On blocks with cyclic defect group
and their head orders.

Gabriele Nebe *

ABSTRACT: It is shown that [Ple83, Theorem 8.5] describes blocks of cyclic defect group
up to Morita equivalence. In particular such a block is determined by its planar embedded
Brauer tree. Applying the radical idealiser process the head order of such blocks is calculated
explicitly.

1 Introduction.

Blocks with cyclic defect group are very well understood. Despite of their very special
structure these blocks are extensively used to study examples for the validity of various
conjectures, since they are essentially described by combinatorial means. A detailed
introduction to the theory of blocks with cyclic defect groups, that also deals with
rationality questions of the involved characters, is given in [Fei82, Chapter 7]. Using
the known character theoretic information and some new methods, essentially based on
linear algebra, Plesken [Ple83, Chapter 8] gives a rather explicit description of blocks
with cyclic defect group B = Z,Ge of p-adic group rings. The aim of the first part
of this paper is to show, how far [Ple83, Theorem 8.5 and 8.10] determine blocks with
cyclic defect group of group rings over discrete valuation rings. The fact that blocks
of group rings are symmetric orders yields the additional information needed to get a
complete description up to isomorphism (see Theorem 2.5). Even the Hasse invariants
of the occurring skew fields can be read off from the action of the Galois group on the
Brauer characters (see Theorem 2.8). In particular the planar embedded Brauer tree
together with the character fields and the Galois action on the characters determine
the Morita equivalence class of B.

Section 3 deals with the radical idealiser chain of B. This is a finite chain associated
to an order A

A=A CA C...CAy=ANn1

where A; 11 = Id(J(A;)) (¢ =0,...,N) is the 2-sided idealiser of the Jacobson radical
of A; that necessarily ends in a hereditary order Ay called the head order of A. In
particular this radical idealiser process associates to a usually quite complicated object
A two simple data: the length N of the chain and the head order Ay. It is an interesting
question which information about A can be read off from these data. For instance
[CPW8T| shows that the length of the radical idealiser chain of a centre of a block
over a splitting ring equals the valuation of the order of the defect group. Furthermore
[Jac84] characterises blocks of defect 0 as those blocks where A = Ay and shows that
blocks with radical idealiser length 1 are Brauer tree orders. It seems to be desirable
to have more complicated examples of radical idealiser chains for blocks of group rings.
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Section 3 investigates these chains and calculates the head order Ay of blocks B with
cyclic defect group. In particular the B-composition factors of the simple A y-modules
can be easily read off from the planar embedded Brauer tree (see Remark 3.16).

Most of the work on this paper was done during a Radcliffe fellowship at Harvard
university in fall 2003. It is a pleasure to acknowledge the support from the Radcliffe
institute for advanced study.

2 Blocks with cyclic defect group.

Throughout the paper let R be a (not necessarily commutative) discrete valuation ring
with prime element 7 and residue class field £ = R/7mR and let K be the skew-field of
fractions of R.

A convenient language to describe certain R-orders are exponent matrices.

Definition 2.1. (see [Rei75, Definition 39.2], [Ple83]) Let d = (di,...,d,) € N,
D:=>"  d; and M € Z"™". Then

AR, d, M) :={X = (vy;) € KPP | z;; € 7™ R%*4},

Example: (hereditary orders, see [Rei75, Section 39]) Let A be a hereditary order
and P be a projective A-lattice. Then P := P/7P is uniserial. Let dy,...,d, be the
dimensions of the simple A-modules in the order in which they occur in the radical series
of P. Then with respect to a suitable R-basis of P (adapted to this lattice chain),

0 1 ... ... 1
00 1 .. 1
A= A(R,d, H,), where H, = | : - -, - :
0 ... ... 0 1
0 ... ... 00

The description of blocks with cyclic defect given in [Ple83] will be repeated briefly.
All the following results can be found in Chapter 8 of this lecture notes, so we omit the
detailed citations. Let K be an unramified extension of Q,, R its ring of integers and
B be a block of RG with cyclic defect group of order p*. Assume that k := R/pR is a
splitting field of kB. By [Fei82, Chapter 7], the minimal choice of such a field K is the
character field of any of the non-exceptional characters in B.

Let €1,...,€, be the central primitive idempotents in A := KB. Then h = a + e
where e is the number of simple kB-modules and after a suitable permutation of the
indices the centres Z(Ae;) = K for s=a+1,...,a+ e and Z(Ae,) =: Z, is a totally

pS,pS—l
&

ramified extension of K of degree for s = 1,...,a. The centre of Be, is the
maximal order R, in Z;.

The vertices in the Brauer tree are the exceptional vertex {1,...,a} and a+1,...,a+
e corresponding to the other simple A-modules. Let T,qq resp. Tepen denote the set of
vertices having an odd (resp. even) distance from the exceptional vertex.

For s € {1,...,h} let rs C {1,...,e} be the set of indices of the simple constituents

of any Be, lattice. Then for the exceptional vertex r; = ... =r, and the sets r, are the
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orbits of certain permutations § (if § € Tepen) resp. p (if € Tpaq). Let dy, ..., d. be the
k-dimensions of the simple kB-modules and f, ..., f. be orthogonal idempotents of B
that lift the corresponding central primitive idempotents of B/J(B).

Theorem 2.2. (/Ple83, Theorem 8.3]) With the notation above let i € rs. Then
(1) Bes = ARy, (di, dsiy, - - - dsirai-1(3)); Hyry|) fors=1,...,a
and
(i)  Bes & AR, (diy doi), - - - dgirsi-1(3)); aHry ) fors=a+1,...,a+e
where 0 =0 if S € Topen, and 0 = p if s € Tyyq.

It remains to describe how B sits inside the direct sum of the Be,, that is to describe
the amalgamations between the Be;.

Theorem 2.3. ([Ple83, Theorem 8.5])

(i) For the exceptional vertex 'y := (€1 +...+€,)B one gets an inductive description:
Fors=2,...,a let

X = Bes/J(Bey)* = Bes/m¥ Beg

where xg = |rilys and ys = ps_—ifl and let v, : Bey, — X be the natural epimor-
phism. Define R-orders I's (s =1,...,a) inductively by

Iy =B and Ty :={(z,y) € Ts_1 ® Bes | ps_1(x) = v4(y)}
where pg_1 is an epimorphism from I's_y onto Xj.

(1) Let T := (€qq1 + ... + €are)B. Then for anyi,j € {1,...,e} —ry with i # j one
gets
filof; = &2 1 fiBes f;

and
filofi = {(z,y) | 2,y € R*™% x =y (mod p*)} C fie.Bfi®fieBfi = R**%g RN

ifit €rgNry.

di><d

(iii) Finally there are epimorphisms v and p of 'y and I’y onto @, (R/p*R)**% such

that
B={(z,y) eTo@T, | v(z)=pny)}

Note that X; =2 I's_q/J(Fs_1)%.

The possible ambiguity in this description is the choice of the epimorphisms in (i)
and in (iii). It is clear that one can always fix one of the two epimorphisms. The choices
for the other one correspond to the automorphisms of the image. So the question is,



whether these automorphisms lift to automorphisms of B. This is clear for the maps in
(iii). For (i) this is unfortunately not always the case.

To simplify notation, it is convenient to pass to the Morita-equivalent basic order.
Let S be any discrete valuation ring with prime element 7g and A := A(S, (1,...,1), Hy,)
the basic hereditary S-order of degree n. Let X := A/mgA. Then A is generated by the
idempotents e; = diag(0,...,0,1,0,...0) (the 1 is on the i-th place), the elements

0 ... ... 0 0 ... 0 =g
ST el B
i1 = € eir1lAe; and g1, = S : € e;Ae,
S BRI o S
0 ... ... 0 0O ... ... O
where ¢ = 1,...,n — 1. These generators map onto generators €;, €311 and g, of

X corresponding to the Ext-quiver of X which is a directed n-gon. They satisfy the
relation that

Jin€nn—1"""€21 = 0

and similarly for any cyclic permutation of this product.

Lemma 2.4. Let A and X = A/mwgA be as above and let ¢ be an automorphism of X
that fixes all the idempotents e;.
Then there are 0 # \; € S/7sS =: kg with p(€i114) = N€ir1i fori=1,....n—1
and ¢(Gi.n) = MGin- -
There is an automorphism ¢ of A that lifts @ if and only if the product A1 --- \,, = 1.
In particular, there is always an automorphism ¢ of A with

d(eit1,:) = p(€ix14), and ¢(e;) =e; foralli=1,...,n—1,j=1,...,n.

Proof. The automorphism ¢ maps the generator €1, € € 1Xe;, = kg€i11, to some
other generator of this module (i = 1,...,n — 1) and similar for gi,,. Hence there are
such units \; € kg as described in the lemma. Moreover any such tuple (AL, ..., ) €
(k%)™ determines a unique automorphism of X fixing all the idempotents e;.

Choose units \; € S* that map to \; in kg. Then the matrix

D= dlag(l, )\1, )\1)\2, ey )\1 s )\nfl) € A*

fixes all the e; and conjugates e;11,; to \jej41, for all ¢ = 1,...,n — 1 and ¢;, to
(Ag - )\n,l)_lgm. Hence if the product of the )\; is 1, then conjugation by D is the
desired automorphism ¢.

On the other hand it is easy to see that all automorphisms of A that fix the idempo-
tents e; are given by conjugation with a diagonal matrix D = diag(dy, ..., d,) mapping

the matrix units e;; to %eij. U
J

Therefore there is a tiny bit missing in Theorem 2.3 (i) to describe the exceptional
vertex ', up to isomorphism. Since blocks of group rings are symmetric orders, however,
the missing information can easily be obtained from the trace bilinear form.

Theorem 2.3 gives the centre Z := Z(I',) up to isomorphism. Instead of continuing
with Plesken’s description, it seems to be easier to give generators for I', over the centre
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Z using the Ext-quiver of I',. To this aim, we pass to the Morita equivalent basic order
and assume that all simple I',-modules are of dimension 1 over k. All projective I',-
lattices are uniserial when reduced modulo p, where the sequence of composition factors
is given by the permutation §. Therefore the Ext-quiver of I', is again a directed n-
gon, where n = |rq| is the number of simple I',-modules. If n = 1, then I', = Z(T',)
is already described completely by Theorem 2.3. So we will assume that n > 1. Let
ei,...,e, € I'y be orthogonal lifts of the central primitive idempotents of I',/J(I',)
ordered in such a way that &, = (1,...,n). Denote the corresponding matrix units in
eilkTqese; by ef; (1,5 € {1,...,n},s € {1,...,a}). Then according to Theorem 2.3 and
Lemma 2.4, after a choice of a suitable basis, generators of I', over its centre Z can be
chosen as

1 a \ __. 1 a —.
€1, s €, (€91, ,€51) = ea1 € ealger, . (€15 €n 1) =t enn1 € enllaen

and
(z171€] s -, TaTa€S ) =1 g1 € €10q€, for certain units x; € Z; = Z(T,¢;).

Theorem 2.5. Let Z := Z(T',) and let Z# be the dual of Z with respect to the sum of
the usual trace bilinear forms. Then there are units x; € Z; = Z(Lye;) (i =1,...,a)
such that

2% = (x1m1, ... TaTe) 2.

With the choice of these x;, the order I, is generated by
Z,e1,....en €1 (1=1,...,n—1), and g1,
as defined above.

Proof. We may assume that n > 1. B is a symmetric order with respect to the associa-
tive symmetric bilinear form

1
(x,y) = —=trace, (xy) = trace,.q(ryz) =: Tr.(x,y)

|G|

where trace,., and trace,.q denote the regular respectively reduced trace of KB and

z = ZZ:T Xf&)es, where €1, ..., €, are the central primitive idempotents of KB and
X1; - - - s Xate Some corresponding absolutely irreducible (complex) characters of G.
Let f1,..., f, denote orthogonal idempotents in B that map onto the central prim-

itive idempotents of B/.J(B) such that
e, =filer+...+¢6) (i=1,...,n).
Since n > 1
(g1n)z = erlaen = fiBfu = (fuBf1)* = (ealuer)* = (epn-1---e21)}

can be calculated via the symmetrising form above. Since the character degrees of the
absolutely irreducible characters belonging to the exceptional vertex are all equal the



dual with respect to Tr, is as stated in the theorem, yielding the remaining generator
g1n for I'y. O

Note that the x; do not depend on the degrees of the irreducible complex charac-
ters in B, since all exceptional absolutely irreducible characters have the same degree.
Therefore one gets

Corollary 2.6. Let B; (i = 1,2) be two blocks with cyclic defect group = Cpa and
assume that R is an unramified extension of Z, that is large enough so that k is a
splitting field for kB;. Then By and By are Morita equivalent if and only if their Brauer
trees (including the permutations § and p) and the character fields Zy, ..., Z, coincide.

Also, symmetric orders remain symmetric orders, when one extends the ground
ring. Therefore the explicit description in [Ple83, Theorem 8.5] shows that the Brauer
tree determines a block of cyclic defect up to Morita equivalence (over an algebraically
closed field). This is also shown in [Lin96, Theorem 2.7(ii)] with completely different
methods.

Corollary 2.7. Let B; (i =1,2) be two blocks with isomorphic cyclic defect group and
assume that R is large enough so that k and K are splitting fields for kB; and KB;.
(Here we drop the assumption that K is unramified over Q,.) Then By and By are
Morita equivalent iof and only if their planar embedded Brauer trees coincide.

2.1 Galois descent.

We now perform the Galois descent to obtain a description over Z, (see [Ple83, Chapter
8]). So let B be a block of Z,G such that B is a summand of R ® B. We assume that
K is chosen to be minimal, i.e. K = Qp[xat1] = ... = Qp[Xate) is the character field
of any non-exceptional absolutely irreducible Frobenius character that belongs to B.
The maximal unramified subfield K of the character field Z, := Q,[x.] (s = 1,...,q)
of any exceptional absolutely irreducible Frobenius character in B does not depend on
the character and is a subfield of K. Let m := [K : K] denote its index.

If R denotes the ring of integers in K, then R embeds into the centre of B such that
B can be viewed as an R-order and R ® rB=B.

The Galois group Gal(K/K) = Gal(k/k) = C,, (where k := R/pR) acts on the
simple B-modules and the corresponding idempotents fi, ..., fo with orbits of length
m. Therefore orthogonal lifts of the central primitive idempotents of B/J(B) can be

chosen as f1,..., fe € B where € := = is the number of simple F,B-modules, each of

which has character field k = R/pR.
The central primitive idempotents in A := Q, ® B are €1,...,€, €41, .. ., €t iD-

pS,pS—l
e

for

dexed in such a way that Z; is a totally ramified extension of K of degree
s=1,...,a.

For an appropriate ordering of the index set {1,...,e} the k-dimensions of the
simple [F, B-modules are dy,...,d; and the set of indices of the simple €, B-modules is
s =rsN{l,...,ée}.

For s =a+1,...,a + €, the centre of Bé, is isomorphic to R, 7y = r,, and Bé, is
isomorphic to one of the R-orders in Theorem 2.2 (ii).



Let n' :=|r| = |”| .Fors=1,...,alet D, be a central Z,-division algebra of index
m and €25 be its max1mal order Wlth prime element .. Then

Bgs g A(QS’ (d“ d(S(Z)’ ey dénlfl(i))7 H’I’L/)

Then the Hasse invariant of Dy (as defined in [Rei75, (31.7)]) is independent of s and
can be read off from the planar embedded Brauer tree together with the Galois action

of Gal(k/k) = Gal(K/K) on the modular constituents of any exceptional character in
B:

Theorem 2.8. Let ¢ be a p-modular constituent of any of the exceptional characters
in B. Let F denote the Frobenius automorphism of k/k. Then there is some r € Z
prime to m such that

5"/(1@ = F"(¢) where n' = |7q| = %

Lett =1~ € Z/mZ. Then for all s € {1,...,a} the Hasse invariant of Dy is £.

Proof. To simplify notation we again assume that all the character degrees d; are equal
to 1. Then for s € {1,...,a} the order Be; = A(Q, (1,...,1), H,/) and

0 0 s
1 0 0
P= )
0 :
0 1 0

is a generator of J(Bé€,). Then P also generates the Jacobson radical of Be; = R®j Bes.
Let Ly be a Beg-lattice whose head has character ¢. Then the head of L¢P"/ has
character 6™ () which is Galois conjugate to 1) and hence of the form F7 (1)) for some
r. Therefore conjugation by P" = diag(ps, - - -, ©s) induces the Galois automorphism
F" on the inertia subfield K of D,. By the general theory of division algebras over local
fields (see [Rei75]) r is prime to m and the Hasse invariant of D, is - as stated in the

theorem. O

The amalgamations in B are described as in Theorem 2.3 (see [Ple83, Theorem
8.10]), where now the epimorphisms in (i) are only mappings between R-orders. For
(ili) one should note that R/pR = Q,/pQ forall s =1,...,a

Similarly as in Theorem 2.5 one shows:

Theorem 2.9. The description above (see [Ple83, p. 140ff]) determines B up to iso-
morphism.

More precisely let T, == (é,+. . +€a)B andletéy, ..., éy (n' =|F| = ‘”‘) be lifts of the
central primitive idempotents in T, /J ( o). Again we assume that the k-dimensions of
the simple Tq-modules are 1. Then &T,&; is generated as a Z(Ty)-order by (Cy, ..., Ca)
and (Q1, - .., Pa), where (s € Qs is a primitive (¢™—1)st root ofumty (¢ :=|k| = |R/pR))
and the prime elements p, € Q, are chosen such that (9* = F"((,) = (I where r is

as in Theorem 2.8 (i.e. % is the Hasse invariant of Dy where rt =1 (mod m)). The

remaining generators ofF are €i11; € el+1F & (i=1,....,n" —1) and g1, € 61F En
defined analogously to the ones in Theorem 2.5.
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Proof. Let L; = &I, be any projective indecomposable [,-lattice (t=1,...,n'). Then,
by the above, the endomorphism ring of L; is a successive amalgam of the orders (),
s=1,...,a. Since k-automorphisms of /s lift to (inner) R-automorphisms of €,
this ring is uniquely determined by [Ple83, Theorem 8.10] up to isomorphism and

046 = Endp (Li) = ((Ciy -2 Ca)s (01, -+ 9a), Z(T0)).

To generate ., by Nakayama’s lemma, it is enough to choose additional elements of
él.e; (i #j € {1,...n'}) that generate

éifaéj/(éij(fa)Qéj + péz‘faéj)

as an é1,é-module. The same arguments as in the proof of Theorem 2.5 now imply
the theorem. U

Corollary 2.10. The planar embedded Brauer tree together with the character fields
K, Zy, ..., Z, and the Galois action on the modular constituents of the exceptional
characters determine the block B of Z,G up to Morita equivalence.

3 The radical idealiser chain for blocks with cyclic
defect groups

In this section we will investigate the radical idealiser chain for blocks with cyclic defect
group, where we mainly concentrate on describing the head order. Head orders are
hereditary orders and hence they are the maximal elements for the “radically covering”
relation, where an order I" radically covers and order A, I' = A, if ' O A and J(I') 2
J(A). Then for all orders in the idealiser chain A; > A;_; (see [Rei75, Section 39]).
Moreover it is easy to see that if I' = A then every simple I' module is semi-simple
as a A-module (see [Neb04, Lemma 2.2]). In particular the simple Axy-modules are
semi-simple A-modules.

We will use the notation introduced in the last section and perform the calculations
for the block B of Z,G. The results for the block B of RG then follow easily (see
Corollary 3.17). However, it is crucial for the whole process that R is an unramified
extension of 7Z,.

For the radical idealiser process we treat the exceptional vertex I', and Ty separately
always keeping track of the amalgamations between them, which are controlled by the
following lemma.

Lemma 3.1. Let S be a discrete valuation ring with prime element m and let A; (i =
1,2) be S-orders. Given epimorphisms @; : Ny — X 1= S5 /gt S5%5 [et

A= {(21,22) € Ay D Ay | p1(x1) = pa(x2) )}
Then

Id(J(A)) 2 {(z1,22) € A1 ® A2 | o1(31) = pa(a2)} = T

where ~: X — S%%% /xt=159%5 s the natural epimorphism.
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Proof. Clearly J(A) = {(y1,92) € J(A1) © J(A2) | ¢1(11) = pa(y2)} and i(J(Ai)) =
J(X)=nXfori=1,2. Let (x1,22) € I'and (y1,y2) € J(A). Then clearly x;y; and y;x;
are in J(A;) (i = 1,2). Since ¢, is surjective, there is z; € Ay with mp1(z1) = v1(11).
Choose zy € Ay with a(22) = ¢1(21). Then

1(y171) = p1(21)mP1(21) = P2(22)TP2(T2) = P2(yax2)

and similarly ¢ (z1y1) = @2(2y2). Hence (z1, x9) € Id(J(A)). O
The following trivial lemma suffices to deduce the head order of T',.

Lemma 3.2. Let A be an order in A and € a central idempotent of A. Then
Ae CId(J(A))e C Id(J(Ae€)).

Corollary 3.3. The head order of Ty, is @%_, Bé,.
Simalarly the head order of ', is &%_, Bes.

Proof. The orders Be, = 1d(J(Bes)) and Bé, are already hereditary for s = 1,...,a.
O
Note that this corollary is not true, when R is replaced by a ramified extension of

/

p-

3.1 The first steps.

The main task to calculate the idealiser chain for fo is to calculate the one of €8f0 for
s=a-+1,...,a+ é. These orders have a certain symmetry with respect to a cyclic
permutation of their simple modules, and therefore can be encoded in a simple way.
All orders in this radical idealiser chain share this symmetry.

Definition 3.4. Forv = (vy,...,v,_1) € Z" and d = (dy,...,d,) € N" define
A(d7 U) = A(R7 d, M) = {X = (l'zj) - KDXD | Tij - Wmindide}

where

. = Vimi ifj =i
Y Undj—i — Un—1 ij <1

and D =", d;.

Remark 3.5. Since the dimension vector d will be fixed most of the time, we will omit

it and let A(vg, ..., v,—1) := A(d,v).

The order Iy is an amalgam of the orders é¢,B = €Iy (s = a+ 1,...,a + &) of
the form A(R,d,aH,) = A(0,a,...,a) for some dimension vector d and n = |rg|. The
1



amalgamations in T, are only on the diagonal, more precisely, the part of B belonging
to €,B is of the form

0, a a
0 0, a a
A(R,d, . ) = A(0,,a™ ")
0 0, a
0 0 0

where all the underlined entries obey a certain congruence modulo p® to a diagonal
entry in some other B (t # s) which is indicated by underlining the 0 and the index a.
By Lemma 3.1 these amalgamations will decrease by 1 in each step until after a steps
the order B, contains the central primitive idempotents €,,1, ..., €4 1z.

In the following we fix some s € {a +1,...,a+ €}, put n := |ry|, and let

A::AO::BESQAl ::Blésg...gAN::BNés
where
B:IB()CBlc...CBN:BN_H

is the radical idealiser chain of B. Together with the structure of A; we keep track of
the additional information, how B; is embedded into the direct sum of the B;€é, using
the notation above.

Lemma 3.6. Ifa > n then

A, 2 A0

=a—n’

(a—mn)").
Proof. An easy induction on j shows that for j =1,...,n

Aj=A0, j,(a—j+1),(a—j+2),...,a—1a"7).
Then

A, = A0

~a—n’

(a—n+1),(a—n+2),...,a—1) = A0, ,,(a—n)""1)
by conjugation with the diagonal matrix diag(1, 7,72, ..., 7% 1). O
Inductively we get

Corollary 3.7. Let a = z;n + b with 0 < b < n and mg := z;n+ 1. Then
Ayt = A0, "),

If b =0 then A,,,_1 is already a maximal order and we are done.

Lemma 3.8. Assume that b > 0 and define ly,xo by n = lpb + xo with 0 < zy < 0.
Then
Am0 = A<Qb—17 bnil)‘

If 0 <m < n—ly then
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a) Npimg 15 of the form Nyime = AOsin, Uiy e ey Un1) with 0 < vy < vy < ... <
0 0 f(m)
Up—1 = b, where f(m) = max{0,b —m — 1}.

(b) Ifm=1(b—1)+y with0 <y <b—1 then
Ay = Ay, 152, (b—y = 1), (b—y)* L (0= 1) o™

i.e. Npimg = A(Qf(m), Vlyenny Up_1) With

7]+ if1<j<(b—y—1)l
v;=1% b- y+L%J fb—y—1l<j<(b-1)l+y
b ifj>(b-1Dl+y

(¢) The radical J(Amimg) = MLyany, V1,5 Vno1)-

Proof. The form of A,,, is clear. For the other statements we argue by induction on
m, where the case m = 0 is trivial. Assume that m < n —1ly — 1 and that A,,1,,, =
A(Qf(mys V1, - - -, V1) has the properties (a), (b), (¢). Then Ayipe11 is of the form

Am+mo+1 - A(Qf(m+1)a f)la cee ﬂn—l)a

since the inequalities on the entries of the exponent matrix preserve the symmetry
conditions in (a). The form of the amalgamations follows from Lemma 3.1. Clearly
0; < wv; for all i and 0y = 0. The remaining conditions in (a) and the property (c)
follow once we have shown (b). Let v} := v; for i > 0 and v := 1 = vy + 1. Then the
conditions on my; = ;-1 (j > 1) that Ay, 1me11 lies in the left idealiser of J(Ayim,)
read as

Oj—1 > max{vg_1 —v_; | k=j,...,n} = max;

and
0j—1 > max{b—+vy_; — Vgin—j | k=1,...,5 — 1} = max.

The inequalities for the right idealiser of J(A,,1m,) read as
?7]'_1 Z max{vj 1— ]_, ?]] k1 Un+1—k1+ba Un+4j—ko —Un+1—ko | k’l = 2, c. ,j, k‘g = ]—|—1, ceey TL}

and agree with the conditions above after an easy variable transformation. Hence right
and left idealiser of J(A,,m,) coincide and are equal to Id(J(Amim,))-
By the induction assumption for all 1 <i <n

2] +1 if1<i—1<(b—y—1)I
Viig = b—y+L—j%LﬂJ if(b—y—1l<i—-1<(b—1)l+y
b ifi—1>(b-1)1+y.

Since the ‘slope’ of v is decreasing vx_1 — vj_; is maximal if v;_; is the last 1 in ¢/,
hence if k —j=1lie k=104 . If k:=min(l + j,n) then

122 +1 ifl<j—1<(b-y-—2)
max; = ve1—1 = b—y+ [0 1 i (b—y—2)l<j—1<(b—2)l+y
b—1 it (b—2)+y<j—1.
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This implies that max; = v;_1if j—1 < (b—y—2)[. f (b—y—2){ <j—1< (b—y—1)l
then

| — 2 —2—(b—y—2)I
If(b—y—l)l<j—1§(b—2)l—|—ythenmax1:b—y—l—kLH_ﬁi_ly_Q)lJ and
v =b—y+ Lﬂfﬁ’kizy*mj Therefore max; < v;_; if and only if j —3 —y + b is

divisible by [ + 1, i.e.
j—1=0-2)l+y—a(l+1), 2=0,1,...,y — 2

when v;_; = b — 2 — 1 is the first occurrence of b —x — 1 in v.

If (b—2)l4y <j—1<(b—1)l4+ythenv; y =b—1=max; andif j—1 > (b—1)l+y
then max; =b0—1<wv;_; =0.

For max, one finds that b+ v},_; — Vg4 (n—j) is maximal if k¥ = j — 1 since the ‘slope’
of v is decreasing. Hence

maxy = b+ vj_5 — Vp_1 = Uj_,.
Combining these conditions one finds that

5 vig—1 ifj—-1=0-2)l+y—az(+1)forx=0,...,y—1
it (I otherwise ’

With these 9; the multiplication by Apimgr1 = A(Qpqnp1y, 01+ - -5 Uno1) Preserves
the congruences in J(A,1m,) given in (c), since

b—m—1<f(m)<vj1+v41—;—bandb—m—1< f(m) < 0pp1-; —b+vj4
for all j. This implies part (b) of the lemma. O
Corollary 3.9. Let my :=n—Ily—1+mg andy = x9 — 1. Then
A, = A0, 1% (b—y — 1), (b—y)ott .. (b—1D)FL plo) = A(uD).
Corollary 3.10. For all s € {1,...,a+ é} the s-th component of the head order of B

1s equal to the head order of the projection €;B.

3.2 The head order.

If n = (lo+1)bis divisible by b, then the order A,,, as defined in Corollary 3.9 is already
hereditary. More precisely we have the following

Lemma 3.11. Let b be a factor of n = Ib. Then A,,, = A0,15, ..., (b— 1), b71) is
hereditary, Ay,, ~ A(R, (D1, ..., D), H;) where D; = Z?;é djiyi.

12



Proof. Ay, = A(R,d, M) where

j—i—1

!
Tt

mij = |

Let t; :=my = L_TZJ —1. Conjugating by the diagonal matrix T := diag(7") one obtain
the conjugate order AZM = A(R,d, M), where

- ) —1— 1
mmzmw—tl—i-tJ:L%

Writing 5 = 711 + jo and ¢ = 1] 4 15 with 0 < jo,i9 < [ one gets

J+1- 13+ 17

1 » . i e .
. L]Q 19 I+1-] 22J+L£J:Lj2 19 J—I—IZ{O 1f]2§12.

i I E I ! 1 if gy > iy

Hence after reordering the constituents A,,, has the form as claimed in the lemma.
O

We now assume that 0 < xy < b. Continuing to trace down the radical idealiser
process like in Lemma 3.8 seems to be a rather tedious work. If xzq > % then after
me = b — xg — 1 steps one arrives at an order

Aoy my = A(0, 170, 2l 1 3l glotd =00 lo (5 1)l (4 2)l0 (b — 1)t plo)
where 2 = 2b — 2zg — 1. If 2y < g then after my = 2o — 1 steps one arrives at an order
Aoy = A0, 170200 200 (24 D (24 2) 0 (b —2)0F (b — 1)l blo)
where z = b — 2z + 1. If 2 = 2 = ged(n,b) = d then Ay, 40, is again hereditary

Ay tmy ~ AR, (D1, ...y Doy y1), Hopo 1)

where D; = ZE_ZO i d;, where the congruence is modulo 2/y + 1 =

Instead of continuing like this, we prefer to calculate the head order Ay = é,By,
which is also the head order of A,,,, directly where we need the following trivial lemma:

Lemma 3.12. Let A C T be two orders with J(A) C J(I'). If e € A is an idempotent
then J(eAe) C J(ele).

Proof.

a3

J(eAe) = eJ(N)e CeJ(I')e = J(el'e).

The head order Ay of A,,, has the following properties:
Properties 3.13.  0) Ay is of the form A(w) for some w € Z%,,.

1) Ay is an order, i.e. for all i < j < k one has
(i) b— wnpjr < Wy — Wi < Wi

(i) b— wpyiok < Wp—j — Wnpimj +b < wy_y

13



(iii) b — Wnyimj < Wnpjok — Wpgiok < Wj—j

which just expresses the fact that the entries m;; in the exponent matrix of Ay
satisfy my + my; > my; for all i, j,k € {1,...,n}.

2) Ay is hereditary, i.e.

Wj—1 + Wnt1—j — be {O, 1} for all j > 1.

3) Ay radically covers the order A,,, = A(v")) defined in Corollary 3.9. This prop-

(1

erty implies with Lemma 3.12 that w;—; = v;=; and wy,—j41 = UT(B]-Jrl whenever

ol )1 + Ufwzl _; — b= 1. In particular
Yw=...=wy =1, w1 =...=wp_y, =0, and w,_;,_1 =b—1.

Lemma 3.14. Ay is uniquely determined by Properties 3.13 0), 1), 2), and 3’). More

precisely let n = lob + xo be as above and assume that 1 < xqg < b—1. Then

(i) Ax = A(w) where w = (0,1, 2" ... %) with I, = ly =1, and l; € {ly,lo + 1} for
allj=1,...,0b.

(i) Let e := (e1,...,ep), where ey =l —ly € {0,1} fork=1,...b—1 and ¢, := 1.
For all j let aj = _, ep. Let d:=ged(n,b) = 2. Then zy = %b, e; =1 and

d

e=(e1,...,6) = (€1,...,€1,€1,...,€,...,€1,...,6).

The entries of w are uniquely determined by

aj = | Ob'jj forallj=1,...,0b.

Proof. (i) Property 3.13 3’) together with Property 3.13 1) (i) (for ¢ = 1) show that for
0<wp_1—wj—; <1

and if k — 7 > lp + 1, then wy_; — w;_; > 1. This implies (i).

(i) Put d = ged(b, 79) = 2. Then i = min{j € {1,...,b} | f divides zo}.

We now show by induction on j that a; = LMJ and [; = lp_jqq for j=1,...,i— 1.
This is clear for j = 1 since [y =y =1, and a; =0 = L 0] Assume that 1 < j <i—1

wdeaM:F%Jwd@:%%ﬂﬂnk:L”wj—LLa

Xyo=((t=1),t" .. (t+ 5 — D)1 (£ +5))

be a subsequence of w. Then the difference between the first and the last entry of X,
is j + 1 and the distance between these entries is ZH] 1l + 1. Since wiyjia; = J,
Property 3.13 1) (i) implies that

t+j—1 tHj—1
Z ly =1+ Z eq > loj+ajforalll <t <b+1—j.

q=t q=t
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Similarly for subsequences of (w,w) of the form
Xyi=((b—t—1),(b—t)e=r ... 6P 0,10 .. (j—t— 1) (j —1))
Property 3.13 1) (ii) implies that

Jj—t—1 Jj—t—1

b
Zlq—l—l—i— Zl =lp] + Zeq+ Zeq2l03+a]fora110<t<j
=b

q=b—t q=1 q=b—t q=1

This implies that for every subsequence of length j of the sequence (e, €), the sum over
the entries in this subsequence is > a; and therefore

Let b; = Zf:b_ 41 6. Similar arguments as above, using the second and second last
entries of the sequences X; and X3 above and the fact that w,,_j;,—», = b— j, show that

Q@‘

t+j—1 t+5—1
> ly=loj+ > eg<lpj+bjforalll<t<b+1-—j
q=t q=t
and
b j—t—1 j—t—1
d 1+ qu_zoj+ Zeq—f— Z g <loj +b;forall0<t<j
g=b—t g=b—t

which yields

=y

—aj S Zo S 3[%

By induction hypothesis, we have b; = a;+1 (if [,_j41 = ;) or b; = a; (if l,_; 11 = 1o
and [; = lp+1). Note that the case l,_;11 = lp+ 1 and [; = [; is not possible since then
Wh—jlg—b; + Wjig4p; = b — j + 1+ j+ 1 = 2 contradicting Property 3.13 2). If b; = a;
then zy = %aj and %! is an integer showing that j > . If b; = a; + 1 then l,_; 1 = ;
and

I _j<q <‘7—270

b
which give a; = L%J as claimed, since j <7 — 1 and hence % is not an integer.
It remains to show that if j = i, i.e. ]9 = ged(b, zg) = ged(b,n), then a; = a; =
MTO and e and Ay are as claimed. For this it is enough to show that a; = b;, since

then every subsequence of e of length ¢ contains exactly a; times 1. Applying this

to (e1,...,¢e;) and (eq,...,e;11) this shows that e;1; = e;. Repeating it follows that
e=(e1,...,€,€1,...,€,...€1,...,¢) as claimed.
Assume that a; # b;. Then bi = a; + 1 and either a; = % and b; = 2 + 1 or
a; = 2 —1and b; = % (where d := ? = gcd(n,b)). Assume the latter, then
b d—1 ki+i
ST 9 ST
j=1 k=0 j=ki+
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Hence for all £ the sum ijfzﬂ e;j = b;, in particular a; = Z;Zl e; = b;. In the other

case one argues similarly using a; instead of b;. U

Theorem 3.15. The head order of B is

a+é

By =P A,
s=1

where Ay = Bég fors=1,...a.

Ifse{a+1,...,a+¢é} then 7y = rs and ¢ and p induce permutations on 75. As in
Theorem 2.2 let 0 := 8z, if 5 € Tepen and 0 := pjz, if s € Toga. Define d := ged(|rsl, a),
t:= ‘%‘" and ¢ == (%)~' € (Z/tZ)*. Then the order of o is |ry| and we define T := o'
and vy := 0¢ and choose i € 75 arbitrarily. Then

As = A(R, (Dza D'y(i)a ey D,ytfl(i)), Ht)

where D; = 27;01 dri(j).-
Proof. For 1 < s < a the theorem follows from Corollary 3.3. Fora+1 < s <a-+¢€ let
n:=|rg],a=pn+bwith 0 <b<n. If b=0, then Ay = A,,, as defined in Corollary
3.9 is already a maximal order and the theorem follows from Lemma 3.11.

So assume that 1 < b < n — 1. Then d = ged(a,n) = ged(b,n) and we write
n=Ib+xwith0 <z <band putn=n'd, b="d, x = 2'd. Then there is k € Z with
ct/ =1+ n'k where c is as defined in the theorem. For j € Z put

S R V] 1 &=nl)j
f) =1+ (P oy 2 ST

Since ' — n’ = =Vl is divisible by [, one finds that
f(G+n")y=f(j)+b forall jeZ.

Let
A:=A(f(0),..., f(n—1)) = A(R,d, M) where m;; = f(j — 1).

We claim that A = A;. By Lemma 3.14 it is enough to show that A is a hereditary
order that has property 3.13 3’). The latter is checked by a straightforward calculation.
We show that A is hereditary, by establishing an isomorphism with the hereditary order
in the theorem.

Put t; := m;; = f(1 — ). Conjugating by the diagonal matrix 7' := diag(n") one
obtains the conjugate order

Writing j = 1 + ¢jo + n'j; and @ = 1 + ciy + n'i; with 0 < jo,i5 < n/ one gets
mij = f(c(ja —12)) — [(—ci2) + f(—cja)

11— _Cb/l(j/2_i2) 1 M 1 %
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Since ¢b’ =1 — kn' one gets

_ | Miz=j2) 1 — |k 1 |k
Lol Sl L)

Mi; =1+ | —

: _1_ts
Now 0 < iy < n/ implies that 0 < [%2] <[—1 and therefore L%’lﬂj = —1. Similarly

1| k2
Lil lL "’JJ = —1. For the first term we have 1 — n/ < iy — jo < n' — 1 implying that
1 LZ(ZQJJQ)J
|~ e 0,1}

More precisely this yields
oy — 0 ifie > jo
v 1 if 1y < jg.
In particular A is a hereditary order and hence A = A,. After a suitable reordering of
the constituents the order AT = A, has the form as claimed in the theorem. O

Remark 3.16. Let s € {a+ 1,...,a + €} and A; := €By. Let n := |Fs| = n/d,
d = ged(a,n), a = d'd, and ca’ =1 (mod n'). Let v : Z/nZ — Z/n'Z be the natural
epimorphism. Assume that the simple Bés-modules are labelled S; with i € Z/nZ such
that o(S;) = Sit1, where o is as in Theorem 3.15.

Then the simple Ag-modules are T; with j € Z/n'Z and can be labelled such that

(Tipe. = B S

icv1(cj)
The Ag-lattices in the simple Aés-module form a chain
...DL1 DLy D...D Ly Dle :3Ln/+1 ...
where Lj/Lj =T forj=1,....n.
It is a general and well known fact that if A is an S-order for some discrete valuation
ring S and S’ is an unramified extension of S then J(S'® A) = 5" ® J(A) and hence
also Id(J(S"®A)) = S’®@Id(J(A)). Therefore the radical idealiser chain of the S’-order

S’ ® A is obtained by extension of scalars of all orders in the chain. This immediately
implies the following corollary:

Corollary 3.17. Theorem 3.15 also holds when the block B of Z,G s replaced by the
block B of RG from Theorem 2.5.

This is not true for ramified extensions. However, the calculation of the head order
of T'y above only depends on the special structure of this order. Replacing 'y by R® T
for some ramified extension R of Z, yields an R-order with the same structure, where
a has to be replaced by the 7-adic valuation of p® where 7 is a prime element in R.

Remark 3.18. Replacing R by a ramified extension of Z, in Remark 3.16 and a by the
m-adic valuation of p* still yields a description of the head order of the non exceptional
vertex I'y.
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