Codes and invariant theory.

Gabriele Nebe

Lehrstuhl für Algebra und Zahlentheorie

Around Gleason's Theorem

Linear codes over finite fields.

- Let $\mathbb{F} := \mathbb{F}_q$ denote the finite field with q-elements.
- ▶ Classically a linear code C over \mathbb{F} is a subspace $C \leq \mathbb{F}^N$.
- ▶ *N* is called the length of the code.
- $ho C^{\perp} := \{v \in \mathbb{F}^N \mid v \cdot c = \sum_{i=1}^N v_i c_i = 0 \text{ for all } c \in C\}$ the dual code.
- ightharpoonup C is called self-dual, if $C = C^{\perp}$.
- Important for the error correcting properties of C is the minimum distance

$$d(C):=\min\{d(c,c')\mid c\neq c'\in C\}=\min\{w(c)\mid 0\neq c\in C\}$$

where

$$w(c) := |\{1 \le i \le N \mid c_i \ne 0\}|$$

is the Hamming weight of c and d(c,c')=w(c-c') the Hamming distance.

▶ The Hamming weight enumerator of a code $C
eq \mathbb{F}^N$ is

$$\mathrm{hwe}_C(x,y) := \sum_{c \in C} x^{N-w(c)} y^{w(c)} \in \mathbb{C}[x,y]_N$$

The Gleason-Pierce Theorem (1967):

Theorem.

If $C=C^{\perp}\leq \mathbb{F}_q^N$ such that $w(c)\in m\mathbb{Z}$ for all $c\in C$ and some m>1 then either

```
I q=2 and m=2 (all self-dual binary codes).
```

II
$$q=2$$
 and $m=4$ (the doubly-even self-dual binary codes).

III
$$q=3$$
 and $m=3$ (all self-dual ternary codes).

IV
$$q=4$$
 and $m=2$ (all Hermitian self-dual codes).

o
$$q=4$$
 and $m=2$ (certain Euclidean self-dual codes).

d q arbitrary,
$$m=2$$
 and $hwe_C(x,y)=(x^2+(q-1)y^2)^{N/2}$.

Type

The self-dual codes in this Theorem are called Type I, II, III and IV codes respectively.

Explanation of Gleason-Pierce Theorem.

Reason for divisibility condition

For all elements $0 \neq a$ in $\mathbb{F}_2 = \{0,1\}$ and $\mathbb{F}_3 = \{0,1,-1\}$ we have that $a^2=1$. So for $c \in \mathbb{F}_p^N$ the inner product

$$(c,c) \equiv_p w(c)$$
 for $p=2,3$.

Hermitian self-dual codes satisfy

$$C = \overline{C}^{\perp} = \{ x \in \mathbb{F}_{p^2}^N \mid \sum_{i=1}^N c_i x_i^p = 0 \text{ for all } x \in C \}$$

For $0 \neq a \in \mathbb{F}_4$ we again have $aa^2 = a^3 = 1$ and hence

$$(c, \overline{c}) \equiv_2 w(c).$$

Invariance of Hamming weight enumerator

It follows from Gleason-Pierce Theorem that the Hamming weight enumerator of the respective codes is a polynomial in x and y^m .

Some examples for Type I codes.

The repetition code $i_2=\left[\begin{array}{cc} 1 & 1 \end{array}\right]$ has $\mathrm{hwe}_{i_2}(x,y)=x^2+y^2.$ The extended Hamming code

has $hwe_{e_8}(x,y) = x^8 + 14x^4y^4 + y^8$ and hence is a Type II code.

The binary Golay code is another Type II code.

is also of Type II with Hamming weight enumerator

hwe_{$$q_{24}$$} $(x, y) = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$

Type III codes: tetracode and ternary Golay code.

The tetracode.

$$t_4 := \left[\begin{array}{ccc} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{array} \right] \le \mathbb{F}_3^4$$

is a Type III code with

$$hwe_{t_4}(x,y) = x^4 + 8xy^3.$$

The ternary Golay code.

$$g_{12} := \begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \end{bmatrix} \le \mathbb{F}_3^{12}$$

$$hwe_{g_{12}}(x,y) = x^{12} + 264x^6y^6 + 440x^3y^9 + 24y^{12}$$

Hermitian self-dual codes over \mathbb{F}_4 .

The repetition code $i_2 \otimes \mathbb{F}_4 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has $hwe_{i_2 \otimes \mathbb{F}_4}(x,y) = x^2 + 3y^2$. The hexacode

$$h_6 = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & \omega & \omega \\ 0 & 1 & 0 & \omega & 1 & \omega \\ 0 & 0 & 1 & \omega & \omega & 1 \end{array} \right] \le \mathbb{F}_4^6$$

where $\omega^2+\omega+1=0.$ The hexacode is a Type IV code and has Hamming weight enumerator

hwe_{h₆}
$$(x,y) = x^6 + 45x^2y^4 + 18y^6$$
.

The MacWilliams theorem (1962).

Theorem

Let $C \leq \mathbb{F}_q^N$ be a code. Then

$$hwe_{C^{\perp}}(x,y) = \frac{1}{|C|} hwe_{C}(x + (q-1)y, x - y).$$

In particular, if $C = C^{\perp}$, then hwe_C is invariant under the

MacWilliams transformation

$$h_q: \left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \frac{1}{\sqrt{q}} \left(\begin{array}{cc} 1 & q-1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Gleason's theorem (ICM, Nice, 1970)

Theorem.

If C is a self-dual code of Type I,II,III or IV then $hwe_C \in \mathbb{C}[f,g]$ where

Туре	f	g
I	$x^2 + y^2$ i_2	$x^2y^2(x^2-y^2)^2$ Hamming code e_8
II	$x^8 + 14x^4y^4 + y^8$ Hamming code e_8	$x^4y^4(x^4-y^4)^4$ binary Golay code g_{24}
III	$x^4 + 8xy^3$ tetracode t_4	$y^3(x^3-y^3)^3 \\ \text{ternary Golay code } g_{12}$
IV	$x^2 + 3y^2$ $i_2 \otimes \mathbb{F}_4$	$\begin{array}{c} y^2(x^2-y^2)^2 \\ \text{hexacode } h_6 \end{array}$

Proof of Gleason's theorem.

Let $C \leq \mathbb{F}_q^N$ be a code of Type T= I,II,III or IV. Then $C=C^\perp$ hence hwe_C is invariant under MacWilliams transformation h_q .

Because of the Gleason-Pierce theorem, hwe_C is also invariant under the diagonal transformation

$$d_m := \operatorname{diag}(1, \zeta_m) : x \mapsto x, y \mapsto \zeta_m y$$

(where $\zeta_m = \exp(2\pi i/m)$) hence

$$hwe(C) \in Inv(\langle h_q, d_m \rangle =: G_T)$$

lies in the invariant ring of the complex matrix group G_T . In all cases G_T is a complex reflection group and the invariant ring of G_T is the polynomial ring $\mathbb{C}[f,g]$ generated by the two polynomials given in the table.

Corollary

The length of a Type II (resp. III) code is a multiple of 8 (resp. 4).

Proof: $\zeta_8 I_2 \in G_{\text{II}}$ and $\zeta_4 I_2 \in G_{\text{III}}$.

Extremal self-dual codes.

Gleason's theorem allows to bound the minimum weight of a code of a given Type and given length.

Theorem.

Let C be a self-dual code of Type T and length N. Then $d(C) \leq m + m \lfloor \frac{N}{\deg(c)} \rfloor$.

I If
$$T = I$$
, then $d(C) \le 2 + 2\lfloor \frac{N}{8} \rfloor$.

If
$$T = II$$
, then $d(C) \le 4 + 4\lfloor \frac{N}{24} \rfloor$.

III If
$$T = \text{III}$$
, then $d(C) \leq 3 + 3\lfloor \frac{N}{12} \rfloor$.

IV If
$$T = IV$$
, then $d(C) \le 2 + 2\lfloor \frac{N}{6} \rfloor$.

Using the notion of the shadow of a code, the bound for Type I codes may be improved.

$$d(C) \le 4 + 4\lfloor \frac{N}{24} \rfloor + a$$

where a=2 if N (mod 24) =22 and 0 else.

