auf einer Menge M heißt anti-symmetrisch, falls mRn und nRm implizieren m=n.

Zeige, \leq ist eine partielle Ordung auf \mathbb{N} und \mathbb{Z} , d. h. \leq ist reflexiv, transitiv und antisymmetrisch. Ist \leq eine Wohlordnung?

Sei $M \neq \emptyset$ eine Menge. Zeige, dass die Mengeninklusion ebenfalls eine partielle Ordnung auf Pot(M) ist und diese genau dann eine Wohlordnung ist, wenn |M| = 1 gilt.

Hausaufgaben

Bitte wirf deine bearbeiteten Hausaufgaben bis Montag, 18.11.2013, 10:00 Uhr in den Zettelkasten am Lehrstuhl D für Mathematik (Sammelbau 2. Stock) ein.

Aufgabe 5 (4 Punkte).

(i) Zeige durch vollständige Induktion: Für alle $n \in \mathbb{N}$ gilt

$$\left(\sum_{k=1}^{n} k\right)^{2} = \sum_{k=1}^{n} k^{3}.$$

(ii) Zeige durch vollständige Induktion: Für alle $n \in \mathbb{N}$ mit $n \geq 2$ gilt

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}.$$

Aufgabe 6 (4 Punkte).

- (i) Beweise Bemerkung (5.13) aus der Vorlesung: Für jedes $n \in \mathbb{N}$ sei A(n) eine Aussage. Gilt A(1) und (A(i) für alle $i \leq n \Rightarrow A(n+1)$) für alle $n \in \mathbb{N}$, so gilt A(n) für alle $n \in \mathbb{N}$.
- (ii) Zeige, durch die Vorschrift

$$f(n) := \begin{cases} 1 & \text{falls } n = 1, \\ 4f(k) & \text{falls ein } k \in \mathbb{N} \text{ existiert mit } n = 2k, \\ f(n-1) + 2(n-1) + 1 & \text{sonst.} \end{cases}$$

wird eine Abbildung $f: \mathbb{N} \to \mathbb{N}, n \mapsto f(n)$ definiert und es gilt $f(n) = n^2$ für alle $n \in \mathbb{N}$.

Aufgabe 7 (4 Punkte). Sei $M \neq \emptyset$ eine Menge und \leq eine partielle Ordnung auf M. Defieniere auf M^2 die Relation \leq_l über $(m_1, m_2) \leq_l (n_1, n_2)$ genau dann wenn $(m_1 \leq n_1)$ und $m_1 \neq n_1$ oder $(m_1 = n_1)$ und $m_2 \leq n_2$. Zeige:

- (i) \leq_l ist eine partielle Ordnung auf M^2 .
- (ii) Ist M durch \leq totalgeordnet (d.h. für alle $m, n \in M$ gilt $m \leq n$ oder $n \leq m$), so ist auch M^2 durch \leq_l totalgeordnet.
- (iii) Ist M durch \leq wohlgeordnet (d.h. jede nicht leere Teilmenge $N \subseteq M$ hat ein eindeutiges Minimum), so ist auch M^2 durch \leq_l wohlgeordnet.

Aufgabe 8 (Zusatzaufgabe, 4 Bonuspunkte).

- (i) Sei M eine Menge. Zeige, dass folgende Aussagen äquivalent sind:
 - (a) M ist eine unendliche Menge.
 - (b) Es existiert eine injektive Abbildung $\mathbb{N} \to M$
 - (c) Es existiert eine echte Teilmenge $N \subsetneq M$ und eine Bijektion $M \to N$.
- (ii) $\operatorname{Pot}_{endl}(\mathbb{N}_0)$ bezeichnet die Menge der endlichen Teilmengen von \mathbb{N}_0 . Zeige, dass

$$\alpha: \operatorname{Pot}_{endl}(\mathbb{N}_0) \to \mathbb{N}_0, \ T \mapsto \sum_{i \in \mathbb{N}_0} \chi_T(i) 2^i$$

eine bijektive Abbildung ist.