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Linear codes over finite fields.
I Let F := Fq denote the finite field with q-elements.
I Classically a linear code C over F is a subspace C ≤ FN .
I N is called the length of the code.
I C⊥ := {v ∈ FN | v · c =

∑N
i=1 vici = 0 for all c ∈ C} the dual

code.
I C is called self-dual, if C = C⊥.
I Important for the error correcting properties of C is the minimum

distance

d(C) := min{d(c, c′) | c 6= c′ ∈ C} = min{w(c) | 0 6= c ∈ C}

where
w(c) := |{1 ≤ i ≤ N | ci 6= 0}|

is the Hamming weight of c and d(c, c′) = w(c− c′) the
Hamming distance.

I The Hamming weight enumerator of a code C ≤ FN is

hweC(x, y) :=
∑
c∈C

xN−w(c)yw(c) ∈ C[x, y]N



The Gleason-Pierce Theorem (1967):

Theorem.
If C = C⊥ ≤ FN

q such that w(c) ∈ mZ for all c ∈ C and some m > 1
then either

I q = 2 and m = 2 (all self-dual binary codes).
II q = 2 and m = 4 (the doubly-even self-dual binary codes).
III q = 3 and m = 3 (all self-dual ternary codes).
IV q = 4 and m = 2 (all Hermitian self-dual codes).
o q = 4 and m = 2 (certain Euclidean self-dual codes).

d q arbitrary, m = 2 and hweC(x, y) = (x2 + (q − 1)y2)N/2.

Type

The self-dual codes in this Theorem are called Type I, II, III and IV
codes respectively.



Explanation of Gleason-Pierce Theorem.
Reason for divisibility condition

For all elements 0 6= a in F2 = {0, 1} and F3 = {0, 1,−1} we have that
a2 = 1. So for c ∈ FN

p the inner product

(c, c) ≡p w(c) for p = 2, 3.

Hermitian self-dual codes satisfy

C = C
⊥
= {x ∈ FN

p2 |
N∑
i=1

cix
p
i = 0 for all x ∈ C}

For 0 6= a ∈ F4 we again have aa2 = a3 = 1 and hence

(c, c) ≡2 w(c).

Invariance of Hamming weight enumerator

It follows from Gleason-Pierce Theorem that the Hamming weight
enumerator of the respective codes is a polynomial in x and ym.



Some examples for Type I codes.

The repetition code i2 =
[
1 1

]
has hwei2(x, y) = x2 + y2.

The extended Hamming code

e8 =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


has hwee8(x, y) = x8 + 14x4y4 + y8 and hence is a Type II code.



The binary Golay code is another Type II code.

g24 =



110101110001100000000000
101010111000110000000000
100101011100011000000000
100010101110001100000000
100001010111000110000000
100000101011100011000000
100000010101110001100000
100000001010111000110000
100000000101011100011000
100000000010101110001100
100000000001010111000110
100000000000101011100011


is also of Type II with Hamming weight enumerator

hweg24(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24



Type III codes: tetracode and ternary Golay code.

The tetracode.
t4 :=

[
1 1 1 0
0 1 2 1

]
≤ F4

3

is a Type III code with

hwet4(x, y) = x4 + 8xy3.

The ternary Golay code.

g12 :=


1 1 1 2 1 0 2 0 0 0 0 0
1 0 1 1 2 1 0 2 0 0 0 0
1 0 0 1 1 2 1 0 2 0 0 0
1 0 0 0 1 1 2 1 0 2 0 0
1 0 0 0 0 1 1 2 1 0 2 0
1 0 0 0 0 0 1 1 2 1 0 2

 ≤ F12
3

hweg12(x, y) = x12 + 264x6y6 + 440x3y9 + 24y12



Hermitian self-dual codes over F4.

The repetition code i2 ⊗ F4 =
[
1 1

]
has hwei2⊗F4

(x, y) = x2 + 3y2.
The hexacode

h6 =

 1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1

 ≤ F6
4

where ω2 + ω + 1 = 0. The hexacode is a Type IV code and has
Hamming weight enumerator

hweh6(x, y) = x6 + 45x2y4 + 18y6.



The MacWilliams theorem (1962).

Theorem
Let C ≤ FN

q be a code. Then

hweC⊥(x, y) =
1

|C|
hweC(x+ (q − 1)y, x− y).

In particular, if C = C⊥, then hweC is invariant under the

MacWilliams transformation

hq :

(
x
y

)
7→ 1
√
q

(
1 q − 1
1 −1

)(
x
y

)
.



Gleason’s theorem (ICM, Nice, 1970)

Theorem.
If C is a self-dual code of Type I,II,III or IV then hweC ∈ C[f, g] where

Type f g

I x2 + y2 x2y2(x2 − y2)2
i2 Hamming code e8

II x8 + 14x4y4 + y8 x4y4(x4 − y4)4
Hamming code e8 binary Golay code g24

III x4 + 8xy3 y3(x3 − y3)3
tetracode t4 ternary Golay code g12

IV x2 + 3y2 y2(x2 − y2)2
i2 ⊗ F4 hexacode h6



Proof of Gleason’s theorem.
Let C ≤ FN

q be a code of Type T = I,II,III or IV. Then C = C⊥ hence
hweC is invariant under MacWilliams transformation hq.
Because of the Gleason-Pierce theorem, hweC is also invariant under
the diagonal transformation

dm := diag(1, ζm) : x 7→ x, y 7→ ζmy

(where ζm = exp(2πi/m)) hence

hwe(C) ∈ Inv(〈hq, dm〉 =: GT )

lies in the invariant ring of the complex matrix group GT . In all cases
GT is a complex reflection group and the invariant ring of GT is the
polynomial ring C[f, g] generated by the two polynomials given in the
table.

Corollary

The length of a Type II (resp. III) code is a multiple of 8 (resp. 4).

Proof: ζ8I2 ∈ GII and ζ4I2 ∈ GIII.



Extremal self-dual codes.

Gleason’s theorem allows to bound the minimum weight of a code of
a given Type and given length.

Theorem.
Let C be a self-dual code of Type T and length N . Then
d(C) ≤ m+mb N

deg(g)c.

I If T = I, then d(C) ≤ 2 + 2bN8 c.
II If T = II, then d(C) ≤ 4 + 4bN24c.
III If T = III, then d(C) ≤ 3 + 3bN12c.
IV If T = IV, then d(C) ≤ 2 + 2bN6 c.

Using the notion of the shadow of a code, the bound for Type I codes
may be improved.

d(C) ≤ 4 + 4bN
24
c+ a

where a = 2 if N (mod 24) = 22 and 0 else.


