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Abstract. Let K be a field, Γ a finite group of field automorphisms of
K, F the Γ-fixed field in K and G ≤ GLv(K) a finite matrix group.
Then the action of Γ defines a grading on the symmetric algebra of the
F -space Kv which we use to introduce the notion of homogeneous Γ-
conjugate invariants of G. We apply this new grading in invariant theory
to broaden the connection between codes and invariant theory by intro-
ducing Γ-conjugate complete weight enumerators of codes. The main
result of this paper applies the theory from Nebe, Rains, Sloane to show
that under certain extra conditions these new weight enumerators gen-
erate the ring of Γ-conjugate invariants of the associated Clifford-Weil
groups. As an immediate consequence we obtain a result by Bannai etal
that the complex conjugate weight enumerators generate the ring of
complex conjugate invariants of the complex Clifford group. Also the
Schur-Weyl duality conjectured and partly shown by Gross etal can be
derived from our main result.
MSC: 13A50; 94B60; 11S20.
keywords: Galois action, invariant ring, generalised Molien series, Clifford-
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1. Introduction

A complex conjugate polynomial of degree (N,N) in v variables is a ho-
mogeneous polynomial p ∈ C[x1, . . . , xv, x1, . . . , xv] that is of degree N in
the variables x1, . . . , xv and of degree N in their complex conjugates. An in-
variant theory for complex conjugate polynomials has been developed in [3].
Given a finite complex unitary matrix group G ≤ Uv(C) and some t ∈ N such
that for all N = 1, . . . , t all complex conjugate invariants of degree (N,N) of
G are multiples of the Nth power of the invariant Hermitian form, then all
G-orbits on Cv define projective t-designs. More generally if x ∈ Cv is a zero
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of all harmonic G-invariant polynomials up to degree (t, t), then the G-orbit
xG gives rise to a projective t-design.

The textbook [9] gives a very general notion of a Type of a code. As-
sociated to a Type ρ and an integer m ≥ 1 there is a finite complex matrix
group Cm(ρ), the associated Clifford-Weil group of genus m, such that the
genus-m complete weight enumerator of any code of Type ρ and length N
is an invariant polynomial of Cm(ρ), homogeneous of degree N . The Weight
Enumerator Conjecture states that the space of homogeneous degree N in-
variants of Cm(ρ) is spanned by these weight enumerators. If v is the size of
the alphabet of the codes of Type ρ, then Cm(ρ) consists of matrices of size
vm. Despite of this exponentially growing dimension, the space of invariants
of a given degree N can be obtained by enumerating all codes of length N of
Type ρ.

For the Type of doubly even binary codes, where v = 2, the associated
Clifford-Weil groups are the complex Clifford groups Xm ≤ GL2m(C) which
have a tight connection to quantum information theory (see [11]). The main
result of [1] shows that the ring of complex conjugate invariants of Xm is
spanned by the genus-m complex conjugate weight enumerators of self-dual
doubly even binary codes. The paper also enumerates all such codes up to
length (5, 5) therewith proving a conjecture from [11] that whenever an Xm-
orbit forms a projective 4-design then it is automatically a projective 5-design.

We extend the approach in [1] to the more general set-up in [9]. Any
Type ρ also determines an abelian number field K such that the associated
Clifford-Weil groups consist of matrices over K. Given a subgroup Γ of the
automorphism group of K, we introduce the concept of Γ-conjugate weight
enumerators of codes of Type ρ. These are elements of the ring of Γ-conjugate
invariants (Definition 2.1) of Cm(ρ). Our main result, Theorem 6.3, shows that
the space of Γ-conjugate homogeneous invariants of Cm(ρ) is spanned by these
weight enumerators of codes of a given length. Therefore the enumeration of
such codes of small length determines the Γ-conjugate invariants of small
degree of the genus-m Clifford-Weil group associated to ρ for all m ∈ N.

With a view to possible applications to measurement schemes for low
rank matrix recovery from complex projective t-designs as in [6], Section
7 gives a few examples of self-dual codes of Type (N,N) for N ≤ 4 for
several small representations ρ. Section 8 contains, as another application of
Theorem 6.3, a short proof of the Schur-Weyl duality conjectured and partly
established in [4].

The authors acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) Project number 442047500 through
the Collaborative Research Center “Sparsity and Singular Structures” (SFB
1481).
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2. Conjugate polynomials

Let K be a field and let Γ := {α1, . . . , αn} ≤ Aut(K) be a group of field
automorphisms of K that is finite of order n. Put

F := {a ∈ K | αi(a) = a for all i = 1, . . . , n}
to denote the fixed field of Γ. Then K/F is a Galois extension with Galois
group Γ.

For a vector space U over K of finite dimension v we denote by K[U ] the
ring of polynomials on U . We now restrict scalars and write UF for U regarded
as an nv-dimensional space over F . For a K-basis (u1, . . . , uv) of U and an
F -basis (b1, . . . , bn) of K the tuple B := (bjui : 1 ≤ j ≤ n, 1 ≤ i ≤ v) is an
F -basis of UF . This yields an F -algebra isomorphism between the symmetric
algebra F [UF ] of the dual space U∗F and F [yji : 1 ≤ j ≤ n, 1 ≤ i ≤ v],
where the functions yji : UF → F form the dual basis to the previously
chosen basis B. The latter is a polynomial ring in nv variables over F with
well studied gradings given by multi-degrees. As we are mostly interested in
invariant theory of finite groups over fields of characteristic 0 we assume that
K is an infinite field and see elements of K[U ] ∼= K[x1, . . . , xv] as polynomial
functions on U ∼= Kv.

Definition 2.1. For v ∈ N we denote by v := {1, . . . , v} and by KKv

the
K-algebra of K-valued functions on Kv. Assume that K is an infinite field.
The ring of Γ-conjugate polynomials over K in v variables x := (x1, . . . , xv) is
denoted by

K[x ◦ Γ] := K[xi ◦ αj : 1 ≤ i ≤ v, 1 ≤ j ≤ n] ≤ KKv

and defined as the K-subspace spanned by the monomial functions M((mij |
(i, j) ∈ v × n)) ∈ KKv

, where

M((mij | (i, j) ∈ v×n)) :=

n∏
j=1

v∏
i=1

(xi◦αj)mij : (k1, . . . , kv) 7→
n∏
j=1

v∏
i=1

(αj(ki))
mij .

The degree of such a monomial is

deg(M((mij | (i, j) ∈ v × n)) := (d1, . . . , dn)

with dj =
∑v
i=1mij for all j ∈ n.

The K-algebra structure of K[x ◦ Γ] is inherited from the K-algebra
structure of KKv

. In particular the multiplication of two monomials is given
by

M((`ij | (i, j) ∈ v×n))M((mij | (i, j) ∈ v×n)) = M((`ij+mij | (i, j) ∈ v×n))

and as usual the degree of the product is just the sum of the degrees of the
two factors.

The Γ-action provides a finer notion of degree of a polynomial inK[UF ] :=
K ⊗F F [UF ]. Note that also the functions (xi ◦ αj | (i, j) ∈ v × n) form a
basis of the dual space K ⊗F U∗F . So we obtain a K-algebra isomorphism

ϕ : K[x ◦ Γ]→ K[yji | (i, j) ∈ v × n]. (1)
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This shows that the linear functions (xi ◦αj : (i, j) ∈ v×n) in KKv

are
algebraically independent over K.

Corollary 2.2. The space of homogeneous polynomials of degree (d1, . . . , dn)
in K[x ◦ Γ] is the span of all monomials M((mij | (i, j) ∈ v × n)) with
dj =

∑v
i=1mij. As these monomials form a basis its dimension is

dim(K[x ◦ Γ]d1,...,dn) =

n∏
j=1

dim(K[x1, . . . , xv]dj ) =

n∏
j=1

(
dj + v − 1

dj

)
.

3. Invariant Theory

We keep the assumptions of the previous section, in particular K is an infinite
field and Γ = {α1, . . . , αn} is a group of automorphisms of K of finite order
n. Let G ≤ GLv(K) be a group. Then the right action of G on Kv defines a
right action of G by K-algebra automorphisms on the K-algebra of K-valued
functions on Kv by

f · g : Kv → K, k 7→ f(kg−1) for all g ∈ G, f ∈ KKv

.

This action preserves the subalgebra K[x ◦ Γ] as well as its subspaces of
homogeneous polynomials of a given degree.

Definition 3.1. Let K[x ◦ Γ]G denote the K-algebra of G-invariant functions
in K[x ◦ Γ].

Via the isomorphism ϕ from Equation (1) the K-algebra of G-invariant
functions K[x ◦ Γ]G is isomorphic to the ring of G-invariant polynomials in
K[yji | (i, j) ∈ v×n]. In particular classical invariant theory gives us Molien’s
formula for the Hilbert series of this invariant ring.

The grading from Definition 2.1 refines the classical degree function thus
giving a notion of Γ-conjugate Hilbert series of the invariant ring K[x ◦ Γ]G,
generalising the Forger series (where K = C and F = R) [3] to our situation.

Definition 3.2. For any d := (d1, . . . , dn) ∈ Nn0 let

ad := dim(K[x ◦ Γ]d ∩K[x ◦ Γ]G)

denote the dimension of the space of G-invariant conjugate polynomials that
are homogeneous of degree d. Putting zd := zd11 . . . zdnn we define

H(K[x ◦ Γ]G) :=
∑
d∈Nn0

adz
d ∈ Z[[z1, . . . , zn]]

the Γ-conjugate Hilbert series of the ring K[x ◦ Γ]G.
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3.1. Molien’s theorem

If G is finite and K has characteristic 0, then Molien’s theorem [2, Theorem
2.5.2] gives a useful expression of the Hilbert series of the classical invariant
ring of G. With a completely analogous proof (see also [3] for K = C and
F = R) we obtain the following theorem.

Theorem 3.3. Let K be a field of characteristic 0 and let G be a finite subgroup
of GLv(K). Then

H(K[x ◦ Γ]G) =
1

|G|
∑
g∈G

n∏
j=1

1

det(Iv − zjαj(g))
.

Proof. For a given degree d ∈ Nn0 the Reynolds operator 1
|G|

∑
g∈G

g ∈ K[G]

induces aK-linear projection Pd fromK[x◦Γ]d onto the fixed spaceK[x◦Γ]Gd .
Since char(K) = 0 the dimension of this fixed subspace is equal to the trace
of Pd.
Therefore

H(K[x ◦ Γ]G) =
∑
d∈Nn0

trace(Pd)zd.

As trace(Pd) = 1
|G|
∑
g∈G td(g) it suffices to compute the trace td(g) of the

action of g on K[x ◦ Γ]d for all g ∈ G.
To do so we may and will assume that K contains a |G|th primitive root of
unity. Then each g ∈ G is diagonalizable over K so after a suitable choice of
basis we assume that g−1 = diag(λ1, . . . , λv). Then for αj ∈ Γ,

det(Iv − zjαj(g)) =

v∏
i=1

(1− αj(λi)zj).

The monomials from Definition 2.1 form an eigenvector basis for the action of

g onK[x◦Γ]d, whereM((mij | (i, j) ∈ v×n)) has eigenvalue

n∏
j=1

v∏
i=1

αj(λi)
mij .

So we get ∑
d∈Nn0

td(g)zd =

n∏
j=1

v∏
i=1

∑
m∈N0

(αj(λi)zj)
m =

n∏
j=1

v∏
i=1

1

1− αj(λi)zj
=

n∏
j=1

1

det(Iv − zjαj(g))
.

�

4. The Type of a self-dual code

This section briefly recalls the relevant notions from [9]. Classically a self-dual
code C of length N over a finite field Fq is a linear subspace C ≤ FNq that is

self-dual (i.e. C = C⊥) with respect to the standard inner product. Loosely
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speaking, to define self-dual codes in a more general sense we need a ring
R, a left R-module V and a non-singular form β on V such that β can be
used to define the orthogonal code C⊥ of an R-submodule C ≤ V N . Extra
conditions (such as being doubly even) can be imposed by means of isotropy
conditions with respect to some set Q of quadratic maps on V . We call such
an admissible quadruple ρ := (R, V,Q, β) a Type, and the self-dual isotropic
codes that arise from ρ are called codes of Type ρ. More precisely, a Type is
a representation of an abstract form ring.

4.1. Form rings

A form ring (R,M,ψ,Φ) is a quadruple, where R is a (unital and associative)
ring, M a right R ⊗ R-module, ψ : RR → M1⊗R an isomorphism of right
R-modules. It comes with an involution τ : M →M such that τ(m)(s⊗ r) =
τ(m(r ⊗ s)) for all m ∈ M , r, s ∈ R and such that ε := ψ−1(τ(ψ(1))) is a
unit in R. The isomorphism ψ defines an anti automorphism J : R → R by
rJ := ψ−1(ψ(1)(r⊗1)). The last ingredient is an R-qmodule Φ, i.e. an abelian
group Φ together with a (pointed quadratic) map [] : R→ EndZ(Φ) such that
[1] = 1 and [rs] = [r][s] for all r, s ∈ R. There are qmodule homomorphisms
{{ }} : M → Φ and λ : Φ→M such that for all m ∈M , φ ∈ Φ,

{{ τ(m) }} = {{m }} , τ(λ(φ)) = λ(φ), λ( {{m }} ) = m+ τ(m)

and

{{λ(φ)(r ⊗ s) }} = φ[r + s]− φ[r]− φ[s] for all r, s ∈ R,φ ∈ Φ.

Taking M = R and ψ the identity we abbreviate (R,Φ) := (R,M,ψ,Φ).

4.2. Finite representations of form rings

A finite representation of a form ring (R,Φ) is a quadruple ρ = (V, ρM , ρΦ, β),
where V is a left R-module of finite cardinality v, ρM : M → Bil(V ) is an
R ⊗ R-module homomorphism into the group Bil(V ) of bi-additive Q/Z-
valued maps on V compatible with the involution τ , i.e. ρM (τ(m))(x, y) =
ρM (m)(y, x) for all m ∈ M,x, y ∈ V , and such that β := ρM (ψ(1)) is non-
singular. Also ρΦ is an R-qmodule homomorphism from Φ into the group of
Q/Z-valued quadratic maps on V satisfying

ρΦ( {{m }} )(x) = ρM (m)(x, x) and
ρM (λ(φ)) = ρΦ(φ)(x+ y)− ρΦ(φ)(x)− ρΦ(φ)(y)

for all x, y ∈ V,m ∈M,φ ∈ Φ.

Definition 4.1. Let ρ = (V, ρM , ρΦ, β) be a finite representation of a form ring
(R,Φ). Any R-submodule C ≤ V is called a code in ρ. For a code C in ρ the
orthogonal module is

C⊥ = C⊥,β := {x ∈ V | β(x, c) = 0 for all c ∈ C}.

The code C is called self-dual if C = C⊥ and self-orthogonal if C ⊆ C⊥. A
self-orthogonal code C in ρ is called isotropic if ρΦ(φ)(C) = {0} for all φ ∈ Φ.

A code of Type ρ is a self-dual isotropic code in ρ.
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MacWilliams transformations ([9, Section 2.2]) map the weight enumer-
ator of a code to the one of its dual and fix weight enumerators of self-dual
codes. To obtain a generating set of the associated Clifford-Weil group we
need to include MacWilliams transformations for representatives of the con-
jugacy classes of primitive symmetric idempotents.

Definition 4.2. An idempotent ι2 = ι ∈ R is called symmetric if ιR ∼= ιJR
as right R-modules. Such an isomorphism is given by left multiplication with
some vι ∈ ιJRι with inverse uι ∈ ιRιJ such that uιvι = ι and vιuι = ιJ (see
[9, Section 3.5.3]).

Remark 4.3. (see [9, Theorem 3.5.9]) Let ι ∈ R be a symmetric idempotent
and C = C⊥ ≤ V a self-dual code. Then ιC is a self-dual code in ιV and in
particular |ιC|2 = |ιV |.

Definition 4.4. The value group of the representation ρ = (V, ρM , ρΦ, β) is the
subgroup ν(ρ) of Q/Z generated by

{β(x, y) | x, y ∈ V } ∪ {ρΦ(φ)(x) | x ∈ V, φ ∈ Φ}.

As ν(ρ) is a finitely generated (and hence finite) subgroup of Q/Z it is cyclic,
so ν(ρ) = 〈 1

f + Z〉, where f = f(ρ) = |ν(ρ)| is called the conductor of ρ.

Remark 4.5. Put f := f(ρ) and let a1, . . . , aN ∈ Z be prime to f and put
a := (a1, . . . , aN ). Then the orthogonal sum

ρa := (V N , a1ρM ⊥ . . . ⊥ aNρM , a1ρΦ ⊥ . . . ⊥ aNρΦ, a1β ⊥ . . . ⊥ aNβ)

is a finite representation of the form ring (R,Φ).

5. Clifford-Weil groups and full weight enumerators

Let ρ = (V, ρM , ρΦ, β) be a finite representation of a form ring and put
v := |V |. The group algebra CV is a v-dimensional complex vector space
with basis (bw : w ∈ V ). The full weight enumerator of a code in ρ is defined
as

fwe(C) :=
∑
c∈C

bc ∈ CV.

The associated Clifford-Weil group C(ρ) is a group of linear operators on CV
whose generators are explicitly given in [9, Definition 5.3.1]; these generators
are the obvious transformations that stabilise fwe(C) for any code of Type
ρ. In particular the full weight enumerators of codes of Type ρ are invariant
under C(ρ) (see [9, Theorem 5.5.1]).

Remark 5.1. The Weight Enumerator Conjecture [9, Conjecture 5.5.2] states
that in this general situation the fixed space of C(ρ) is spanned by the full
weight enumerators of codes of Type ρ.
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In fact we do not know a counterexample and [9, Theorem 5.5.5 and
Theorem 5.5.7] assert the truth of the Weight Enumerator Conjecture for
fairly large classes of finite form rings including matrix rings over finite fields.

We recall the action of the associated Clifford-Weil group for the rep-
resentation ρa from Remark 4.5 with respect to the C-basis (bw : w =
(w1, . . . , wN ) ∈ V N ) of the group algebra of V N :

C(ρa) = 〈mr, dφ, hι,uι,vι : r ∈ R×, φ ∈ Φ, ι = uιvι sym. idem. 〉

where

mr : bw 7→ brw, dφ : bw 7→
N∏
j=1

exp(2πiρΦ(φ)(wj))
aj bw

and

hι,uι,vι : bw 7→
1

|ιV |N/2
∑
u∈ιV

N∏
j=1

exp(2πiβ(uj , vιwj))
aj bu+(1−ι)w.

Here the ι runs through the set of all R×-conjugacy classes of symmetric
idempotents in R and uι, vι ∈ R are as in Definition 4.2.

So the transformations mr are represented as permutation matrices on
the chosen basis and the transformations dφ as diagonal matrices. It is clear
that fwe(C) is invariant under all dφ and all mr, if C is an isotropic code
in ρa. For self-dual codes the invariance under hι,uι,vι follows from a general
MacWilliams theorem, see [9, Example 2.2.6].

Definition 5.2. Let f := f(ρ) and let ζf := exp(2πi
f ) ∈ C. Put F1 :=

Q({
√
|ιV | : ι ∈ R sym. idem.}) and K(ρ) := Q(ζf )F1 the abelian number

field containing all entries of C(ρ). We choose a complement F of F1∩Q(ζf )
in F1. For a ∈ (Z/fZ)× put γa to denote the Galois automorphism of K(ρ)
that is the identity on F and raises ζf to the ath power. Then γ : (Z/fZ)× →
Gal(K(ρ)/F ), a 7→ γa is a group isomorphism.

Remark 5.3. Let a ∈ (Z/fZ)×. For a symmetric idempotent ι ∈ R we put

ε(ι, a) ∈ {1,−1} such that γa(
√
|ιV |) = ε(ι, a)

√
|ιV |. Then

C(ρ(a)) = 〈mr, γa(dφ), ε(ι, a)γa(hι,uι,vι) | r ∈ R×, φ ∈ Φ, ι sym. idem. 〉.

By [9, Theorem 5.5.3] the order of the scalar subgroup in C(ρ) is the
greatest common divisor of the lengths of self-dual isotropic codes in ρ. Com-
bining this with Remark 4.3 we obtain the following lemma.

Lemma 5.4. Assume that there is a symmetric idempotent ι ∈ R for which
|ιV | is not a square in Q. Then −Iv ∈ C(ρ).

So for all a ∈ Z prime to f the groups C(ρ(a)) and γa(C(ρ)) are equal.
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6. Conjugate weight enumerators and the main theorem

We keep the notation of the previous section, in particular ρ is a finite rep-
resentation of a form ring (R,Φ) and K := K(ρ) is an abelian extension of
the field F from Definition 5.2. Put f := f(ρ) and

Γ := Gal(K/F ) =: {α1, . . . , αn},
a finite group of order n isomorphic to (Z/fZ)×. We always assume that
there is some length N0 such that there is a self-dual isotropic code in ρN0 .
Then C(ρ) is a finite subgroup of GLv(K), where v = |V |. We also assume
that the Weight Enumerator Conjecture 5.1 holds for the form ring (R,Φ).
For a = (a1, . . . , aN ) as in Remark 4.5 we consider the Clifford-Weil groups
C(ρa) introduced in Section 5.

Definition 6.1. We say that a satisfies the sign condition if

N∏
i=1

ε(ι, ai) = 1

for all symmetric idempotents ι ∈ R.

For 1 ≤ j ≤ n we put

Dj := {i ∈ {1, . . . , N} | γai = αj} and dj := |Dj | ∈ N0.

Put d := (d1, . . . , dn).

Definition 6.2. The Γ-conjugate complete weight enumerator

ccwe(C) := ccwea(C) ∈ K[x ◦ Γ]d

of a code C in ρa is defined as

ccwe(C) :=
∑
c∈C

n∏
j=1

∏
i∈Dj

xci ◦ αj .

Two codes C,D in ρa are called equivalent if there are permutations πj of Dj

(1 ≤ j ≤ n) such that D = C ◦ π where π = π1 × . . .× πn.

We are now in the position to state and prove the main result of this paper.

Theorem 6.3. Assume that ρ satisfies the Weight Enumerator Conjecture 5.1
and that a satisfies the sign condition. Then the space of invariants of C(ρ)
in K[x ◦ Γ]d is spanned by the Γ-conjugate complete weight enumerators of
self-dual isotropic codes in ρa.

Proof. Define a K-linear map

σ : KV N → K[x ◦ Γ]d, (v1, . . . , vN ) 7→
n∏
j=1

∏
i∈Dj

xvi ◦ αj .

If
∏N
i=1 ε(ι, ai) = 1 for all symmetric idempotents ι ∈ R then σ is a C(ρ)-

module epimorphism. As C(ρ) is a finite group and char(K) = 0, both mod-
ules are semisimple. In particular the space of invariants of C(ρ) in K[x ◦Γ]d
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is the image under σ of the C(ρ)-fixed space in KV N . By the Weight Enu-
merator Conjecture 5.1 this fixed space is spanned by the full weight enumer-
ators of self-dual isotropic codes C in ρa. Clearly σ(fwe(C)) = ccwe(C), so
the Γ-conjugate complete weight enumerators of these codes span the space

K[x◦Γ]
C(ρ)
d of homogeneous Γ-conjugate C(ρ)-invariant polynomials of degree

d. �

Remark 6.4. The sign condition in Theorem 6.3 is necessary, as the following
easy example shows: Take R = F5, the field with 5 elements. Then J = id. We
take Φ = {{M }} . We specify the representation ρ by putting V := F5 = Z/5Z
and β(x, y) := xy/5 ∈ Q/Z. Then K(ρ) = Q(ζ5) and F = Q. Consider the
representation ρ(1,2,2,2). As ε(1, 1) = 1 and ε(1, 2) = −1, the sign condition is
not satisfied. Put Σ := 4b(0,0,0,0) −

∑
v∈I bv, where

I := {0 6= (v1, v2, v3, v4) ∈ F4
5 | v2

1 + 2(v2
2 + v2

3 + v2
4) = 0}

is the set of isotropic vectors in ρ(1,2,2,2). Then mr(Σ) = dφ(Σ) = Σ for
all r ∈ F×5 and φ ∈ Φ but h1,1,1(Σ) = −Σ. The map σ from the proof of

Theorem 6.3 hence maps Σ to 0 6= σ(Σ) ∈ K[x ◦ Γ]
C(ρ)
1,3,0,0. This invariant

space is of dimension 1. However, as the discriminant of the quadratic form
x2

1 + 2(x2
2 + x2

3 + x2
4) is not a square in F5, there are no self-dual isotropic

codes in ρ(1,2,2,2).

The same method gives h1,1,1-anti-invariants for primes p ≡4 1.

6.1. Higher genus Clifford-Weil groups

The Clifford-Weil groups associated to a representation ρ form an infinite
sequence of matrix groups Cm(ρ) in exponentially growing dimension vm for
m ∈ N that comes with ring epimorphisms Φm : Inv(Cm(ρ))→ Inv(Cm−1(ρ))
that are isomorphisms on the spaces of invariants of small degree. A similar
phenomenon occurs for the space of Γ-conjugate invariants.

The full genus-m weight enumerator fwem(C) of C in ρ is the sum over
all m-tuples of code words of C. For C ≤ V N we can think of such an m-tuple
c ∈ Cm as a matrix c ∈ V m×N , where the rows correspond to code words. For
1 ≤ i ≤ N the ith column ci of this matrix is an element of V m = Rm ⊗ V .
In the notation of Definition 6.2 we denote by

ccwem(C) :=
∑
c∈Cm

n∏
j=1

∏
i∈Dj

xci ◦ αj

the Γ-conjugate complete weight enumerator of genus m of the code C in ρa.
Now the alphabet of Cm is V m and hence a module over the ring Matm(R)
of m ×m-matrices over R. This gives rise to a notion of a matrix ring of a
form ring (see [9, Section 1.10]) such that Rm ⊗ ρ is a representation of this
matrix ring. The genus-m Clifford-Weil group is

Cm(ρ) := C(Rm ⊗ ρ) (see [9, Definition 5.3.4]).

Denote by K[x(m)] the symmetric algebra of V m. Theorem 6.3 has the fol-
lowing immediate consequence.
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Corollary 6.5. Assume that ρ satisfies the Weight Enumerator Conjecture 5.1
and that a satisfies the sign condition. Then the space of invariants of Cm(ρ)
in K[x(m) ◦ Γ]d is spanned by the Γ-conjugate complete weight enumerators
of genus m of codes of Type ρa.

Remark 6.6. The map Φm mapping x(v1,...,vm)tr to x(v1,...,vm−1)tr if vm = 0
and to 0 if vm 6= 0 defines a ring epimorphism

Φm : K[x(m) ◦ Γ]→ K[x(m−1) ◦ Γ]

that preserves the grading from Section 2 and maps ccwem(C) to ccwem−1(C)
for any code C in ρa. In particular it induces an epimorphism from the space
of invariants of Cm(ρ) in K[x(m) ◦ Γ]d to the space of invariants of Cm−1(ρ)
in K[x(m−1) ◦ Γ]d.
If all self-dual isotropic codes in ρa are generated by m − 1 elements then
this epimorphism is in fact an isomorphism. In this case two codes are equiv-
alent (see Definition 6.2) if and only if they have the same genus-m weight
enumerator and these weight enumerators of the equivalence classes of codes
of Type ρa form a basis of the space of invariants of degree d.

7. Complex conjugate invariants

In this section we give the most important example where all ai from Re-
mark 4.5 are ±1. As γ−1 is the complex conjugation and the field F1 from
Definition 5.2 is totally real, we always have ε(ι,−1) = 1 for all symmetric
idempotents ι ∈ R and hence the sign condition is fulfilled.

In particular the main result of [1] is an immediate consequence of Theo-
rem 6.3. Whereas [1] only considers doubly even, self-dual binary codes The-
orem 6.3 allows to consider complex conjugate invariants for more general
Clifford-Weil groups.

In view of possible applications to complex projective designs we are

mainly interested in codes of Type ρ(1N ,(−1)N ) which we call Type (N,N)
for short. As we want to have as few invariants as possible we consider those
representations ρ where the quadratic group ρΦ(Φ) is as large as possible: For
self-dual codes over fields of odd characteristic we focus on self-dual codes
that contain the all-ones vector 1 = (1, . . . , 1) and in even characteristic on
the generalized doubly even codes.

7.1. Codes of Type (N,N)

7.1.1. The trivial codes. The standard norm zm := || ||2 on Cvm is an in-
variant for the full unitary group Uvm(C). In fact zNm is the genus-m com-
plex conjugate weight enumerator of the code TN,N with generator matrix
(IN |IN ), the trivial code of Type (N,N).

7.1.2. Decomposable codes. For codes Ci of Type (Ni, Ni), i ∈ {1, 2}, the or-
thogonal sum C1⊕C2 is a code of Type (N1+N2, N1+N2). If (Ai|Bi) is a gen-

erator matrix for Ci then C1⊕C2 has generator matrix

(
A1 0 B1 0
0 A2 0 B2

)
.
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Clearly the genus-m weight enumerator of C1⊕C2 is just the product of the
genus-m weight enumerators of C1 and C2.

In the following we only list representatives of the equivalence classes
of indecomposable codes, i.e., codes that cannot be written as a non-trivial
orthogonal sum.

7.1.3. The doubling construction. There is another general construction of
codes in ρ(N,N) which we call the doubling construction:
Let C be a self-orthogonal isotropic code C in ρN and put D := C⊥ ⊇ C.
Then

Double(C) := {(d, d+ c) | d ∈ D, c ∈ C}
is a code of Type ρ(N,N). If C is a self-dual isotropic code in ρN , i.e. C = D,
then Double(C) = {(c1, c2) | c1, c2 ∈ C}.

The trivial code TN,N is the double of the zero code, TN,N = Double(〈0N 〉).

7.2. Enumeration of equivalence classes of codes

In this section we sketch some methods to enumerate all self-dual isotropic
codes in V N .

7.2.1. The mass formula. In many situations the unitary group (in the ex-
amples below the orthogonal group of the quadratic space 1⊥/〈1〉) acts tran-
sitively on the set of codes of Type (N,N); their number tN is the number of
isotropic subspaces in a certain finite geometry. If C1, . . . , ChN represent the
SymN × SymN -orbits of codes of Type (N,N) then we obtain the following
mass formula:

tN
N ! ·N !

=

hN∑
i=1

1

|Aut(Ci)|

where Aut(Ci) is the stabiliser in SymN × SymN of the code Ci ≤ V N+N .
This formula can be used to check the completeness of a list of pairwise
inequivalent codes but also yields a method to enumerate these codes by
partitioning the orbit of the unitary group into SymN × SymN -orbits.

7.2.2. Kneser neighbors. A more efficient method to enumerate self-dual
codes is the Kneser neighbor method [5] (see also [7] for an application to
codes and [10] for a survey).

Starting from one self-dual code C (e.g. C = TN,N ) one enumerates all
Aut(C)-orbits of neighbors, i.e. those equivalence classes of codes D of Type
ρ that intersect C in a maximal subcode. Continuing with the neighbors one
successively enumerates all codes up to equivalence.

7.2.3. Using projections. Denote by π1 : V N+N → V N the projection onto
the first N components and by π2 the projection onto the last N coordinates.
For a self-dual isotropic code C of Type (N,N) the kernel of π2 is the dual
of the image of π1.

There is a shortcut to classify the codes C ≤ FN+N
q of Type (N,N)

for which π1(C) = FNq . If the involution is trivial then each such code has

a generator matrix (IN |A) with AAtr = IN . Equivalence of codes translates
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into the action of SymN ×SymN on ON (Fq) := {A ∈ FN×Nq | AAtr = IN} by

A · (g, h) := g−1Ah. Representatives of the SymN -double cosets in ON (Fq)
hence yield generator matrices for representatives of the equivalence classes
of codes. If one only wants to classify codes that contain the all-ones vector
of length 2N , one needs to additionally assume that sum of the rows of A is
the all-ones vector 1 of length N , i.e. 1A = 1. As 1g = 1 for all permutation
matrices g ∈ SymN this property is invariant on the SymN -double cosets.

7.3. Doubly even binary self-dual codes

This is the most important example and has been considered in [1]. The
Type of these codes is denoted by 2II in [9, Section 2.3.2], has conductor
8, and the associated Clifford-Weil group is the complex Clifford group. The

indecomposable codes of length (N,N), i.e. of Type 2
(N,N)
II for N = 1, 2, 3, 4, 5

are T1,1 and Double(〈(1, 1, 1, 1)〉) which is called g4,4 in [1].

7.4. Doubly even Euclidean self-dual codes over F4

Doubly-even euclidean self-dual codes over fields of characteristic 2 have been
studied in [8]. Their Type qEII is discussed in [9, Theorem 2.3.2]. For q = 4
the conductor is 4. Enumerating the equivalence classes of codes in (4EII)

N,N

for N = 1, 2, 3, 4 we obtain the following indecomposable ones:

Length number indecomposables
(1,1) 1 T1,1

(2,2) 1
(3,3) 2 Double(〈(1, ω, ω2)〉)
(4,4) 5 Double(〈(1, 1, 1, 1)〉), Double(Q4), C4,4(F4)

Here Q4 has generator matrix

(
1 0 ω ω2

0 1 ω2 ω

)
and the generator matrix

of C4,4 is 
1 0 0 0 1 1 ω ω2

0 1 0 0 1 1 ω2 ω
0 0 1 0 ω2 ω 1 1
0 0 0 1 ω ω2 1 1

 .

7.5. Ternary codes that contain the all-ones vector

The Type of self-dual ternary codes that contain the all-ones vector is 3E1 , has
conductor 3, and is described in [9, Section 7.4.1]. We obtain the following
list of codes for small lengths:

Length number indecomposables
(1,1) 1 T1,1

(2,2) 1
(3,3) 2 Double(〈(1, 1, 1)〉)
(4,4) 3 〈I4|2J4 − I4〉

where the last code has generator matrix (I4|2J4 − I4) and J4 is the all-ones
matrix.



14 Gabriele Nebe and Leonie Scheeren

7.6. Quinary codes that contain the all-ones vector

We consider the analogous Type as in the previous section, where the under-
lying field is F5 and the conductor is 5. We obtain the following list for small
lengths:

Length number indecomposables
(1,1) 1 T1,1

(2,2) 1
(3,3) 2 〈I3|4J3 − I3〉
(4,4) 5 〈I4|3J4 − I4〉, Double(〈(1, 2, 3, 4)〉), C4,4(F5)

where C4,4(F5) has generator matrix
1 0 0 0 0 3 4 4
0 1 0 0 3 2 3 3
0 0 1 0 4 3 0 4
0 0 0 1 4 3 4 0

 .

8. A Schur-Weyl duality for Clifford-Weil groups

Let ρ be a finite representation of a form ring (R,Φ) with underlying left
R-module V . Then the associated Clifford-Weil group G := C(ρ) acts on
CV and by diagonal action on all tensor powers WN := CV N = ⊗NCV .
Let W ∗N := Hom(WN ,C) denote the dual space of WN . Then W ∗N is also a
CG-module, where the action is given by

f · g : w 7→ f(wg−1) for all w ∈WN , g ∈ G, f ∈W ∗N .

It is well known that the linear map

ϕ : WN ⊗W ∗N → EndC(WN ), defined by (w, f) 7→ (x 7→ f(x)w)

for w ∈WN and f ∈W ∗N = Hom(WN ,C) is an isomorphism of vector spaces.
Then ϕ is an isomorphism of CG-modules where G acts on EndC(WN ) by
conjugation. The commuting algebra EndCG(WN ) is the fixed space of the
G-action on EndC(WN ). If the Weight Enumerator Conjecture holds for ρ
then by Theorem 6.3 this fixed space of G = C(ρ) is spanned by the images
of the full weight enumerators of self-dual isotropic codes in ρ(N,N), so we
have the following theorem.

Theorem 8.1. Assume that the Weight Enumerator Conjecture holds for ρ.
Let C1, . . . , CtN be a complete list of self-dual isotropic codes in ρ(N,N). Then

(ϕ(fwe(N,N)(C1)), . . . , ϕ(fwe(N,N)(CtN )))

is a generating set of EndC(ρ)(CV N )

Let gN (ρ) ∈ N be such that any code of Type (N,N) can be generated by
gN (ρ) elements. Whenever m ≥ gN (ρ) the genus-m full weight enumerators
of codes of length (N,N) are linearly independent.
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Corollary 8.2. ([4, Theorem 4.3]) It m ≥ gN (ρ) then the set

(ϕ(fwe(N,N)
m (C1)), . . . , ϕ(fwe(N,N)

m (CtN )))

is a basis of EndCm(ρ)(C(V m)N ).

The number tN is often well understood (see Section 7.2.1) and hence
determines the dimension of the commuting algebra of the N -fold tensor rep-
resentations of the genus-m Clifford-Weil groups. Note that these dimensions
are independent of m for m ≥ gN (ρ).
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