
On blocks with cyclic defect group

and their head orders.
Gabriele Nebe ∗

Abstract: It is shown that [Ple83, Theorem 8.5] describes blocks of cyclic defect group
up to Morita equivalence. In particular such a block is determined by its planar embedded
Brauer tree. Applying the radical idealiser process the head order of such blocks is calculated
explicitly.

1 Introduction.

Blocks with cyclic defect group are very well understood. Despite of their very special
structure these blocks are extensively used to study examples for the validity of various
conjectures, since they are essentially described by combinatorial means. A detailed
introduction to the theory of blocks with cyclic defect groups, that also deals with
rationality questions of the involved characters, is given in [Fei82, Chapter 7]. Using
the known character theoretic information and some new methods, essentially based on
linear algebra, Plesken [Ple83, Chapter 8] gives a rather explicit description of blocks
with cyclic defect group B = ZpGε of p-adic group rings. The aim of the first part
of this paper is to show, how far [Ple83, Theorem 8.5 and 8.10] determine blocks with
cyclic defect group of group rings over discrete valuation rings. The fact that blocks
of group rings are symmetric orders yields the additional information needed to get a
complete description up to isomorphism (see Theorem 2.5). Even the Hasse invariants
of the occurring skew fields can be read off from the action of the Galois group on the
Brauer characters (see Theorem 2.8). In particular the planar embedded Brauer tree
together with the character fields and the Galois action on the characters determine
the Morita equivalence class of B.

Section 3 deals with the radical idealiser chain of B. This is a finite chain associated
to an order Λ

Λ =: Λ0 ⊂ Λ1 ⊂ . . . ⊂ ΛN = ΛN+1

where Λi+1 = Id(J(Λi)) (i = 0, . . . , N) is the 2-sided idealiser of the Jacobson radical
of Λi that necessarily ends in a hereditary order ΛN called the head order of Λ. In
particular this radical idealiser process associates to a usually quite complicated object
Λ two simple data: the length N of the chain and the head order ΛN . It is an interesting
question which information about Λ can be read off from these data. For instance
[CPW87] shows that the length of the radical idealiser chain of a centre of a block
over a splitting ring equals the valuation of the order of the defect group. Furthermore
[Jac84] characterises blocks of defect 0 as those blocks where Λ = ΛN and shows that
blocks with radical idealiser length 1 are Brauer tree orders. It seems to be desirable
to have more complicated examples of radical idealiser chains for blocks of group rings.
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Section 3 investigates these chains and calculates the head order ΛN of blocks B with
cyclic defect group. In particular the B-composition factors of the simple ΛN -modules
can be easily read off from the planar embedded Brauer tree (see Remark 3.16).

Most of the work on this paper was done during a Radcliffe fellowship at Harvard
university in fall 2003. It is a pleasure to acknowledge the support from the Radcliffe
institute for advanced study.

2 Blocks with cyclic defect group.

Throughout the paper let R be a (not necessarily commutative) discrete valuation ring
with prime element π and residue class field k = R/πR and let K be the skew-field of
fractions of R.

A convenient language to describe certain R-orders are exponent matrices.

Definition 2.1. (see [Rei75, Definition 39.2], [Ple83]) Let d = (d1, . . . , dn) ∈ Nn,
D :=

∑n
i=1 di and M ∈ Zn×n. Then

Λ(R, d,M) := {X = (xij) ∈ KD×D | xij ∈ πmijRdi×dj}.

Example: (hereditary orders, see [Rei75, Section 39]) Let Λ be a hereditary order

and P be a projective Λ-lattice. Then P := P/πP is uniserial. Let d1, . . . , dn be the
dimensions of the simple Λ-modules in the order in which they occur in the radical series
of P . Then with respect to a suitable R-basis of P (adapted to this lattice chain),

Λ = Λ(R, d,Hn), where Hn =










0 1 . . . . . . 1
0 0 1 . . . 1
...

. . .
. . .

. . .
...

0 . . . . . . 0 1
0 . . . . . . 0 0










.

The description of blocks with cyclic defect given in [Ple83] will be repeated briefly.
All the following results can be found in Chapter 8 of this lecture notes, so we omit the
detailed citations. Let K be an unramified extension of Qp, R its ring of integers and
B be a block of RG with cyclic defect group of order pa. Assume that k := R/pR is a
splitting field of kB. By [Fei82, Chapter 7], the minimal choice of such a field K is the
character field of any of the non-exceptional characters in B.

Let ε1, . . . , εh be the central primitive idempotents in A := KB. Then h = a + e
where e is the number of simple kB-modules and after a suitable permutation of the
indices the centres Z(Aεs) ∼= K for s = a + 1, . . . , a + e and Z(Aεs) =: Zs is a totally

ramified extension of K of degree ps−ps−1

e
for s = 1, . . . , a. The centre of Bεs is the

maximal order Rs in Zs.
The vertices in the Brauer tree are the exceptional vertex {1, . . . , a} and a+1, . . . , a+

e corresponding to the other simple A-modules. Let Todd resp. Teven denote the set of
vertices having an odd (resp. even) distance from the exceptional vertex.

For s ∈ {1, . . . , h} let rs ⊂ {1, . . . , e} be the set of indices of the simple constituents
of any Bεs lattice. Then for the exceptional vertex r1 = . . . = ra and the sets rs are the
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orbits of certain permutations δ (if s ∈ Teven) resp. ρ (if s ∈ Todd). Let d1, . . . , de be the
k-dimensions of the simple kB-modules and f1, . . . , fe be orthogonal idempotents of B
that lift the corresponding central primitive idempotents of B/J(B).

Theorem 2.2. ([Ple83, Theorem 8.3]) With the notation above let i ∈ rs. Then

(i) Bεs ∼= Λ(Rs, (di, dδ(i), . . . , dδ|rs|−1(i)), H|rs|) for s = 1, . . . , a

and

(ii) Bεs ∼= Λ(R, (di, dσ(i), . . . , dσ|rs|−1(i)), aH|rs|) for s = a + 1, . . . , a+ e

where σ = δ if s ∈ Teven and σ = ρ if s ∈ Todd.

It remains to describe how B sits inside the direct sum of the Bεs, that is to describe
the amalgamations between the Bεs.

Theorem 2.3. ([Ple83, Theorem 8.5])

(i) For the exceptional vertex Γa := (ε1 + . . .+ εa)B one gets an inductive description:
For s = 2, . . . , a let

Xs := Bεs/J(Bεs)
xs = Bεs/π

ys

s Bεs

where xs = |r1|ys and ys = ps−1−1
e

and let νs : Bεs → Xs be the natural epimor-
phism. Define R-orders Γs (s = 1, . . . , a) inductively by

Γ1 := ε1B and Γs := {(x, y) ∈ Γs−1 ⊕ Bεs | ϕs−1(x) = νs(y)}

where ϕs−1 is an epimorphism from Γs−1 onto Xs.

(ii) Let Γ0 := (εa+1 + . . .+ εa+e)B. Then for any i, j ∈ {1, . . . , e} − r1 with i 6= j one
gets

fiΓ0fj = ⊕a+e
s=a+1fiBεsfj

and

fiΓ0fi ∼= {(x, y) | x, y ∈ Rdi×di , x ≡ y (mod pa)} ⊂ fiεsBfi⊕fiεtBfi ∼= Rdi×di⊕Rdi×di

if i ∈ rs ∩ rt.

(iii) Finally there are epimorphisms ν and µ of Γ0 and Γa onto ⊕i∈r1(R/p
aR)di×di such

that
B = {(x, y) ∈ Γ0 ⊕ Γa | ν(x) = µ(y)}.

Note that Xs
∼= Γs−1/J(Γs−1)

xs .
The possible ambiguity in this description is the choice of the epimorphisms in (i)

and in (iii). It is clear that one can always fix one of the two epimorphisms. The choices
for the other one correspond to the automorphisms of the image. So the question is,
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whether these automorphisms lift to automorphisms of B. This is clear for the maps in
(iii). For (i) this is unfortunately not always the case.

To simplify notation, it is convenient to pass to the Morita-equivalent basic order.
Let S be any discrete valuation ring with prime element πS and Λ := Λ(S, (1, . . . , 1), Hn)
the basic hereditary S-order of degree n. Let X := Λ/πSΛ. Then Λ is generated by the
idempotents ei = diag(0, . . . , 0, 1, 0, . . . 0) (the 1 is on the i-th place), the elements

ei+1,i =








0 . . . . . . 0
...

. . .
. . .

...
... 1

. . .
...

0 . . . . . . 0








∈ ei+1Λei and g1,n =








0 . . . 0 πS
0 . . . . . . 0
...

. . .
. . .

...
0 . . . . . . 0








∈ e1Λen

where i = 1, . . . , n − 1. These generators map onto generators ei, ei+1,1 and g1,n of
X corresponding to the Ext-quiver of X which is a directed n-gon. They satisfy the
relation that

g1,nen,n−1 · · · e2,1 = 0

and similarly for any cyclic permutation of this product.

Lemma 2.4. Let Λ and X = Λ/πSΛ be as above and let ϕ be an automorphism of X
that fixes all the idempotents ei.

Then there are 0 6= λi ∈ S/πSS =: kS with ϕ(ei+1,i) = λiei+1,i for i = 1, . . . , n − 1
and ϕ(g1,n) = λng1,n.

There is an automorphism φ of Λ that lifts ϕ if and only if the product λ1 · · ·λn = 1.
In particular, there is always an automorphism φ of Λ with

φ(ei+1,i) = ϕ(ei+1,i), and φ(ej) = ej for all i = 1, . . . , n− 1, j = 1, . . . , n.

Proof. The automorphism ϕ maps the generator ei+1,i ∈ ei+1Xei = kSei+1,i to some
other generator of this module (i = 1, . . . , n − 1) and similar for g1,n. Hence there are
such units λi ∈ k∗S as described in the lemma. Moreover any such tuple (λ1, . . . , λn) ∈
(k∗S)

n determines a unique automorphism of X fixing all the idempotents ei.
Choose units λi ∈ S∗ that map to λi in kS. Then the matrix

D := diag(1, λ1, λ1λ2, . . . , λ1 · · ·λn−1) ∈ Λ∗

fixes all the ei and conjugates ei+1,i to λiei+1,i for all i = 1, . . . , n − 1 and g1,n to
(λ1 · · ·λn−1)

−1g1,n. Hence if the product of the λi is 1, then conjugation by D is the
desired automorphism φ.

On the other hand it is easy to see that all automorphisms of Λ that fix the idempo-
tents ei are given by conjugation with a diagonal matrix D = diag(d1, . . . , dn) mapping
the matrix units eij to di

dj
eij. �

Therefore there is a tiny bit missing in Theorem 2.3 (i) to describe the exceptional
vertex Γa up to isomorphism. Since blocks of group rings are symmetric orders, however,
the missing information can easily be obtained from the trace bilinear form.

Theorem 2.3 gives the centre Z := Z(Γa) up to isomorphism. Instead of continuing
with Plesken’s description, it seems to be easier to give generators for Γa over the centre
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Z using the Ext-quiver of Γa. To this aim, we pass to the Morita equivalent basic order
and assume that all simple Γa-modules are of dimension 1 over k. All projective Γa-
lattices are uniserial when reduced modulo p, where the sequence of composition factors
is given by the permutation δ. Therefore the Ext-quiver of Γa is again a directed n-
gon, where n = |r1| is the number of simple Γa-modules. If n = 1, then Γa = Z(Γa)
is already described completely by Theorem 2.3. So we will assume that n > 1. Let
e1, . . . , en ∈ Γa be orthogonal lifts of the central primitive idempotents of Γa/J(Γa)
ordered in such a way that δ|r1 = (1, . . . , n). Denote the corresponding matrix units in
eiKΓaεsej by esij (i, j ∈ {1, . . . , n}, s ∈ {1, . . . , a}). Then according to Theorem 2.3 and
Lemma 2.4, after a choice of a suitable basis, generators of Γa over its centre Z can be
chosen as

e1, . . . , en, (e
1
2,1, . . . , e

a
2,1) =: e2,1 ∈ e2Γae1, . . . , (e

1
n,n−1, . . . , e

a
n,n−1) =: en,n−1 ∈ enΓaen−1

and

(x1π1e
1
1,n, . . . , xaπae

a
1,n) =: g1,n ∈ e1Γaen for certain units xi ∈ Zi = Z(Γaεi).

Theorem 2.5. Let Z := Z(Γa) and let Z# be the dual of Z with respect to the sum of
the usual trace bilinear forms. Then there are units xi ∈ Zi = Z(Γaεi) (i = 1, . . . , a)
such that

paZ# = (x1π1, . . . , xaπa)Z.

With the choice of these xi, the order Γa is generated by

Z, e1, . . . , en, ei+1,i (i = 1, . . . , n− 1), and g1,n

as defined above.

Proof. We may assume that n > 1. B is a symmetric order with respect to the associa-
tive symmetric bilinear form

(x, y) 7→
1

|G|
tracereg(xy) = tracered(xyz) =: Trz(x, y)

where tracereg and tracered denote the regular respectively reduced trace of KB and

z =
∑a+e

s=1
χs(1)
|G|

εs, where ε1, . . . , εa+e are the central primitive idempotents of KB and

χ1, . . . , χa+e some corresponding absolutely irreducible (complex) characters of G.
Let f1, . . . , fn denote orthogonal idempotents in B that map onto the central prim-

itive idempotents of B/J(B) such that

ei = fi(ε1 + . . .+ εa) (i = 1, . . . , n).

Since n > 1

〈g1,n〉Z = e1Γaen = f1Bfn = (fnBf1)
# = (enΓae1)

# = 〈en,n−1 · · · e2,1〉
#
Z

can be calculated via the symmetrising form above. Since the character degrees of the
absolutely irreducible characters belonging to the exceptional vertex are all equal the

5



dual with respect to Trz is as stated in the theorem, yielding the remaining generator
g1,n for Γa. �

Note that the xi do not depend on the degrees of the irreducible complex charac-
ters in B, since all exceptional absolutely irreducible characters have the same degree.
Therefore one gets

Corollary 2.6. Let Bi (i = 1, 2) be two blocks with cyclic defect group ∼= Cpa and
assume that R is an unramified extension of Zp that is large enough so that k is a
splitting field for kBi. Then B1 and B2 are Morita equivalent if and only if their Brauer
trees (including the permutations δ and ρ) and the character fields Z1, . . . , Za coincide.

Also, symmetric orders remain symmetric orders, when one extends the ground
ring. Therefore the explicit description in [Ple83, Theorem 8.5] shows that the Brauer
tree determines a block of cyclic defect up to Morita equivalence (over an algebraically
closed field). This is also shown in [Lin96, Theorem 2.7(ii)] with completely different
methods.

Corollary 2.7. Let Bi (i = 1, 2) be two blocks with isomorphic cyclic defect group and
assume that R is large enough so that k and K are splitting fields for kBi and KBi.
(Here we drop the assumption that K is unramified over Qp.) Then B1 and B2 are
Morita equivalent if and only if their planar embedded Brauer trees coincide.

2.1 Galois descent.

We now perform the Galois descent to obtain a description over Zp (see [Ple83, Chapter
8]). So let B be a block of ZpG such that B is a summand of R ⊗ B. We assume that
K is chosen to be minimal, i.e. K = Qp[χa+1] = . . . = Qp[χa+e] is the character field
of any non-exceptional absolutely irreducible Frobenius character that belongs to B.
The maximal unramified subfield K̃ of the character field Z̃s := Qp[χs] (s = 1, . . . , a)
of any exceptional absolutely irreducible Frobenius character in B does not depend on
the character and is a subfield of K. Let m := [K : K̃] denote its index.

If R̃ denotes the ring of integers in K̃, then R̃ embeds into the centre of B such that
B can be viewed as an R̃-order and R⊗R̃ B

∼= B.
The Galois group Gal(K/K̃) = Gal(k/k̃) ∼= Cm (where k̃ := R̃/pR̃) acts on the

simple B-modules and the corresponding idempotents f1, . . . , fe with orbits of length
m. Therefore orthogonal lifts of the central primitive idempotents of B/J(B) can be
chosen as f̃1, . . . , f̃ẽ ∈ B where ẽ := e

m
is the number of simple FpB-modules, each of

which has character field k = R/pR.
The central primitive idempotents in A := Qp ⊗ B are ε̃1, . . . , ε̃a, ε̃a+1, . . . , ε̃a+ẽ in-

dexed in such a way that Z̃s is a totally ramified extension of K̃ of degree ps−ps−1

e
for

s = 1, . . . , a.
For an appropriate ordering of the index set {1, . . . , e} the k-dimensions of the

simple FpB-modules are d1, . . . , dẽ and the set of indices of the simple ε̃sB-modules is
r̃s = rs ∩ {1, . . . , ẽ}.

For s = a + 1, . . . , a + ẽ, the centre of Bε̃s is isomorphic to R, r̃s = rs, and Bε̃s is
isomorphic to one of the R-orders in Theorem 2.2 (ii).
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Let n′ := |r̃1| = |r1|
m

. For s = 1, . . . , a let Ds be a central Z̃s-division algebra of index
m and Ωs be its maximal order with prime element ℘s. Then

Bε̃s ∼= Λ(Ωs, (di, dδ(i), . . . , dδn′−1(i)), Hn′).

Then the Hasse invariant of Ds (as defined in [Rei75, (31.7)]) is independent of s and
can be read off from the planar embedded Brauer tree together with the Galois action
of Gal(k/k̃) ∼= Gal(K/K̃) on the modular constituents of any exceptional character in
B:

Theorem 2.8. Let ψ be a p-modular constituent of any of the exceptional characters
in B. Let F denote the Frobenius automorphism of k/k̃. Then there is some r ∈ Z

prime to m such that

δn
′

(ψ) = F r(ψ) where n′ = |r̃1| = |r1|
m
.

Let t = r−1 ∈ Z/mZ. Then for all s ∈ {1, . . . , a} the Hasse invariant of Ds is t
m

.

Proof. To simplify notation we again assume that all the character degrees di are equal
to 1. Then for s ∈ {1, . . . , a} the order Bεs = Λ(Ωs, (1, . . . , 1), Hn′) and

P =








0 . . . 0 ℘s
1 0 . . . 0

0
. . .

. . .
...

0 . . . 1 0








is a generator of J(Bε̃s). Then P also generates the Jacobson radical of Bεs = R⊗R̃Bεs.
Let Lψ be a Bεs-lattice whose head has character ψ. Then the head of LψP

n′
has

character δn
′
(ψ) which is Galois conjugate to ψ and hence of the form F r(ψ) for some

r. Therefore conjugation by P n′
= diag(℘s, . . . , ℘s) induces the Galois automorphism

F r on the inertia subfield K of Ds. By the general theory of division algebras over local
fields (see [Rei75]) r is prime to m and the Hasse invariant of Ds is t

m
as stated in the

theorem. �

The amalgamations in B are described as in Theorem 2.3 (see [Ple83, Theorem
8.10]), where now the epimorphisms in (i) are only mappings between R̃-orders. For
(iii) one should note that R/pR ∼= Ωs/℘sΩs for all s = 1, . . . , a.

Similarly as in Theorem 2.5 one shows:

Theorem 2.9. The description above (see [Ple83, p. 140ff]) determines B up to iso-
morphism.
More precisely let Γ̃a := (ε̃1+. . .+ε̃a)B. and let ẽ1, . . . , ẽn′ (n′ = |r̃1| = |r1|

m
) be lifts of the

central primitive idempotents in Γ̃a/J(Γ̃a). Again we assume that the k-dimensions of
the simple Γ̃a-modules are 1. Then ẽiΓ̃aẽi is generated as a Z(Γ̃a)-order by (ζ1, . . . , ζa)
and (℘1, . . . , ℘a), where ζs ∈ Ωs is a primitive (qm−1)st root of unity (q := |k̃| = |R̃/pR̃|)
and the prime elements ℘s ∈ Ωs are chosen such that ζ℘s

s = F r(ζs) = ζq
r

s where r is
as in Theorem 2.8 (i.e. t

m
is the Hasse invariant of Ds where rt ≡ 1 (mod m)). The

remaining generators of Γ̃a are ẽi+1,i ∈ ẽi+1Γ̃aẽi (i = 1, . . . , n′ − 1) and g̃1,n′ ∈ ẽ1Γ̃aẽn′

defined analogously to the ones in Theorem 2.5.
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Proof. Let Li = ẽiΓ̃a be any projective indecomposable Γ̃a-lattice (i = 1, . . . , n′). Then,
by the above, the endomorphism ring of Li is a successive amalgam of the orders Ωs,
s = 1, . . . , a. Since k̃-automorphisms of Ωs/℘sΩs lift to (inner) R̃-automorphisms of Ωs,
this ring is uniquely determined by [Ple83, Theorem 8.10] up to isomorphism and

ẽiΓ̃aẽi = EndΓ̃a
(Li) = 〈(ζ1, . . . , ζa), (℘1, . . . , ℘a), Z(Γ̃a)〉.

To generate Γ̃a, by Nakayama’s lemma, it is enough to choose additional elements of
ẽiΓ̃aẽj (i 6= j ∈ {1, . . . n′}) that generate

ẽiΓ̃aẽj/(ẽiJ(Γ̃a)
2ẽj + pẽiΓ̃aẽj)

as an ẽiΓ̃aẽi-module. The same arguments as in the proof of Theorem 2.5 now imply
the theorem. �

Corollary 2.10. The planar embedded Brauer tree together with the character fields
K, Z̃1, . . ., Z̃a and the Galois action on the modular constituents of the exceptional
characters determine the block B of ZpG up to Morita equivalence.

3 The radical idealiser chain for blocks with cyclic

defect groups

In this section we will investigate the radical idealiser chain for blocks with cyclic defect
group, where we mainly concentrate on describing the head order. Head orders are
hereditary orders and hence they are the maximal elements for the “radically covering”
relation, where an order Γ radically covers and order Λ, Γ � Λ, if Γ ⊇ Λ and J(Γ) ⊇
J(Λ). Then for all orders in the idealiser chain Λi � Λi−1 (see [Rei75, Section 39]).
Moreover it is easy to see that if Γ � Λ then every simple Γ module is semi-simple
as a Λ-module (see [Neb04, Lemma 2.2]). In particular the simple ΛN -modules are
semi-simple Λ-modules.

We will use the notation introduced in the last section and perform the calculations
for the block B of ZpG. The results for the block B of RG then follow easily (see
Corollary 3.17). However, it is crucial for the whole process that R is an unramified
extension of Zp.

For the radical idealiser process we treat the exceptional vertex Γ̃a and Γ̃0 separately
always keeping track of the amalgamations between them, which are controlled by the
following lemma.

Lemma 3.1. Let S be a discrete valuation ring with prime element π and let Λi (i =
1, 2) be S-orders. Given epimorphisms ϕi : Λi → X := Ss×s/πtSs×s let

Λ := {(x1, x2) ∈ Λ1 ⊕ Λ2 | ϕ1(x1) = ϕ2(x2)}.

Then
Id(J(Λ)) ⊇ {(x1, x2) ∈ Λ1 ⊕ Λ2 | ϕ1(x1) = ϕ2(x2)} =: Γ

where : X → Ss×s/πt−1Ss×s is the natural epimorphism.
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Proof. Clearly J(Λ) = {(y1, y2) ∈ J(Λ1) ⊕ J(Λ2) | ϕ1(y1) = ϕ2(y2)} and ϕi(J(Λi)) =
J(X) = πX for i = 1, 2. Let (x1, x2) ∈ Γ and (y1, y2) ∈ J(Λ). Then clearly xiyi and yixi
are in J(Λi) (i = 1, 2). Since ϕ1 is surjective, there is z1 ∈ Λ1 with πϕ1(z1) = ϕ1(y1).
Choose z2 ∈ Λ2 with ϕ2(z2) = ϕ1(z1). Then

ϕ1(y1x1) = ϕ1(z1)πϕ1(x1) = ϕ2(z2)πϕ2(x2) = ϕ2(y2x2)

and similarly ϕ1(x1y1) = ϕ2(x2y2). Hence (x1, x2) ∈ Id(J(Λ)). �

The following trivial lemma suffices to deduce the head order of Γ̃a.

Lemma 3.2. Let Λ be an order in A and ε a central idempotent of A. Then

Λε ⊆ Id(J(Λ))ε ⊆ Id(J(Λε)).

Corollary 3.3. The head order of Γ̃a is ⊕a
s=1Bε̃s.

Similarly the head order of Γa is ⊕a
s=1Bεs.

Proof. The orders Bεs = Id(J(Bεs)) and Bε̃s are already hereditary for s = 1, . . . , a.
�

Note that this corollary is not true, when R is replaced by a ramified extension of
Zp.

3.1 The first steps.

The main task to calculate the idealiser chain for Γ̃0 is to calculate the one of ε̃sΓ̃0 for
s = a + 1, . . . , a + ẽ. These orders have a certain symmetry with respect to a cyclic
permutation of their simple modules, and therefore can be encoded in a simple way.
All orders in this radical idealiser chain share this symmetry.

Definition 3.4. For v = (v0, . . . , vn−1) ∈ Zn and d = (d1, . . . , dn) ∈ Nn define

Λ(d, v) := Λ(R, d,M) := {X = (xij) ∈ KD×D | xij ∈ πmijRdi×dj}

where

mij =

{
vj−i if j ≥ i
vn+j−i − vn−1 if j < i

and D =
∑n

i=1 di.

Remark 3.5. Since the dimension vector d will be fixed most of the time, we will omit
it and let Λ(v0, . . . , vn−1) := Λ(d, v).

The order Γ̃0 is an amalgam of the orders ε̃sB = ε̃sΓ̃0 (s = a + 1, . . . , a + ẽ) of
the form Λ(R, d, aHn) ∼= Λ(0, a, . . . , a

︸ ︷︷ ︸

n−1

) for some dimension vector d and n = |rs|. The

9



amalgamations in Γ̃0 are only on the diagonal, more precisely, the part of B belonging
to ε̃sB is of the form

Λ(R, d,










0a a . . . . . . a
0 0a a . . . a
...

. . .
. . .

. . .
...

0 . . . . . . 0a a
0 . . . . . . 0 0a










) = Λ(0a, a
n−1)

where all the underlined entries obey a certain congruence modulo pa to a diagonal
entry in some other ε̃tB (t 6= s) which is indicated by underlining the 0 and the index a.
By Lemma 3.1 these amalgamations will decrease by 1 in each step until after a steps
the order Ba contains the central primitive idempotents ε̃a+1, . . . , ε̃a+ẽ.

In the following we fix some s ∈ {a+ 1, . . . , a+ ẽ}, put n := |rs|, and let

Λ := Λ0 := Bε̃s ⊆ Λ1 := B1ε̃s ⊆ . . . ⊆ ΛN := BN ε̃s

where
B =: B0 ⊂ B1 ⊂ . . . ⊂ BN = BN+1

is the radical idealiser chain of B. Together with the structure of Λi we keep track of
the additional information, how Bi is embedded into the direct sum of the Biε̃s using
the notation above.

Lemma 3.6. If a ≥ n then

Λn
∼= Λ(0a−n, (a− n)n−1).

Proof. An easy induction on j shows that for j = 1, . . . , n

Λj = Λ(0a−j, (a− j + 1), (a− j + 2), . . . , a− 1, an−j).

Then

Λn = Λ(0a−n, (a− n+ 1), (a− n + 2), . . . , a− 1) ∼= Λ(0a−n, (a− n)n−1)

by conjugation with the diagonal matrix diag(1, π, π2, . . . , πn−1). �

Inductively we get

Corollary 3.7. Let a = zsn+ b with 0 ≤ b < n and m0 := zsn+ 1. Then

Λm0−1 = Λ(0b, b
n−1).

If b = 0 then Λm0−1 is already a maximal order and we are done.

Lemma 3.8. Assume that b > 0 and define l0, x0 by n = l0b + x0 with 0 < x0 ≤ b.
Then

Λm0
= Λ(0b−1, b

n−1).

If 0 ≤ m < n− l0 then

10



(a) Λm+m0
is of the form Λm+m0

= Λ(0f(m), v1, . . . , vn−1) with 0 < v1 ≤ v2 ≤ . . . ≤
vn−1 = b, where f(m) = max{0, b−m− 1}.

(b) If m = l(b− 1) + y with 0 ≤ y < b− 1 then

Λm+m0
= Λ(0f(m), 1

l, 2l, . . . , (b− y − 1)l, (b− y)l+1, . . . , (b− 1)l+1, bn−m−1)

i.e. Λm+m0
= Λ(0f(m), v1, . . . , vn−1) with

vj =







b j−1
l
c + 1 if 1 ≤ j ≤ (b− y − 1)l

b− y + b j−1−(b−y−1)l
l+1

c if (b− y − 1)l < j ≤ (b− 1)l + y

b if j > (b− 1)l + y

(c) The radical J(Λm+m0
) = Λ(1f(m), v1, . . . , vn−1).

Proof. The form of Λm0
is clear. For the other statements we argue by induction on

m, where the case m = 0 is trivial. Assume that m < n − l0 − 1 and that Λm+m0
=

Λ(0f(m), v1, . . . , vn−1) has the properties (a), (b), (c). Then Λm+m0+1 is of the form

Λm+m0+1 = Λ(0f(m+1), ṽ1, . . . ṽn−1),

since the inequalities on the entries of the exponent matrix preserve the symmetry
conditions in (a). The form of the amalgamations follows from Lemma 3.1. Clearly
ṽi ≤ vi for all i and ṽ0 = 0. The remaining conditions in (a) and the property (c)
follow once we have shown (b). Let v′i := vi for i > 0 and v′0 := 1 = v0 + 1. Then the
conditions on m1j = ṽj−1 (j > 1) that Λm+m0+1 lies in the left idealiser of J(Λm+m0

)
read as

ṽj−1 ≥ max{vk−1 − v′k−j | k = j, . . . , n} =: max1

and
ṽj−1 ≥ max{b + v′k−1 − vk+n−j | k = 1, . . . , j − 1} =: max2.

The inequalities for the right idealiser of J(Λm+m0
) read as

ṽj−1 ≥ max{vj−1−1, v′j−k1−vn+1−k1+b, vn+j−k2−vn+1−k2 | k1 = 2, . . . , j, k2 = j+1, . . . , n}

and agree with the conditions above after an easy variable transformation. Hence right
and left idealiser of J(Λm+m0

) coincide and are equal to Id(J(Λm+m0
)).

By the induction assumption for all 1 ≤ i ≤ n

vi−1 =







b i−2
l
c + 1 if 1 ≤ i− 1 ≤ (b− y − 1)l

b− y + b i−2−(b−y−1)l
l+1

c if (b− y − 1)l < i− 1 ≤ (b− 1)l + y

b if i− 1 > (b− 1)l + y.

Since the ‘slope’ of v is decreasing vk−1 − v′k−j is maximal if v′k−j is the last 1 in v′,
hence if k − j = l i.e. k = l + j. If k := min(l + j, n) then

max1 = vk−1−1 =







b j−2
l
c + 1 if 1 < j − 1 ≤ (b− y − 2)l

b− y + b j−2−(b−y−2)l
l+1

c − 1 if (b− y − 2)l < j − 1 ≤ (b− 2)l + y

b− 1 if (b− 2)l + y < j − 1.

11



This implies that max1 = vj−1 if j−1 ≤ (b−y−2)l. If (b−y−2)l < j−1 ≤ (b−y−1)l
then

vj−1 = b
j − 2

l
c + 1 = b− y − 1 = max1 = b− y + b

j − 2 − (b− y − 2)l

l + 1
c − 1.

If (b − y − 1)l < j − 1 ≤ (b − 2)l + y then max1 = b − y − 1 + b j−2−(b−y−2)l
l+1

c and

vj−1 = b − y + b j−2−(b−y−1)l
l+1

c. Therefore max1 < vj−1 if and only if j − 3 − y + b is
divisible by l + 1, i.e.

j − 1 = (b− 2)l + y − x(l + 1), x = 0, 1, . . . , y − 2

when vj−1 = b− x− 1 is the first occurrence of b− x− 1 in v.
If (b−2)l+y < j−1 ≤ (b−1)l+y then vj−1 = b−1 = max1 and if j−1 > (b−1)l+y

then max1 = b− 1 < vj−1 = b.
For max2 one finds that b+ v′k−1 − vk+(n−j) is maximal if k = j − 1 since the ‘slope’

of v is decreasing. Hence

max2 = b+ v′j−2 − vn−1 = v′j−2.

Combining these conditions one finds that

ṽj−1 =

{
vj−1 − 1 if j − 1 = (b− 2)l + y − x(l + 1) for x = 0, . . . , y − 1
vj−1 otherwise

.

With these ṽj the multiplication by Λm+m0+1 = Λ(0f(m+1), ṽ1, . . . , ṽn−1) preserves
the congruences in J(Λm+m0

) given in (c), since

b−m− 1 ≤ f(m) ≤ ṽj−1 + vn+1−j − b and b−m− 1 ≤ f(m) ≤ ṽn+1−j − b + vj−1

for all j. This implies part (b) of the lemma. �

Corollary 3.9. Let m1 := n− l0 − 1 +m0 and y = x0 − 1. Then

Λm1
= Λ(0, 1l0, . . . , (b− y − 1)l0 , (b− y)l0+1, . . . , (b− 1)l0+1, bl0) =: Λ(v(1)).

Corollary 3.10. For all s ∈ {1, . . . , a+ ẽ} the s-th component of the head order of B
is equal to the head order of the projection ε̃sB.

3.2 The head order.

If n = (l0 +1)b is divisible by b, then the order Λm1
as defined in Corollary 3.9 is already

hereditary. More precisely we have the following

Lemma 3.11. Let b be a factor of n = lb. Then Λm1
= Λ(0, 1l, . . . , (b − 1)l, bl−1) is

hereditary, Λm1
∼ Λ(R, (D1, . . . , Dl), Hl) where Di =

∑b−1
j=0 djl+i.
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Proof. Λm1
= Λ(R, d,M) where

mij = b
j − i− 1

l
c + 1.

Let ti := mi1 = b−i
l
c−1. Conjugating by the diagonal matrix T := diag(πti) one obtain

the conjugate order ΛT
m1

= Λ(R, d, M̃), where

m̃ij = mij − ti + tj = b
j − i− 1

l
c + 1 − b

−i

l
c + b

−j

l
c.

Writing j = j1l + j2 and i = i1l + i2 with 0 < j2, i2 ≤ l one gets

m̃ijb
j2 − i2 − 1

l
c + 1 − b

−i2
l

c + b
−j2
l

c = b
j2 − i2 − 1

l
c + 1 =

{
0 if j2 ≤ i2
1 if j2 > i2

.

Hence after reordering the constituents Λm1
has the form as claimed in the lemma.

�

We now assume that 0 < x0 < b. Continuing to trace down the radical idealiser
process like in Lemma 3.8 seems to be a rather tedious work. If x0 ≥ b

2
then after

m2 = b− x0 − 1 steps one arrives at an order

Λm1+m2
= Λ(0, 1l0, 2l0+1, 3l0, 4l0+1, . . . , zl0 , (z + 1)l0+1, (z + 2)l0+1, . . . , (b− 1)l0+1, bl0)

where z = 2b− 2x0 − 1. If x0 ≤
b
2

then after m2 = x0 − 1 steps one arrives at an order

Λm1+m2
= Λ(0, 1l0, 2l0, . . . , zl0 , (z + 1)l0+1, (z + 2)l0 , . . . , (b− 2)l0+1, (b− 1)l0, bl0)

where z = b− 2x0 + 1. If x = b
2

= gcd(n, b) = d then Λm1+m2
is again hereditary

Λm1+m2
∼ Λ(R, (D1, . . . , D2l0+1), H2l0+1)

where Dj =
∑

i≡−l0j
di, where the congruence is modulo 2l0 + 1 = n

d
.

Instead of continuing like this, we prefer to calculate the head order ΛN = ε̃sBN ,
which is also the head order of Λm1

, directly where we need the following trivial lemma:

Lemma 3.12. Let Λ ⊂ Γ be two orders with J(Λ) ⊂ J(Γ). If e ∈ Λ is an idempotent
then J(eΛe) ⊂ J(eΓe).

Proof.
J(eΛe) = eJ(Λ)e ⊆ eJ(Γ)e = J(eΓe).

�

The head order ΛN of Λm1
has the following properties:

Properties 3.13. 0) ΛN is of the form Λ(w) for some w ∈ Zn
≥0.

1) ΛN is an order, i.e. for all i < j < k one has

(i) b− wn+j−k ≤ wk−i − wj−i ≤ wk−j

(ii) b− wn+i−k ≤ wk−j − wn+i−j + b ≤ wk−i

13



(iii) b− wn+i−j ≤ wn+j−k − wn+i−k ≤ wj−i

which just expresses the fact that the entries mij in the exponent matrix of ΛN

satisfy mik +mkj ≥ mij for all i, j, k ∈ {1, . . . , n}.

2) ΛN is hereditary, i.e.

wj−1 + wn+1−j − b ∈ {0, 1} for all j > 1.

3) ΛN radically covers the order Λm1
= Λ(v(1)) defined in Corollary 3.9. This prop-

erty implies with Lemma 3.12 that wj−1 = v
(1)
j−1 and wn−j+1 = v

(1)
n−j+1 whenever

v
(1)
j−1 + v

(1)
n+1−j − b = 1. In particular

3’) w1 = . . . = wl0 = 1, wn−1 = . . . = wn−l0 = b, and wn−l0−1 = b− 1.

Lemma 3.14. ΛN is uniquely determined by Properties 3.13 0), 1), 2), and 3’). More
precisely let n = l0b + x0 be as above and assume that 1 ≤ x0 ≤ b− 1. Then

(i) ΛN = Λ(w) where w = (0, 1l1, 2l2 . . . , blb) with l1 = l0 = lb and lj ∈ {l0, l0 + 1} for
all j = 1, . . . , b.

(ii) Let e := (e1, . . . , eb), where ek = lk − l0 ∈ {0, 1} for k = 1, . . . b − 1 and eb := 1.
For all j let aj :=

∑j

k=1 ek. Let d := gcd(n, b) = b
i
. Then x0 = ai

i
b, ei = 1 and

e = (e1, . . . , ei)
d = (e1, . . . , ei, e1, . . . , ei, . . . , e1, . . . , ei).

The entries of w are uniquely determined by

aj = b
x0 · j

b
c for all j = 1, . . . , b.

Proof. (i) Property 3.13 3’) together with Property 3.13 1) (i) (for i = 1) show that for
0 < k − j ≤ l0

0 ≤ wk−1 − wj−1 ≤ 1

and if k − j ≥ l0 + 1, then wk−1 − wj−1 ≥ 1. This implies (i).
(ii) Put d = gcd(b, x0) = b

i
. Then i = min{j ∈ {1, . . . , b} | b

j
divides x0}.

We now show by induction on j that aj = bx0·j
b
c and lj = lb−j+1 for j = 1, . . . , i − 1.

This is clear for j = 1 since l1 = l0 = lb and a1 = 0 = bx0

b
c. Assume that 1 < j ≤ i− 1

and that ak = bx0·k
b
c and lk = lb−k+1 for k = 1, . . . , j − 1. Let

X1 := ((t− 1), tlt, . . . , (t+ j − 1)lt+j−1 , (t+ j))

be a subsequence of w. Then the difference between the first and the last entry of X1

is j + 1 and the distance between these entries is
∑t+j−1

q=t lq + 1. Since wl0j+aj
= j,

Property 3.13 1) (i) implies that

t+j−1
∑

q=t

lq = l0j +

t+j−1
∑

q=t

eq ≥ l0j + aj for all 1 ≤ t < b + 1 − j.
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Similarly for subsequences of (w,w) of the form

X2 := ((b− t− 1), (b− t)lb−t, . . . , blb , 0, 1l1, . . . , (j − t− 1)lj−t−1 , (j − t))

Property 3.13 1) (ii) implies that

b∑

q=b−t

lq + 1 +

j−t−1
∑

q=1

lq = l0j +
b∑

q=b−t

eq +

j−t−1
∑

q=1

eq ≥ l0j + aj for all 0 ≤ t ≤ j.

This implies that for every subsequence of length j of the sequence (e, e), the sum over
the entries in this subsequence is ≥ aj and therefore

x0 =

b∑

t=1

et ≥
b

j
aj.

Let bj :=
∑b

t=b−j+1 et. Similar arguments as above, using the second and second last
entries of the sequences X1 and X2 above and the fact that wn−jl0−bj = b− j, show that

t+j−1
∑

q=t

lq = l0j +

t+j−1
∑

q=t

eq ≤ l0j + bj for all 1 ≤ t ≤ b + 1 − j

and

b∑

q=b−t

lq + 1 +

j−t−1
∑

q=1

lq = l0j +
b∑

q=b−t

eq +

j−t−1
∑

q=1

eq ≤ l0j + bj for all 0 ≤ t ≤ j

which yields
b

j
aj ≤ x0 ≤

b

j
bj.

By induction hypothesis, we have bj = aj +1 (if lb−j+1 = lj) or bj = aj (if lb−j+1 = l0
and lj = l0 +1). Note that the case lb−j+1 = l0 +1 and lj = l0 is not possible since then
wn−jl0−bj + wjl0+bj = b − j + 1 + j + 1 = 2 contradicting Property 3.13 2). If bj = aj
then x0 = b

j
aj and x0j

b
is an integer showing that j ≥ i. If bj = aj + 1 then lb−j+1 = lj

and
jx0

b
− 1 ≤ aj ≤

jx0

b

which give aj = b jx0

b
c as claimed, since j ≤ i− 1 and hence jx0

b
is not an integer.

It remains to show that if j = i, i.e. b
j

= gcd(b, x0) = gcd(b, n), then aj = ai =
ix0

b
and e and ΛN are as claimed. For this it is enough to show that ai = bi, since

then every subsequence of e of length i contains exactly ai times 1. Applying this
to (e1, . . . , ei) and (e2, . . . , ei+1) this shows that ei+1 = e1. Repeating it follows that
e = (e1, . . . , ei, e1, . . . , ei, . . . e1, . . . , ei) as claimed.

Assume that ai 6= bi. Then bi = ai + 1 and either ai = x0

d
and bi = x0

d
+ 1 or

ai = x0

d
− 1 and bi = x0

d
(where d := b

i
= gcd(n, b)). Assume the latter, then

x0 =

b∑

j=1

ej =

d−1∑

k=0

ki+i∑

j=ki+1

ej ≤ dbi = x0.
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Hence for all k the sum
∑ki+i

j=ki+1 ej = bi, in particular ai =
∑i

j=1 ej = bi. In the other
case one argues similarly using ai instead of bi. �

Theorem 3.15. The head order of B is

BN =
a+ẽ⊕

s=1

∆s

where ∆s = Bε̃s for s = 1, . . . , a.
If s ∈ {a + 1, . . . , a + ẽ} then r̃s = rs and δ and ρ induce permutations on r̃s. As in
Theorem 2.2 let σ := δ|r̃s if s ∈ Teven and σ := ρ|r̃s if s ∈ Todd. Define d := gcd(|rs|, a),

t := |rs|
d

and c := (a
d
)−1 ∈ (Z/tZ)∗. Then the order of σ is |rs| and we define τ := σt

and γ := σc and choose i ∈ r̃s arbitrarily. Then

∆s
∼= Λ(R, (Di, Dγ(i), . . . , Dγt−1(i)), Ht)

where Dj =
∑d−1

l=0 dτ l(j).

Proof. For 1 ≤ s ≤ a the theorem follows from Corollary 3.3. For a+ 1 ≤ s ≤ a+ ẽ let
n := |rs|, a = µn + b with 0 ≤ b < n. If b = 0, then ∆s

∼= Λm1
as defined in Corollary

3.9 is already a maximal order and the theorem follows from Lemma 3.11.
So assume that 1 ≤ b ≤ n − 1. Then d = gcd(a, n) = gcd(b, n) and we write

n = lb+ x with 0 ≤ x < b and put n = n′d, b = b′d, x = x′d. Then there is k ∈ Z with
cb′ = 1 + n′k where c is as defined in the theorem. For j ∈ Z put

f(j) := 1 + b
j − 1 − bxj

n
c

l
c = 1 + b

−1 − b (x′−n′)j
n′ c

l
c.

Since x′ − n′ = −b′l is divisible by l, one finds that

f(j + n′) = f(j) + b′ for all j ∈ Z.

Let
Λ := Λ(f(0), . . . , f(n− 1)) = Λ(R, d,M) where mij = f(j − i).

We claim that Λ = ∆s. By Lemma 3.14 it is enough to show that Λ is a hereditary
order that has property 3.13 3’). The latter is checked by a straightforward calculation.
We show that Λ is hereditary, by establishing an isomorphism with the hereditary order
in the theorem.

Put ti := mi1 = f(1 − i). Conjugating by the diagonal matrix T := diag(πti) one
obtains the conjugate order

ΛT = Λ(R, d, M̃), where m̃ij = mij − ti + tj = f(j − i) − f(i) + f(j).

Writing j = 1 + cj2 + n′j1 and i = 1 + ci2 + n′i1 with 0 ≤ j2, i2 < n′ one gets
m̃ij = f(c(j2 − i2)) − f(−ci2) + f(−cj2)

= 1 + b
−1 − b−cb′l(j2−i2)

n′ c

l
c − b

−1 − b cb
′li2
n′ c

l
c + b

−1 − b cb
′lj2
n′ c

l
c.
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Since cb′ = 1 − kn′ one gets

m̃ij = 1 + b
−1 − b l(i2−j2)

n′ c

l
c − b

−1 − b li2
n′ c

l
c + b

−1 − b lj2
n′ c

l
c.

Now 0 ≤ i2 < n′ implies that 0 ≤ b li2
n′ c ≤ l− 1 and therefore b

−1−b
li2
n′ c

l
c = −1. Similarly

b
−1−b

lj2
n′ c

l
c = −1. For the first term we have 1 − n′ ≤ i2 − j2 ≤ n′ − 1 implying that

b
−1 − b l(i2−j2)

n′ c

l
c ∈ {0,−1}.

More precisely this yields

m̃ij =

{
0 if i2 ≥ j2
1 if i2 < j2.

In particular Λ is a hereditary order and hence Λ = ∆s. After a suitable reordering of
the constituents the order ΛT ∼= ∆s has the form as claimed in the theorem. �

Remark 3.16. Let s ∈ {a + 1, . . . , a + ẽ} and ∆s := ε̃sBN . Let n := |r̃s| = n′d,
d = gcd(a, n), a = a′d, and ca′ ≡ 1 (mod n′). Let ν : Z/nZ → Z/n′Z be the natural
epimorphism. Assume that the simple Bε̃s-modules are labelled Si with i ∈ Z/nZ such
that σ(Si) = Si+1, where σ is as in Theorem 3.15.

Then the simple ∆s-modules are Tj with j ∈ Z/n′Z and can be labelled such that

(Tj)|Bε̃s =
⊕

i∈ν−1(cj)

Si

The ∆s-lattices in the simple Aε̃s-module form a chain

. . . ⊃ L1 ⊃ L2 ⊃ . . . ⊃ Ln′ ⊃ pL1 =: Ln′+1 ⊃ . . .

where Lj/Lj+1
∼= Tj for j = 1, . . . , n′.

It is a general and well known fact that if Λ is an S-order for some discrete valuation
ring S and S ′ is an unramified extension of S then J(S ′ ⊗ Λ) = S ′ ⊗ J(Λ) and hence
also Id(J(S ′⊗Λ)) = S ′⊗ Id(J(Λ)). Therefore the radical idealiser chain of the S ′-order
S ′ ⊗ Λ is obtained by extension of scalars of all orders in the chain. This immediately
implies the following corollary:

Corollary 3.17. Theorem 3.15 also holds when the block B of ZpG is replaced by the
block B of RG from Theorem 2.5.

This is not true for ramified extensions. However, the calculation of the head order
of Γ̃0 above only depends on the special structure of this order. Replacing Γ̃0 by R⊗ Γ̃0

for some ramified extension R of Zp yields an R-order with the same structure, where
a has to be replaced by the π-adic valuation of pa where π is a prime element in R.

Remark 3.18. Replacing R by a ramified extension of Zp in Remark 3.16 and a by the
π-adic valuation of pa still yields a description of the head order of the non exceptional
vertex Γ0.
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