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1. Introduction

Let L be an even unimodular lattice in Euclidean n-space (Rn, (, )), so (x, x) ∈ 2Z
for all x ∈ L and L = L# = {x ∈ Rn | (x, L) ⊆ Z}. Then the theory of modular
forms allows to upper bound the minimum

min(L) := min{(x, x) | 0 6= x ∈ L} ≤ 2 + 2b n
24
c.

Extremal lattices are those even unimodular lattices L that achieve equality. Of
particular interest are extremal even unimodular lattices L in the jump dimensions,
the multiples of 24. There are only five extremal lattices known in jump dimensions:
The Leech lattice Λ24 of dimension 24, three lattices P48p, P48q, P48n of dimension
48 and one lattice Γ72 of dimension 72 ([10], [20], [22]). These five lattices realise
the maximal known sphere packing density in these dimensions.
Up to dimension 24 one knows all even unimodular lattices, in particular the Leech
lattice is the unique extremal lattice in dimension 24. A complete classification of
all even unimodular lattices in dimension 48 seems to be impossible. The present
paper narrows down the possible automorphisms of extremal 48-dimensional lattices
L. It turns out that all primes that can occur as an order of some automorphism
already occur for one of the three known examples. These primes are 47, 23 and
all primes ≤ 13. Explicit computations allow to find all extremal lattices L with
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an automorphism σ of order m such that ϕ(m) > 24 as well as those, where σ has
order 46 and σ23 6= −1. Section 3.2 uses the classification of finite simple groups to
prove the structure of the automorphism groups of the three known 48-dimensional
extremal lattices, Section 6 deals with Γ72. Section 4 determines all possible primes
p that might occur as the order of some automorphism σ of L together with their
fixed lattice F = FixL(σ). It turns out that dim(F ) ≤ 22 for odd primes p. For p = 2
either F = 0 or a rescaled version of a 24-dimensional unimodular lattice without
roots, so F ∼=

√
2Λ24, or F ∼=

√
2O24, where O24 denotes the odd Leech lattice,

the unique odd unimodular lattice of dimension 24 with minimum 3. This allows to
conclude that the minimal polynomial of any automorphism σ ∈ Aut(L) of order
m is divisible by the m-th cyclotomic polynomial Φm of degree ϕ(m). Using ideal
lattices as introduced in [5] extensive number theoretic computations in Magma

[6] are applied to find all lattices L that have some automorphism σ ∈ Aut(L) of
order m with ϕ(m) > 24. This proves the following theorem.

Theorem 1.1. Let L be an extremal even unimodular lattice of dimension 48 and
σ ∈ Aut(L) of order m such that ϕ(m) > 24. Then one of the following six possi-
bilities occurs.

• m = 120 and L ∼= P48n

• m = 132 and L ∼= P48p

• m = 69 or m = 138 and L ∼= P48p

• m = 47 or m = 94 and L ∼= P48q

• m = 65 or m = 130 and L ∼= P48n

• m = 104 and L ∼= P48n

2. Bounds on the Hermite function

This section recalls some basic notions in the geometric theory of lattices. For more
details the reader is referred to the textbook [18]. The main purpose is to state the
table displaying the bounds on the Hermite function obtained from [8].

Let L =
⊕n

i=1 ZBi be a lattice in Euclidean space (Rn, (, )) for some basis
B := (B1, . . . , Bn) with Gram matrix G(B) := ((Bi, Bj))ni,j=1. The determinant of
L is the determinant of any of its Gram matrices, det(L) := det(G(B)). We denote
by

Min(L) := {` ∈ L | (`, `) = min(L)}.

the set of minimal vectors of L. Its cardinality is known as the kissing number,
as this is the number of spheres in the lattice sphere packing that touch one fixed
sphere. The density of this sphere packing is maximal, if γ(L) is maximal, where
the Hermite function γ on the space of similarity classes of n-dimensional lattices
assigns to L the value

γ(L) :=
min(L)

det(L)1/n
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The Hermite constant is

γn := max{γ(L) | L is an n-dimensional lattice}.

Explicit values for γn are only known for n ≤ 8 and n = 24. The best known upper
bounds on γn are given in [8]. Note that Cohn and Elkies work with the center
density δn. One gets γn = 4δ2/nn .

Table 1. Upper bounds bn for γn.

n bn n bn n bn n bn n bn
7 1.8115 13 2.6494 19 3.3975 25 4.1275 31 4.8484
8 2 14 2.7759 20 3.5201 26 4.2481 32 4.9681

9 2.1327 15 2.9015 21 3.6423 27 4.3685 33 5.0877

10 2.2637 16 3.0264 22 3.7641 28 4.4887 34 5.2072
11 2.3934 17 3.1507 23 3.8855 29 4.6087 35 5.3267
12 2.5218 18 3.2744 24 4.0067 30 4.7286 36 5.4462

The automorphism group Aut(L) := {σ ∈ O(Rn, (, )) | σ(L) = L} acts on
Min(L). Taking matrices with respect to the lattice basis B, we obtain Aut(L) ≤
GLn(Z) is a finite integral matrix group.

3. Extremal even unimodular lattices of dimension 48

3.1. Ternary codes and unimodular lattices of dimension 48

Two of the known extremal even unimodular lattices of dimension 48 are have a
canonical construction as 2-neighbors of code lattices of extremal ternary codes. Let
me recall Sloane’s construction A:

Definition 3.1. (see for instance [10, Chapter 7]) Let (e1, . . . , en) be a p-frame in
Rn, i.e. (ei, ej) = pδij. For any code C ≤ (Z/pZ)n the code lattice is Ap(C) :=
{ 1
p

∑
ciei | (c1, . . . , cn) ∈ C} where x := x+ pZ ∈ Z/pZ.

Note that Ap(C) contains the vectors ei of norm p. To increase the minimum of
the lattice one usually passes to a neighbor lattice as follows:

Definition 3.2. ([16]) Let L be an integral lattice and v ∈ L \ 2L# such that (v, v)
is a multiple of 4. Then

L(v),2 := 〈{` ∈ L | (v, `) even } ∪ {v
2
}〉Z

is called the 2-neighbor of L defined by v.

Note that the 2-neighbor is an integral lattice with the same determinant as L.
If L is unimodular, then any unimodular lattice N such that [L : N ∩ L] = 2 is
obtained as some 2-neighbor of L (see [16]).

Recall that the minimum weight of a self-dual ternary code C of length 48 cannot
exceed 15. C is called extremal, if this minimum weight is equal to 15 (see for instance
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[17]). Extremal codes always contain a vector of weight 48, so we may replace C by
some equivalent code to obtain that the all-ones vector 1 = (1, . . . , 1) ∈ C.

Theorem 3.3. [17] Let C be an extremal self-dual ternary code of length 48 con-
taining the all-ones vector. Then Λ(C) := A3(C)(v),2 is an extremal even unimod-
ular lattice, where v = 1

3 (e1 + . . .+ e48) ∈ A3(C).

The extremal ternary self-dual codes of length 48 are not completely classified
yet. One knows two equivalence classes of such codes (see [10]): the Pless code P48

and the extended quadratic residue code Q48. In fact [21] shows that these are the
only such codes that have an automorphism of prime order p ≥ 5:

Theorem 3.4. [21] Let C be an extremal self-dual ternary code of length 48 such
that |Aut(C)| is divisible by some prime p ≥ 5. Then C ∼= Q48 or C ∼= P48.
The monomial automorphisms groups are Aut(Q48) ∼= SL2(47) and Aut(P48) ∼=
(SL2(23)× C2) : 2.

The extremal lattices obtained from extremal ternary codes can be characterized
as follows:

Theorem 3.5. An extremal even unimodular lattice L of dimension 48 is of the
form L = Λ(C) for some extremal ternary code C if and only if there is some β ∈ L
with (β, β) = 12 such that N6(β) := {x ∈ Min(L) | (x, β) = 6} has cardinality 94.

Proof. It is well known that any 2-neighbor M of L has minimum ≥ 3 and that the
pairs of vectors ±v of norm 3 in M are pairwise orthogonal: This follows because
any two vectors v, w ∈M \ L satisfy that both vectors v ± w ∈M ∩ L and hence

(v ± w, v ± w) = (v, v) + (w,w)± 2(v, w) ≥ 6 or v ± w = 0.

Assume that there is such a β ∈ L. Then the neighbor M := L(β),2 contains a
3-frame

Min(M) = {±β
2
} ∪ {x− β

2
| x ∈ N6(β)}

and so M is a code lattice, M = A3(C) for some C = C⊥ ≤ F48
3 . Clearly M is an

odd unimodular lattice with even sublattice M∩L. Since min(M∩L) ≥ min(L) = 6,
the code C contains no words of weight ≤ 12, so C is extremal.
For L = Λ(C) the vector β = 2e1 ∈ L satisfies (β, β) = 12 and N6(β) = {e1 ± ej |
j = 2, . . . , 48}.

3.2. The automorphism groups of the three known lattices

In the literature one finds three extremal even unimodular lattices of dimension
48. Two of them (P48p and P48q) are constructed from the two known extremal
ternary codes of length 48 as described in [17] (see Theorem 3.3). They appear in
[10, Chapter 7, Example 9], where the authors refer to personal communications
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with J. Thompson for the structure of the automorphism group of these lattices.
Since the description there is slightly incorrect and no explicit construction of the
automorphism groups is available in the literature, the construction of the auto-
morphism groups is given in the next theorem. A third lattice (named P48n by Neil
Sloane) has been found by the author in [20], where it was proved that the normal-
izer of the subgroup SL2(13) in Aut(P48n) is (SL2(13)Y SL2(5)).22. Here Y denotes
the central product, × the direct product, : a split extension, and . an extension
that might be split or non-split. The elementary abelian group of order 2a is ab-
breviated by 2a. Using the classification of finite simple groups one may obtain the
full automorphism group of these three lattices:

Theorem 3.6. Aut(P48p) ∼= SL2(23)× S3) : 2 of order 72864 = 253211 · 23.
Aut(P48q) ∼= SL2(47) of order 103776 = 253 · 23 · 47.
Aut(P48n) ∼= (SL2(13)Y SL2(5)).22 of order 524160 = 27325 · 7 · 13.

Proof. Let L be one of the three 48-dimensional extremal even unimodular lattices
from the theorem and let G := Aut(L) be its automorphism group. Then by con-
struction G contains the corresponding group U from above as a subgroup. Explicit
matrices generating these subgroups can be obtained from the database of lattices
[23] and are used in the Magma computations below. Let q = 23, 47, 13 be the
largest prime divisor of |U |. Then U contains a normal subgroup SL2(q).
(A) We first show that U = NG(SL2(q)) is the full normalizer in G of SL2(q):
For L = P48n, q = 13 this is [20, Theorem 5.3].
So let L = P48q, q = 47. Then N := SL2(47) acts on L with endomorphism ring
Z[ 1+

√
−47

2 ]. Using the sublattice algorithm [25] in Magma one computes that L has
a unique ZN -sublattice X of index 2. Since N is perfect it fixes all lattices between
X# and X and we obtain 3 invariant unimodular lattices

X < L,L′,M < X#

with L′ even of minimum 4 and M odd with min(M) = 3. The minimal vectors of
M form a 3-frame and hence M = A3(C) for some extremal ternary self-dual code
C. With Magma we compute Aut(C) ∼= SL2(47). Since Aut(M) permutes the 48
pairs of minimal vectors of M we obtain

Aut(M) = StabC2oS48(M) = Aut(C) ∼= SL2(47).

The normalizer in G = Aut(L) of N has to act on the unique sublattice X and hence
permutes the lattices {L,L′,M}. These are pairwise non-isometric, so NG(N) sta-
bilizes all three lattices, so NG(N) = Aut(M) = N ∼= SL2(47).
Now let L = P48p. Let N := SL2(23) ≤ Aut(L). Then L has three ZN -sublattices
Xi of index 2, which are computed using the sublattice algorithm in Magma.
The group U permutes these three lattices Xi transitively, so it is enough to
show that StabNG(N)(X1) ≤ U . As before there are three unimodular lattices
X1 ≤ L,L′,M ≤ X#

1 between X1 and its dual lattice. L = P48p is even of min-
imum 6, L′ is even of minimum 4, and M is an odd lattice containing a 3-frame
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of minimal vectors. Again M = A3(C) for some extremal ternary self-dual code
C. With Magma we compute Aut(C) ∼= (SL2(23) × C2) : 2. This group is iso-
morphic to Aut(M), fixes the even sublattice X1 of M and hence is isomorphic to
StabNG(N)(X1).
(B) We now show that U (and hence also G = Aut(L)) is a primitive rational
matrix group if L = P48p or L = P48n and U = SL2(47) has a unique system of
imprimitivity whose stabiliser in Aut(P48q) is equal to U :
First assume that L = P48q. Then U = SL2(47) has a unique maximal subgroup
of index ≤ 48, this is C47 : C46 and of index 48 in U . The U -invariant 3-frame
constructed above gives rise to the corresponding monomial representation of U . So
if G = Aut(L) is imprimitive, then U ≤ G ≤ C2 o S48 = Aut(F ), where F ∼=

√
3Z48

is the lattice generated by the U -invariant 3-frame. As before this implies that
G ≤ Aut(Q48) ∼= U .
We now show that U = (SL2(23)× S3) : 2 ≤ Aut(P48p) is a primitive matrix group
by investigating the restriction of the natural representation ∆|S to all subgroups S
of index dividing 48. The restriction of ∆ to the derived subgroup SL2(23)×C3 of
U is rational irreducible, so the representation is not induced from a 24-dimensional
representation of a (normal) subgroup of index 2. The rational constituents of
∆| SL2(23) are of dimension 24 (see [9] or explicit Magma computation), so if the
representation of U is rational imprimitive, then it is induced from a subgroup of
U not containing SL2(23). The unique such subgroup of index ≤ 24 has index 24
and is the normalizer N in U of a 23-Sylow subgroup of U , N ∼= (C46 : C11×S3).2.
The restriction of of ∆ to N has no composition factor of degree 2, so finally this
shows that U is a primitive subgroup of GL48(Q).
The group SL2(13) has no maximal subgroup of index dividing 48. From this one
easily concludes that the group U = (SL2(13)Y SL2(5)).22 is a primitive rational
matrix group and so is Aut(P48n).
(C) Now assume that G = Aut(L) is a primitive subgroup of GL48(Q):
Then all abelian normal subgroups of G are cyclic. A theorem of Ph. Hall (see [15, p.
357]) classifies all p-groups whose abelian characteristic subgroups are cyclic (these
are central products of extraspecial p-groups with cyclic, dihedral, quaternion or
quasidihedral groups). The relevant 2-groups (resp. 3-groups) that have a rational
representation of dimension dividing 16 (resp. 6) do not allow a non-trivial SL2(q)
action by automorphisms (q = 13, 23, 47). Therefore we know that O2(G) = 〈−I48〉
and O3(G) = O3(U)(= C3 or 1) centralise SL2(q). If G 6= U then G has to con-
tain a quasisimple proper overgroup of SL2(q). The tables in Hiss and Malle [14]
(which use the classification of finite simple groups) exclude such overgroups inside
GL48(Q).

Remark 3.7. The rational normaliser of the group G = (SL2(13)Y SL2(5)).22 =
Aut(P48n) acts transitively on the G-invariant lattices in QP48n (see [19]). So all ZG-
lattices in this space are similar to P48n, therefore G is maximal finite in GL48(Q).
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3.3. Identifying new lattices

It is very hard, if not impossible with the present computing power, to check isom-
etry of two extremal 48-dimensional even unimodular lattices, if nothing else but
the Gram matrix is given. In this subsection I describe the computation of an ex-
plicit isometry between such lattices using a given subgroup U of order 48 of the
automorphism group.

In [13] the authors construct two extremal even unimodular lattices A14(C14,48)
and A46(C46,48) of dimension 48 as code lattices of self-dual codes of length 48.
From the construction of the codes with weighing matrices one also obtains a group
U of order 48 (the monomial automorphism group of the codes C2p,48 ≤ (Z/2pZ)48,
with monomial entries ±1).

Theorem 3.8. A14(C14,48) ∼= P48n and A46(C46,48) ∼= P48p.

Proof. Let L be one of the code lattices A14(C14,48) or A46(C46,48) and U be the
known subgroup of Aut(L) coming from the construction with codes. The group U
determines a sublattice M ≤ L as the full preimage of the fixed space FixU (L/2L)
of the action of U on L/2L. The lattice M contains 2L of index 22, it has minimum
norm 16 and kissing number 7200 and it is spanned by its minimal vectors. The
automorphism group of M has order 96.
The group U has a normal subgroup 〈σ〉 of order 3. For both lattices FixL(σ) ∼=√

3(E8 ⊥ E8) and the orthogonal lattice is a 32-dimensional lattice of determinant
316 and minimum norm 6. Its automorphism group has order 2839 for A14(C14,48)
and 28365 for A46(C46,48).
To find candidates among the three known lattices that might be isometric to L

we first find suitable elements of order 3 in the known automorphism groups. To
this aim we compute representatives of all conjugacy classes of elements in G with
Magma together with their minimal polynomial and their fixed lattice: The group
G := Aut(P48p) contains 2 conjugacy classes of elements σ of order 3 with a 16-
dimensional fixed lattice. In both cases the automorphism group of the orthogonal
lattice has order 28365. The elements σ may be distinguished by the order of the
normaliser NG(〈σ〉) with is either 288 or 144. In the second case this normalizer
contains a unique subgroup Up with σ ∈ Up such that Up is isomorphic (as an
abstract group) to U . We take this group Up compute the lattice Mp as full preimage
of the fixed space FixUp(P48p/2P48p). We compute an isometry between this lattice
Mp and the sublattice M of A46(C46,48). This isometry turns out to map P48p onto
the lattice A46(C46,48).
Also the group G := Aut(P48n) contains 2 conjugacy classes of elements σ of order 3
with a 16-dimensional fixed lattice. Here the automorphism groups of the orthogonal
lattices have order 2839 respectively 2153952. The normaliser NG(〈σ〉) of the first
element σ contains two subgroups Un with σ ∈ Un such that Un is isomorphic
(as an abstract group) to U . Only for one of these groups Un the lattice Mn (the
full preimage of the fixed space FixUn

(P48n/2P48n)) is isometric to the lattice M
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constructed from A14(C14,48). Again the isometry turns out to map P48n onto the
lattice A14(C14,48).

4. Automorphisms of unimodular lattices

Let σ ∈ GLn(Q) be some element of prime order p. Let K := ker(σ − 1) and
I := im(σ − 1). Then K is the fixed space of σ and the action of σ on I gives
rise to a vector space structure of I over the p-th cyclotomic number field Q[ζp]. In
particular n = d+ z(p− 1), where d := dimQ(K) and z = dimQ[ζp](I).

If L is some σ-invariant Z-lattice, then L contains a sublattice M with

L ≥M := (L ∩K)⊕ (L ∩ I) = LK(σ)⊕ LI(σ) ≥ pL

of finite index [L : M ] = ps where s ≤ min(d, z). The fixed lattice LK(σ) is some-
times also denoted by Fix(σ) = FixL(σ).

Definition 4.1. The tuple p−(z, d)−s is called the type of the element σ ∈ GL(L).

Remark 4.2. The type is an invariant of the Zp[σ]-module ZpL. The group ring
Zp[σ] has three indecomposable lattices, the trivial module Zp, the regular module
Zp[σ] and the irreducible lattice Zp[ζp] of degree p− 1 (see for instance [26]). If σ is
of type p− (z, d)− s then ZpL ∼= Zp[σ]s ⊕ Zd−sp ⊕ Zp[ζp]z−s.

We now assume that we fix some σ-invariant positive definite symmetric bilinear
form F . Since there are no non-zero σ-invariant homomorphisms between K and I,
the decomposition above is orthogonal with respect to F , Qn = K ⊥ I.

Lemma 4.3. Let L = L# be a unimodular lattice and σ ∈ Aut(L) be of type
p− (z, d)− s. Then

a) 0 ≤ s ≤ min(z, d).
b) If s = 0 then L is the orthogonal sum L = LK(σ) ⊥ LI(σ).
c) LK(σ)#/LK(σ) ∼= LI(σ)#/LI(σ) ∼= (Z/pZ)s as abelian groups.
d) z ≡ s (mod 2).

Proof. b) is trivial and c) is well known, see for instance [18, Prop. 1.9.8].
To see the upper bound in a) put LK := LK(σ) and LI := LI(σ). Let πK :=
1
p (1 +σ+ . . .+σp−1) denote the orthogonal projection onto K and πI = 1−πK the
one onto I. Then πI and πK commute with σ, σπK = πK and hence (1 − σ)πI =
(1− σ)(1− πK) = 1− σ. The lattice LI = I ∩ L contains (1− σ)L. We show that
(1 − σ) annihilates the quotient L#

I /LI . Since L = L# the dual lattice of LI is
L#
I = πI(L). Therefore

(1− σ)L#
I = (1− σ)πI(L) = (1− σ)L ⊆ LI .

Therefore L#
I /LI is a quotient of L#

I /(1− σ)L#
I
∼= Fzp, so s ≤ z. Similarly

L#
K = πK(L) ⊇ LK = πK(L) ∩ L ⊇ pπK(L)
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and hence s ≤ d.
To obtain d) we consider the image I = im(σ−1). This is of dimension z over Q[ζp]
and LI := LI(σ) is a Z[ζp]-lattice in I. Since F is σ-invariant, there is some positive
definite Hermitian form h : I × I → Q[ζp] so that F (x, y) = traceQ[ζp]/Q(h(x, y))
for all x, y ∈ I. Choose some orthogonal basis (b1, . . . , bz), so that h(bi, bj) = aiδij
with ai ∈ Z[ζp + ζ−1

p ] and put M := 〈b1, . . . , bz〉Z[ζp] the Z[ζp]-lattice spanned by
this basis. Let M be M viewed as a Z-lattice together with the positive definite
symmetric bilinear form F . Then the Z-dual lattice M# with respect to F is

M# = 〈 1
a1(1− ζp)p−2

b1, . . . ,
1

az(1− ζp)p−2
bz〉Z[ζp]

and in particular det(M,F ) = |M#/M | = pz(p−2)
∏z
i=1NQ[ζp]/Q(ai). Since the

norm NQ[ζp]/Q(ai) = NQ[ζp+ζ−1
p ]/Q(ai)2 is a rational square, the square class of the

determinant of F is pz(Q∗)2. In particular det(LI)pz = ps+z is a square so s ≡ z

(mod 2).

Note that for odd primes p there is at most one genus of even p-elementary
lattices of given dimension and determinant ([10, Theorem 13, p. 386]). So the type
of σ uniquely determines the genus of LK(σ) and LI(σ).

4.1. Prime order automorphisms of 48-dimensional extremal

lattices

In this section, L is always an extremal even unimodular lattice of dimension 48.
We list the possible types of automorphisms σ ∈ Aut(L) of prime order.

Theorem 4.4. Let L be an extremal even unimodular lattice of dimension 48.
Assume that σ ∈ Aut(L) is of prime order p ≥ 11. Then σ is of type

47− (1, 2)− 1, 23− (2, 4)− 2, 13− (4, 0)− 0, 11− (4, 8)− 4

and the fixed lattice LK(σ) is the unique extremal p-modular lattice of dimension
2, 4, 0, and 8. Its Gram matrix is Fp with

F47 =
(

6 1
1 8

)
, F23 =


6 3 2 2
3 6 2 0
2 2 6 3
2 0 3 6

 , F11 =



6 -2 1 3 2 0 3 -1
-2 6 3 1 -2 1 1 0
1 3 6 3 0 3 3 2
3 1 3 6 2 3 3 2
2 -2 0 2 6 3 3 3
0 1 3 3 3 6 3 3
3 1 3 3 3 3 6 2
-1 0 2 2 3 3 2 6


.

All these automorphisms occur for one of the three known extremal even unimodular
lattices.



September 10, 2014 13:30 WSPC/INSTRUCTION FILE DIM48final

10 Gabriele Nebe

Proof. Clearly ϕ(p) = p − 1 ≤ 48 implies that the prime p is at most 47. We
abbreviate LK := LK(σ), LI := LI(σ) and denote the type of σ by p − (z, d) − s.
Since L is not an orthogonal sum we have s > 0 if d 6= 0.
p = 47: Then d = 2 and z = 1. The fixed lattice LK is a 2-dimensional even lattice
of minimum ≥ 6, determinant 47. This immediately implies that LK has Gram
matrix F47.
43 ≥ p ≥ 29: Since p − 1 > 24 we obtain z = 1 in all cases, d = 48 − (p − 1), and
LK is a d-dimensional lattice of determinant p (see Lemma 4.3 d)). In all cases
(p = 43, 41, 37, 31, and 29) the density of LK validates the bounds from [8] given in
Section 2.
p = 23: Then the type of σ is either 23 − (2, 4) − 2 or 23 − (1, 26) − 1. The latter
case easily gives a contradiction to the bounds in Section 2. In the other case,
dim(LK) = 4, min(LK) ≥ 6, and det(LK) = 232, so LK is in the genus of the even
23-modular lattices. By [27] this genus contains a unique lattice of minimum ≥ 6.
This lattice has Gram matrix F23 as claimed.
p = 19: Then the type of σ is either 19 − (2, 12) − 2 and LK is a 12-dimensional
lattice of determinant 192 and minimum 6 or σ has type 19− (1, 30)− 1 and LI is
an 18-dimensional lattice of determinant dividing 19 and minimum 6. Both cases
validate the bound in [8] given in Section 2.
p = 17: Since the kissing number of L is 2932537 · 13 which is not a multiple of 17,
the automorphism σ can not act fixed point freely. This also follows from Lemma
4.3. So the type of σ is either 17 − (2, 16) − 2 or 17 − (1, 32) − 1. In the first case
LK and in the second case LI is a 16-dimensional lattice of determinant dividing
172 and minimum ≥ 6 contradicting the bound in [8] given in Section 2.
p = 13: Then the type of σ is either 13 − (4, 0) − 0 (which occurs as an element
of Aut(P48n)), or 13 − (3, 12) − s with s ≤ 3 and LK is a 12-dimensional lattice
of determinant dividing 133 and minimum 6, or 13 − (2, 24) − 2 and LK is a 24-
dimensional lattice of determinant 132 and minimum 6, or 13− (1, 36)−1 and LI is
a 12-dimensional lattice of determinant 13 and minimum 6. The latter three cases
contradict the bounds in [8] given in Section 2.
p = 11: Then the type of σ is either 11−(4, 8)−s with s ≤ 4, or 11−(3, 18)−s with
s ≤ 3 and LK is a 18-dimensional lattice of determinant dividing 113 and minimum
6, or 11 − (2, 28) − 2 and LK is a 22-dimensional lattice of determinant 112 and
minimum 6, or 11− (1, 38)− 1 and LI is a 10-dimensional lattice of determinant 11
and minimum 6. The latter three cases contradict the bounds in [8] given in Section
2. In the first case, these bounds imply that s = 4. Hence LK is in the genus of
11-modular 8-dimensional lattices. By [27] this genus contains a unique lattice of
minimum ≥ 6. This lattice has Gram matrix F11 as claimed.

Proposition 4.5. Let σ ∈ Aut(L) be of order 7. Then either the type of σ is
7− (8, 0)− 0 or the type is 7− (7, 6)− 5 with fixed lattice LK(σ) ∼=

√
7A#

6 .

Proof. Clearly the type of σ is 7 − (8 − a, 6a) − s with s ≤ 8 − a. For a ≥ 3 one
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obtains a contradiction since the density of one of the lattices LK := LK(σ) or
LI := LI(σ) exceeds the bounds in [8]. For a = 2 these bounds allow the possibility
that det(LK) = 76. Then LK is a 12-dimensional even 7-elementary lattice in the
genus of the 7-modular lattices. The complete enumeration of this genus in [27] has
proved that all such lattices have minimum ≤ 4. In the case a = 1 the lattice LK
is of dimension 6, even, 7-elementary. One concludes that s = 5 and LK ∼=

√
7A#

6

because A6 is the only even 6-dimensional lattice of determinant 7.

Using the bounds in [8] and Lemma 4.3 we get the following possible types for
automorphisms of order 5.

Remark 4.6. Let σ ∈ Aut(L) be of order 5. Then the type of σ is either 5 −
(12, 0)−0, 5− (10, 8)−8, 5− (10, 8)−6, 5− (9, 12)−9, 5− (9, 12)−7, 5− (8, 16)−8,
or 5− (7, 20)− 7.

Excluding some cases in this remark we obtain the following proposition:

Proposition 4.7. Let σ ∈ Aut(L) be of order 5. Then the type of σ is either
5− (12, 0)− 0, 5− (10, 8)− 8 with LK(σ) ∼=

√
5E8 or 5− (8, 16)− 8 with LK(σ) ∼=

[2.Alt10]16.

Proof. For the type 5− (10, 8)−8, the fixed lattice is
√

5U for some 8-dimensional
even unimodular lattice U , so LK(σ) ∼=

√
5E8. A Magma computation shows that

no overlattice of index 5 of this lattice has minimum ≥ 6 (Aut(E8) has 8 orbits on
the one-dimensional subspaces of E8/5E8), which excludes type 5− (10, 8)− 6.
For the type 5− (8, 16)− 8, the fixed lattice is in the genus of the even 5-modular
16-dimensional lattices. By [4, Theorem 8.1] this genus contains a unique lattice of
minimum 6, denoted by [2.Alt10]16 in [24].
To exclude the types 5 − (9, 12) − a for a = 9, 7, it is enough to enumerate the
genus of

√
5(A4 ⊥ A4 ⊥ A4)# (determinant 59, dimension 12) and note that all 15

isometry classes of lattices in this genus have minimum ≤ 4.
In the last case 5 − (7, 20) − 7 the lattice LI(σ) is the dual of some unimodular
Hermitian Z[ζ5]-lattice of dimension 7. A complete enumeration of the genus shows
that the class number is 20 and all lattices have minimum ≤ 4.

Proposition 4.8. Let σ ∈ Aut(L) be of order 3. Then the type of σ is either
3− (24, 0)− 0, 3− (20, 8)− 8 with LK(σ) ∼=

√
3E8, 3− (18, 12)− 12 with LK(σ) ∼=√

3D+
12, 3 − (16, 16) − 16 with LK(σ) ∼=

√
3(E8 ⊥ E8) or LK(σ) ∼=

√
3D+

16, type
3− (15, 18)− 15 (two possibilities for LI , LK is unique), type 3− (14, 20)− 14 (LI
unique), or type 3− (13, 22)− 13 (LI unique).

Proof. Put LK := LK(σ), LI := LI(σ). Most of the possible types are excluded
from the bounds in [8] using Lemma 4.3. So I only comment on the cases, where
these bounds do allow lattices of minimum 6. These are
3− (19, 10)− 9: Then LK is in the genus of

√
3E8 ⊥ A2. This genus contains only
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√
3E8 ⊥ A2, so min(LK) = 2 < 6 is a contradiction.

3− (18, 12)− 10: Then the lattice LK is an overlattice of index 3 of
√

3D+
12. One

computes that the automorphism group of D+
12 has 13 orbits on these lattices, none

of them has minimum 6.
3− (17, 14)− 13: Then the lattice LK is in the genus of

√
3(E8 ⊥ E#

6 ). This genus
contains 2 isometry classes, both lattices have minimum 4. This also excludes the
type 3− (17, 14)− 11, since then LK contains one of the latter two lattices.
To exclude the cases 3− (16, 16)− s for s = 14, 12, 10 we need to compute overlat-
tices of index 3 of the rescaled unimodular lattices

√
3(E8 ⊥ E8) and

√
3D+

16. The
automorphism group of the first lattice has 14 orbits, the other one 17 orbits on the
overlattices of index 3, none of the lattices has minimum 6.
types: 3− (15, 18)−a, a = 15, 13, 11, 3− (14, 20)−a, a = 14, 12, 10, 3− (13, 22)−a,
a = 13, 11, 3− (12, 24)− a, a = 12, 10, 3− (11, 26)− 11, and 3− (10, 28)− 10:
In all cases the lattice LI is or contains an Hermitian unimodular lattice of dimen-
sion z = 10, . . . , 15. These lattices have been classified by Feit, Abdukhalikov, and
Scharlau [11], [1], [2]. For lattices of minimum 6 one obtains one lattice, L13, of
dimension 2z = 26, one lattice, L14, of dimension 2z = 28, and two such lattices,
L15, M15, of dimension 2z = 30.
This excludes the cases z = 10, 11, 12.
The group Aut(L13) has 2 orbits on the set of integral overlattices of index 3 of
L13, one has minimum 2 and the other minimum 4. So LI = L13 and only the type
3− (13, 22)− 13 is possible here.
The group Aut(L14) has 5 orbits on the set of integral overlattices of index 3 of
L14, one with minimum 2, the other 4 with minimum 4. So LI = L14 and only the
type 3− (14, 22)− 14 is possible here.
The group Aut(L15) ∼= ±3.U4(3).2 has 13 orbits on the set of integral overlattices
of index 3 of L15, again none of these overlattices has minimum ≥ 6.
The group Aut(M15) ∼= ±(31+2

+ ×31+2
+ ).SL2(3).2 has 174 orbits on the set of integral

overlattices of index 3 of M15, again none of these overlattices has minimum ≥ 6.

Lemma 4.9. Let M be an even lattice such that M#/M has exponent 2. Then
M contains a sublattice isometric to

√
2U where U = U# is an (even or odd)

unimodular lattice.

Proof. Since this is a statement about 2-adic lattices, we pass to M2 := Z2 ⊗M .
This lattice has a 2-adic Jordan decomposition M2 = fII ⊕

√
2f where fII is

even and unimodular of dimension, say, 2m, and f is unimodular. If m = 0, then
M ∼=

√
2U for some unimodular U and we are done. So assume m ≥ 1. Then fII

contains a vector v such that (v, v) ∈ 2Z∗2. Therefore fII contains the sublattice
v ⊥ v⊥ of index 2, and v ⊥ v⊥ ⊥

√
2f has a Jordan decomposition gII ⊕

√
2g

with dim(g) = dim(f) + 2 and dim(gII) = 2(m − 1). Since gII is again even and
unimodular, we may proceed by induction.
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Note that the possible genera of such lattices are given in [10, Table 15.5, p.
388] and one can easily find lattices representing these genera and also give a case
by case proof of the lemma.

Theorem 4.10. Let −1 6= σ ∈ Aut(L) be of order 2. Then σ is of type 2−(24, 24)−
24 and

FixL(σ) ⊥ FixL(−σ) ∼=
√

2(Λ24 ⊥ Λ24) or
√

2(O24 ⊥ O24).

Both cases occur.

Proof. Both lattices LK := LK(σ) and LI := LK(−σ) satisfy that

L#
K/LK

∼= L#
I /LI has exponent 2,min(LK) ≥ 6,min(LI) ≥ 6, LI and LK even.

By Lemma 4.9 all such lattices contain some lattice
√

2U with U = U#. Since
there is no unimodular lattice U of dimension n ≤ 22 or of dimension 25 (see [10,
Table 16.7, p. 416-417] and [7]) with min(U) ≥ 3 this implies that dim(LK) = 24
and that LK is an overlattice of either

√
2Λ24 or

√
2O24 where Λ24 and O24 denote

the Leech lattice respectively the odd Leech lattice of dimension 24 (see [10, Table
16.1, p. 407] and [10, Table 17.1, p. 424-426]). All non-zero classes of 1√

2
Λ24/

√
2Λ24

are represented by vectors of norm 2,3,4, (see e.g. [10, Chapter 10, Theorem 28])
so
√

2Λ24 has no overlattice of index 2 with minimum ≥ 6. The automorphism
group of the odd Leech lattice has 16 orbits on the 1-dimensional subspaces of
1√
2
O24/

√
2O24. The minima of the corresponding overlattices are

3
2
, 2 (2 lattices),

5
2
, 3 (2 lattices),

7
2

(2 lattices), 4 (5 lattices),
9
2

(2 lattices), 5.

In particular no proper overlattice of index 2 has minimum ≥ 6.
The case FixL(σ) ⊥ FixL(−σ) ∼=

√
2(O24 ⊥ Λ24) cannot occur, since the quadratic

spaces 1√
2
O24/

√
2O24 and 1√

2
Λ24/

√
2Λ24 are not isometric.

From the previous discussion we found that the maximal dimension of the fixed
lattice of an automorphism of L of odd prime order is ≤ 22. The nontrivial auto-
morphism of order 2 have fixed lattices of dimension 24. From this fact we obtain
the following corollary which is essentially for the computational approach in the
next section.

Corollary 4.11. Let L be an extremal even unimodular lattice of dimension 48
and σ ∈ Aut(L) of order m. Then the m-th cyclotomic polynomial Φm divides the
minimal polynomial of σ.

Proof. Assume that Φm does not divide the minimal polynomial of σ. Write m =∏s
i=1 p

ni
i with pairwise distinct primes pi and ni ∈ N. If Φm does not divide µσ,

then ΦQs
i=1 pi

does not divide the minimal polynomial of σ
Qs

i=1 p
ni−1
i so we may

restrict to automorphisms σ of square free order m :=
∏s
i=1 pi.
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Table 2. The possible types of automorphisms of prime order p.

p dimLK(σ) det(LK(σ)) LK(σ) example

47 2 47 unique P48q

23 4 232 unique P48q , P48p

13 0 {0} P48n

11 8 114 unique P48p

7 0 {0} P48n

7 6 75
√

7A#
6 not known

5 0 {0} P48n

5 8 58
√

5E8 not known

5 16 58 [2.Alt10]16 not known

3 0 {0} P48p, P48n

3 8 38
√

3E8 not known

3 12 312
√

3D+
12 not known

3 16 316
√

3(E8 ⊥ E8) P48p, P48q , P48n

3 16 316
√

3D+
16 not known

3 18 315 unique not known
3 20 314 LI(σ) unique not known

3 22 313 LI(σ) unique not known

2 0 {0} σ = −1

2 24 224
√

2Λ24 P48n

2 24 224
√

2O24 P48n, P48p

We proceed by induction on the number of prime divisors s and assume that s is
minimal, i.e. for all i the minimal polynomial of σpi is a multiple of Φm/pi

.
If s = 1, there is nothing to show.
If s = 2, then Φp1Φp2Φ1, in particular Fix(σp1) + Fix(σp2) generates R48. By the
results in this section the maximal dimension of a fixed space of any element in
Aut(L) (of prime order) is 24, and for all elements of odd prime order the dimension
of the fixed space is at most 22. So dim(Fix(σp1) + Fix(σp2)) ≤ 46, a contradiction.
So assume that s ≥ 3. Write σ = σ1 . . . σs so that σi has order pi. Clearly for
all i the restriction γi of

∏
j 6=i σj to LI(σi) has a minimal polynomial that is not

divisible by ΦQ
j 6=i pj

. By the minimality of s the order of γi is
∏
j 6=i pj . As neither the

Leech lattice Λ24 nor the odd Leech lattice O24 admit such an automorphism (of odd
order) this shows that m is odd. As the possible fixed lattices of the elements of order
q = 23, 11, 7 do not admit an automorphism of order p 6= q with p ≥ 7, only one of
these primes can occur in {p1, . . . , ps} which shows that s = 3, {p1, p2, p3} = {3, 5, q}
and Φ5q of degree 4(q−1) ≥ 24 divides µσ. But then the fixed lattice of the element
σ5q (which has order 3) has dimension ≥ 24, which is a contradiction.

Corollary 4.12. Let L be an extremal even unimodular lattice of dimension 48.
Then any element σ of order 25 in Aut(L) acts with irreducible minimal polynomial
and Aut(L) contains no elements of order 26, 253, 245, or 2311.

Proof. First assume that σ ∈ Aut(L) has order 25. Since ϕ(25) = 16 and also
dim(L) = 48 is a multiple of 16, also the dimension of the fixed lattice FixL(σ24

)
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is a multiple of 16. By Theorem 4.10 this is only possible, if FixL(σ24
) = {0} so

σ24
= −1.

Now assume that σ ∈ Aut(L) has order 26. Then σ2 acts with irreducible minimal
polynomial, contradicting the fact that ϕ(26) = 32 does not divide dim(L) = 48.
Now let |〈σ〉| = 253. Then σ3 acts with an irreducible minimal polynomial on L, so
the type of σ25

is 3− (z, d)−s with z and d both divisible by 16. By Proposition 4.8
this yields that this type is 3− (16, 16)− 16 and FixL(σ25

) is either
√

3(E8 ⊥ E8)
or
√

3D+
16. With Magma we check that both lattices admit no automorphism of

order 32.
Now let |〈σ〉| = 245 and put τ := σ235. Then τ is an element of order 2 in Aut(L).
If τ 6= −1 then by Theorem 4.10 both lattices FixL(τ) and FixL(−τ) are either
similar to Λ24 or to O24. By Proposition 4.7 one sees that σ acts as an element of
order 80 on FixL(−τ). Neither Aut(Λ24) nor Aut(O24) contain elements of order
80.
Therefore τ = −1, so σ5 acts with irreducible minimal polynomial. As above this
implies that the type of σ24

is 5 − (z, d) − s with z and d both divisible by 8. By
Proposition 4.7 this implies that FixL(σ24

) = LK ∼= [2.Alt10]16. With Magma one
checks that Aut(LK) ∼= 2.Alt10 does not contain an element of order 16.
Finally let σ be of order 2311, LK := LK(σ8) and LI := LI(σ8). Since Aut(LK)
does not contain an element of order 8, the element σ acts with an irreducible
minimal polynomial on LI (which is hence an ideal lattice in the 88-th cyclotomic
number field). But then LK = LK(σ44) contradicting Theorem 4.10 (and also the
fact that LK has determinant 114).

5. Lattices with a given automorphism

This section describes some explicit Magma computations enumerating all extremal
even unimodular lattices that admit a certain automorphism. In particular we clas-
sify all extremal even unimodular lattices L of dimension 48 that admit an auto-
morphism σ of order m with ϕ(m) > 24.

5.1. Certain automorphisms of order 46

Theorem 5.1. Let L be an extremal even unimodular lattice of dimension 48 such
that Aut(L) contains an element σ of order 46 such that σ23 6= −1. Then L ∼= P48p.

Proof. Let LK := LK(σ23) and LI := LK(−σ23). From Theorem 4.10 one con-
cludes that LK ∼= LI ∼=

√
2Λ24 or LK ∼= LI ∼=

√
2O24. The automorphism group of

the Leech lattice Aut(Λ24) = 2.Co1 and the odd Leech lattice Aut(O24) ∼= 212.M24

both contain two conjugacy classes of elements of order 23 represented by g and
g−1, say. By Theorem 4.4 the element σ2 acts on LK ⊥ LI as an automorphism
of type 23 − (2, 4) − 2. So the conjugacy classes of such subgroups 〈σ2〉 of order
23 in Aut(LK ⊥ LI) are represented by 〈(g, g)〉 and 〈(g, g−1)〉. With Magma we
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compute the 〈σ2〉-invariant unimodular overlattices L of LK ⊥ LI of minimum 6
for all 4 cases. Note that 1

2 (LK ⊥ LI)/(LK ⊥ LI) is a semisimple F2〈σ2〉-module
isomorphic to S4 ⊕ V 2

1 ⊕ V 2
2 where S ∼= F2 and V1, V2

∼= HomF2(V1,F2) are the
two non-isomorphic simple 11-dimensional F2〈σ2〉-modules. Then L/(LK ⊥ LI) ∼=
S2⊕V1⊕V2 can be reached in 2 steps: First we compute the unique lattice Y of mini-
mum 6 with Y/(LK ⊥ LI) ∼= S2, by going through all 35 two-dimensional subspaces
of S4 ∼= F4

2. We then go through the (211−1)/23 + 2 = 91 orbits of one-dimensional
subspaces of V1 ⊥ V1 under the action of 〈(1, g)〉 ≤ CAut(LK⊥LI)(σ2) to obtain can-
didates for the lattices Z of minimum 6 such that Z/Y ∼= V1. Then Z#/Z ∼= V1⊕V2

and there is a unique unimodular overlattice W of Z with W/Z ∼= V2. Only for the
case LK ∼=

√
2O24 and 〈σ2〉 ∼= 〈(g, g−1)〉 there is such a lattice W with min(W ) = 6.

We check that W ∼= P48p by computing a vector β ∈ W fixed by σ2 and of norm
(β, β) = 12 such that the 2-neighbor W (β),2 contains a 3-frame. The corresponding
extremal ternary code is easily checked to be isometric to the Pless code P48.

5.2. Ideal lattices

This section classifies all 48-dimensional extremal even unimodular lattices L that
have an automorphism σ of order m such that ϕ(m) = 48. By Corollary 4.11 the
minimal polynomial of σ is the m-th cyclotomic polynomial and hence L is an ideal
lattice in the m-th cyclotomic number field F = Q[ζm].

Remark 5.2. (see [5]) Let σ ∈ Aut(L) be an automorphism of the lattice L with
characteristic polynomial Φm, the m-th cyclotomic polynomial. Then the action
of σ on QL turns the vector space QL into a one-dimensional vector space over
the m-th cyclotomic number field F = Q[ζm] which we identify with F . Then the
lattice L is a Z[ζm]-submodule, hence isomorphic to a fractional ideal J in F . The
symmetric positive definite bilinear form B : L × L → Q is ζm-invariant, since
B(xσ, yσ) = B(x, y) for all x, y ∈ L. It hence corresponds to some trace form on
the ideal J ,

B(x, y) = traceF/Q(αxy) = bα(x, y), for all x, y ∈ J

where is the complex conjugation on F , the involution with fixed field F+ :=
Q[ζm + ζ+

m], and α ∈ F+ is totally positive, i.e. ι(α) > 0 for all embeddings ι :
F+ → R. Let

∆ := {x ∈ F | traceF/Q(xy) ∈ Z for all y ∈ Z[ζm]}

denote the inverse different of the ring of integers ZF = Z[ζm] of F . Then the dual
lattice of (J, bα) is

(J, bα)# = (J
−1

∆α−1, bα).

So (J, bα) is unimodular, if and only if (JJ)−1∆α−1 = ZF . For all fields F = Q[ζm]
considered below it turns out that that there is some totally positive α0 ∈ F+
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such that ∆α−1
0 = ZF , so (ZF , bα0) is unimodular. Then the isometry classes of

unimodular (positive definite) ideal lattices are represented by

(J, bαJuα0)

where [J ] runs through all ideal classes in F such that JJ = αJZF is generated by
some totally positive element αJ ∈ F+ and

[u] ∈ {u ∈ Z∗F+ | u totally positive }/{vv | v ∈ Z∗F }.

Definition 5.3. Let F = Q[ζm] with maximal real subfield F+ := Q[ζm + ζ−1
m ]. Let

Cl(F ) denote the ideal class group of F and Cl+(F+) the ray class group of F+,
where two ideals I, J are equal in Cl+(F+) if there is some totally positive α ∈ F+

with I = αJ . Since xx is totally positive for any 0 6= x ∈ F , the norm induces a
group homomorphism

N : Cl(F )→ Cl+(F+), [J ] 7→ [JJ ∩ F+].

The positive class group Cl+(F ) is the kernel of this homomorphism and
h+(F ) := |Cl+(F )|.

Remark 5.4. In the appendix of [29] lists all m 6≡ 2 (mod 4) such that ϕ(m) = 48
as well as the class numbers of F . These coincide with the results of a computation
with Magma which also shows that the class number of F+ is 1 in all cases. In
particular the positive class group Cl+(F ) contains Cl(F )2. However the compu-
tation of the unit group Z∗F+ is too involved to be performed automatically with
Magma. Instead we compute a system S of independent units in Z∗F+ and a system
of representatives U of all totally positive products of elements in S modulo squares.
To show that U is a system of representatives of totally positive units Z∗F+ modulo
squares we check that none of the elements in U has a square root in F+.
I thank Claus Fieker for helping me with the Magma calculations.

Table 3. The class group and the positive class group of Q[ζm].

m 65 104 105 112 140 144 156 168 180

hF 2 · 2 · 4 · 4 3 · 117 13 3 · 156 39 13 · 39 156 84 5 · 15

h+
F 2 · 2 3 · 117 13 6 · 39 39 13 · 39 78 42 5 · 15

Theorem 5.5. Let L be an extremal even unimodular lattice such that Aut(L)
contains some element σ of order m 6≡ 2 (mod 4) with ϕ(m) = 48. Then m = 65
or m = 104 and L ∼= P48n.

Proof. We briefly describe the Magma computations that led to this result. They
are similar for all cases. In all cases there is some totally positive α ∈ F+ such
that (ZF , bα) is unimodular. Let I1, . . . , Ik be ideals of ZF such that their classes
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generate the positive class group of F , so that [Ij ] has order aj with a1 · · · ak = h+
F .

Choose totally positive α1, . . . , αk ∈ F+ such that N(Ij) = (αj). Then the isometry
classes of unimodular ideal lattices are all represented by some ideal lattice of the
form

(Ii11 · · · I
ik
k , buαα−i1

1 ···α−ik
k

) where u ∈ U and 0 ≤ il ≤ al − 1 for l = 1, . . . k

where U is computed as described in Remark 5.4.
m=65: Here |U | = 32, Cl+(F ) = Cl(F )2 = 〈[I1], [I2]〉 ∼= C2 × C2, α =
1
65α5aα5bα5cα13, so there are 4 · 32 ideal lattices to be considered. Only two of
them are extremal, both are principal ideal lattices. To obtain an isometry with the
lattice P48n we compute a lattice M such that M/13L is the (4-dimensional) fixed
space of the action of σ5 on L/13L. The dual D of M (rescaled to be integral) is a
lattice of determinant 138, minimum 6 and kissing number 6240 and automorphism
group of order 263265. The automorphism group of P48n contains a unique conju-
gacy class of elements of order 65. We compute the corresponding sublattice D0 of
P48n and an isometry between D0 and D. For both ideal lattices the isometry maps
the ideal lattice to P48n.
m=104: Now |U | = 2, Cl+(F ) = Cl(F ) = 〈[I1], [I2]〉 ∼= C3 × C117, α = 1

52α13, so
there are 2 · 3 · 117 ideal lattices to be considered. Only four of them are extremal,
the underlying ideal is a suitable ideal of order 3 and its inverse and all u ∈ U . To
obtain an isometry with the lattice P48n we compute a lattice M such that M/13L
is the (4-dimensional) fixed space of the action of σ8 on L/13L. As in the case
m = 65 the dual D of M (rescaled to be integral) is isometric to the corresponding
sublattice D0 of P48n and an isometry between D0 and D maps the ideal lattice L
to P48n in all four cases.
m=105: Again |U | = 2, Cl+(F ) = Cl(F ) = 〈[I1]〉 ∼= C13, where I1 is some prime
ideal dividing 29. α = 1

105α3α5aα5bα7, so there are 2 · 13 ideal lattices to be consid-
ered. In all these lattices reduction algorithms find elements of norm 4.
m=112: Then |U | = 4, Cl+(F ) = Cl(F )2 = 〈[I1], [I2]〉 ∼= C6 × C39, where I1 is
some prime ideal dividing 7 and I2 an ideal dividing 113. α = 1

56α7aα7b, so there
are 4 · 6 · 39 ideal lattices to be considered. In all these lattices reduction algorithms
find elements of norm 4.
m=140: Here |U | = 2, Cl+(F ) = Cl(F ) = 〈[I1]〉 ∼= C39. α = 1

70α5α7, so there are
2 · 39 ideal lattices to be considered. In all these lattices reduction algorithms find
elements of norm 4.
m=144: Again |U | = 2, Cl+(F ) = Cl(F )2 = 〈[I1], [I2]〉 ∼= C13 × C39, α = 1

72α
3
3,

so there are 2 · 13 · 39 ideal lattices to be considered. In all these lattices reduction
algorithms find elements of norm 4.
m=156: Now |U | = 4, Cl+(F ) = Cl(F )2 = 〈[I1]2〉 ∼= C78, α = 1

78α3aα3bα13aα13b,
so there are 4 · 78 ideal lattices to be considered. In all these lattices reduction
algorithms find elements of norm 4.
m=168: Again |U | = 4, Cl+(F ) = Cl(F )2 = 〈[I1]2〉 ∼= C42, α = 1

84α3aα3bα7aα7b,
so there are 4 · 42 ideal lattices to be considered. In all these lattices reduction
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algorithms find elements of norm 4.
m=180: Now |U | = 2, Cl+(F ) = Cl(F ) = 〈[I1], [I2]〉 ∼= C5 × C15. α = 1

90α
3
3α5,

so there are 2 · 5 · 15 ideal lattices to be considered. In all these lattices reduction
algorithms find elements of norm 4.

5.3. Subideal lattices

This section classifies all extremal even unimodular lattice L that have an automor-
phism σ of order m such that 24 < ϕ(m) < 48. By Corollary 4.11 we know that
Φm divides µσ. We have a unique decomposition

QL = V ⊕W into σ invariant subspaces

so that σ acts as a primitive m-th root of unity on V . Since ϕ(m) > 24, the action of
σ turns V into a 1-dimensional vector space over F := Q[ζm], the m-th cyclotomic
number field, and the lattice M := L ∩ V = (J, bα) is an ideal lattice in F . The
lattice M is integral, if JJα ⊆ ∆ and then

M#/M ∼= ∆(JJα)−1/Z[ζm] as a Z[ζm]−module.

For our computations it turns out that M = LI(σd) for some element σd of prime
order p with pd = m, so we know det(M) (more precisely the abelian group M#/M)
from Section 4. We also know the fixed latticeK = FixL(σd) and the possible actions
of σ on K, by computing the conjugacy classes of automorphisms of K of order d.
The even unimodular lattice L is a subdirect product of M# and K# with kernel
M ⊥ K. Therefore the Z[ζm]-module M#/M is isomorphic to K#/K.

Table 4. The values m 6≡ 2 (mod 4) such that 48 > ϕ(m) > 24.

m 29 31 37 41 43 47 49 51 55 57 63 64
ϕ(m) 28 30 36 40 42 46 42 32 40 36 46 32

thm 4.4 4.4 4.4 4.4 4.4 5.6 5.9 4.4 5.8 4.4 5.9 4.12

m 68 69 75 76 80 88 92 96 100 108 120 132

ϕ(m) 32 44 40 36 32 40 44 32 40 36 32 40
thm 4.4 5.9 5.9 4.4 4.12 4.12 5.9 4.12 5.9 5.9 5.9 5.9

Again in all cases the class number of the maximal real subfield of the cyclotomic
field is 1 and we use the Magma computations described in Remark 5.4. To explain
the strategy we will give two proofs in detail.

Theorem 5.6. (see also [12, Section 4.5.4]) Let L be an extremal even unimodular
lattice of dimension 48 such that Aut(L) contains an element σ of order 47. Then
L ∼= P48q.

Proof. Let LK := LK(σ) and LI := LI(σ). Then LK has Gram matrix F47 from
Theorem 4.4 and [L : LK ⊥ LI ] = 47. Moreover LI is an ideal lattice in the
47-th cyclotomic number field F = Q[ζ47]. So there is some fractional ideal J
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in F and some totally positive a ∈ F+ := Q[ζ47 + ζ−1
47 ] such that LI = J and

(x, y) = trace(axy) for all x, y ∈ J . The class number of F is 695 = 5 ·139 ([29]) and
one computes with Magma, that the class group is generated by any prime ideal
℘ that divides 283 (e.g. ℘ = (283, ζ47 + 279)). Again with Magma one computes a
system of independent units in the ring of integers ZF+ = Z[ζ47 + ζ−1

47 ] of which the
23 real embeddings (together with −1) generate all 223 possible sign combinations.
In particular any totally positive unit in ZF+ is a square. Since F+ has class number
one, any ideal in ZF+ has some totally positive generator. In particular the ideal
℘℘ ∩ ZF+ has some totally positive generator α that may be computed explicitly
in Magma. Therefore the lattice LI is isometric to one of the 695 ideal lattices

Jj := (∆℘j , (x, y) 7→ 47 trace(α−jxy)) for some j = 0, . . . , 694.

Here ∆ = (1 − ζ47)−45 is the inverse different of the lattice ZF , which has the
desired property that det(∆, (x, y) 7→ 47 trace(xy)) = 47. With a combination of
lattice reduction algorithms we find vectors of norm 4 in all these lattices but in one
pair; only J139 and its complex conjugate have minimum norm 6. The quadratic
space (LK ⊥ J139)#/(LK ⊥ J139) is a hyperbolic plane over F47. The two isotropic
subspaces correspond to isometric even unimodular extremal lattices (the isometry
is given by diag(−I2, I46)). Let L be one of these lattices. By the uniqueness of L
it is clear that L is isometric to P48q. To establish an explicit isometry one may
consider a vector β ∈ LK ≤ L of norm 12 and compute the neighbor L(β),2. This
lattice contains a 3-frame, so L = Λ(C) for some ternary extremal code with an
automorphism of order 47.

Remark 5.7. Theorem 5.6 has already been obtained in the diploma thesis [12]
supervised by Skoruppa. Similar, but much more involved, computations allowed
Skoruppa also to construct all even unimodular lattices of dimension 72 with an
automorphism of order 71. A combination of reduction algorithms finds vectors of
norm 4 or 6 in all these lattices, so there is no extremal even unimodular lattice of
dimension 72 that has an automorphism of order 71 (see [28]).

Theorem 5.8. There is no extremal even unimodular lattice L of dimension 48
such that Aut(L) contains an element σ of order 55.

Proof. Then d = 5, p = 11, the type of σ5 is 11− (4, 8)− 4, det(M) = 114, σ5 acts
trivially on M#/M so M#/M ∼= Z[ζ55]/(1 − ζ5

55) and the minimal polynomial for
the action of σ on M#/M is x4 +x3 +x2 +x+1 = Φ5. The automorphism group of
the fixed lattice K of σ5 contains 3 conjugacy classes a1, a2, a3 of elements of order
5 with irreducible minimal polynomial. These are the possible candidates for the
action of σ on K. They act on the dual quotient K#/K with minimal polynomial

µ1 := x2 + 8x+ 1, µ2 := x2 + 4x+ 1, µ3 = x4 + x3 + x2 + x+ 1.

So σ acts on M ⊥ K as diag(ζ55, a3).
The class group of F is generated by ℘ = (11, ζ55 + 8), hF = 10 and the classes of
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totally positive units in ZF+ are represented by U = {1 = u1, u2, u3, u4}. The ideal
℘℘ ∩ ZF+ = βZF+ has no totally positive generator but its square is generated by
the totally positive element β2. Also there is some prime element p5 ∈ ZF+ dividing
5 such that p55 := βp5 is totally positive. Therefore the lattice M is isometric to
one of the 4 · 5 ideal lattices

Jj,i := (∆℘2j+1, (x, y) 7→ trace(uiβ−2jp−1
55 xy)) for some j = 0, . . . , 4, i = 1, . . . , 4.

4 · 4 of these lattices (j = 0, 1, 3, 4 and all ui) have minimum 6.
With Magma compute the unimodular overlattices L of Jj,i ⊥ LK that are invariant
under diag(σ, a3). None of these lattices has minimum 6.

Similar as in Theorem 5.6 and 5.8 we obtain the following theorem.

Theorem 5.9. Let L be an extremal even unimodular lattice such that Aut(L)
contains some element σ of order m with 24 < ϕ(m) < 48. Then either m = 47
and L ∼= P48q, m = 69 and L ∼= P48p, m = 120 and L ∼= P48n, or m = 132 and
L ∼= P48p.

Proof. The Magma computations are similar for all cases and follow the ones de-
scribed above for the case m = 47 and m = 55. We will always denote by F := Q[ζm]
the m-th cyclotomic number field, F+ := Q[ζm + ζ−1

m ] its maximal real subfield.
The class number of F+ turns out to be 1, the class group of F is cyclic in all
cases, ℘ will denote some prime ideal of ZF whose class generates the class group
of F and hF its order, the class number of F . As before, ∆ will denote the inverse
different of ZF , this is always a principal ideal. The ideal lattice M will always be
of the form M = LI(σd) with dp = m for some prime p. In particular we know the
ZF -module M#/M from the computations of the possible fixed lattices of prime
order automorphisms in Section 4.1 as explained above. The set U ⊂ Z∗F+ of totally
positive units is obtained as described in Remark 5.4.

m=49: Then d = p = 7, the type of σ7 is 7 − (7, 6) − 5, det(M) = 75 ℘ =
(197, ζ49 + 4), hF = 43, ℘℘ ∩ F+ = αZF+ for some totally positive α, all totally
positive units in ZF+ are squares, so U = {1}. A combination of lattice reduction
algorithms we find vectors of norm 4 in all 43 lattices

Jj := (∆(1− ζ49)−1℘j , bα−j ) for j = 0, . . . , 42.

m=63: By Theorem 4.5 there is no automorphism of Type 7−(6, 12)−s, so d = 21
and p = 3 and the type of σ21 is 3 − (18, 12) − 12 and M is an ideal lattice in the
63-th cyclotomic number field with det(M) = 312. The class group of F has order 7
and is generated by any prime ideal dividing 2, e.g. ℘ = (2, 1+ζ63 +ζ4

63 +ζ5
63 +ζ6

63).
In the maximal real subfield F+ there are unique prime ideals ℘7 and ℘3 dividing 7
resp. 3. As the class number of F+ is 1, both ideals are principal, ℘7 has some totally
positive generator, α7, but ℘3 doesn’t. So the norms of the totally positive elements
in ZF+ that divide 3 are powers of 312. The lattice (ZF , bα7/21) has determinant
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318, so there is no ideal lattice in the 63rd cyclotomic number field of determinant
312.
m=69: Then d = 3, p = 23 and σ3 has type 23− (2, 4)−2. det(M) = 232, hF = 69,
℘ = (139, ζ69 + 135). U = {1, u0} and ℘℘ ∩ ZF+ = αZF+ for some totally positive
element α ∈ F+. So M is isometric to one of the 2 · 69 ideal lattices

Jj := (∆℘j , (x, y) 7→ trace(23p3uα
−jxy)) for some j = 0, . . . , 68, u ∈ {1, u0},

where p3 is some totally positive prime element dividing 3. 2 of these lattices (j = 0
and both u) have minimum 6.
The automorphism group of the fixed lattice K of σ3 contains a unique conjugacy
class of elements of order 3, say represented by a1. We compute the unimodular
overlattices L of M ⊥ K that are invariant under diag(σ, a1) and find 24 lattices
of minimum 6. For all these 24 lattices L we compute the norm 12-vectors v in the
fixed lattice K. For all lattices there is at least one v for which the neighbor L(v),2

contains a 3-frame. So L = Λ(C) for some extremal ternary code which turns out
to be equivalent to the Pless code P48.
m=75: Then d = 15, p = 5, the type of σ15 is 5−(10, 8)−8, det(M) = 58, hF = 11,
℘ = (151, 146 + ζ75), U = {1, u0} and ℘℘ ∩ ZF+ = αZF+ Therefore the lattice M
is isometric to one of the 2 · 11 ideal lattices

Jj := (∆℘j , (x, y) 7→ trace(75uα−jα−1
3,5xy)) for some j = 0, . . . , 10, u ∈ {1, u0}

where α3,5 is a totally positive element generating the product of some prime ideal
over 3 and some prime ideal over 5. All 20 non-principal ideal lattices have minimum
6. The element σ acts on M#/M as a primitive 15th root of 1. The automorphism
group of the fixed lattice K =

√
5E8 contains a unique conjugacy class of automor-

phisms that act as primitive 15th root of 1, say represented by a1. We compute the
unimodular overlattices L of M ⊥ K that are invariant under diag(σ, a1). None of
these lattices has minimum 6.
m=92: Then d = 4, p = 23, the type of σ4 is 23 − (2, 4) − 2, det(M) = 232,
hF = 201, ℘ = (277, ζ92 +275). U = {1, u0} and ℘℘∩ZF+ = αZF+ for some totally
positive element α ∈ F+. Therefore the lattice M is isometric to one of the 2 · 201
ideal lattices

Jj := (∆℘j , (x, y) 7→ trace(46uα−jxy)) for some j = 0, . . . , 200, u ∈ {1, u0}.

None of these lattices has minimum 6.
m=100: Then d = 20, p = 5, the type of σ20 is 5− (10, 8)− 8, det(M) = 58, hF =
5·11, ℘5 = (5, 6+ζ100) is an element of order 5 and ℘7 = (7, 1+ζ100+ζ2

100−ζ3
100+ζ4

100)
an element of order 11 in the class group of F .

Again there are two square classes of totally positive units, so U = {1, u0}.
Both ideals ℘5℘5 ∩ ZF+ = α5ZF+ and ℘7℘7 ∩ ZF+ = α7ZF+ have totally positive
generators. Therefore the lattice M is isometric to one of the 2 · 5 · 11 ideal lattices

(∆℘j5℘
k
7 , (x, y) 7→ trace(50α−1

5 uα−j5 α−k7 xy))
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for some j = 0, . . . , 4, k = 0, . . . , 10, u ∈ {1, u0}. All 40 ideal lattices for j = 1, 4
and k 6= 0 have minimum 6. The element σ acts on M#/M as a primitive 20th
root of 1. The automorphism group of the fixed lattice K =

√
5E8 contains a

unique conjugacy class of automorphisms that act as primitive 20th root of 1, say
represented by a1. We compute the unimodular overlattices L of M ⊥ K that are
invariant under diag(σ, a1). None of these lattices has minimum 6.
m=108: Here d = 36 and p = 3 and the type of σ36 is 3− (18, 12)− 12 and M is
an ideal lattice in the 108-th cyclotomic number field F with det(M) = 312. The
class group of F has order 19 and is generated by any prime ideal dividing 109,
e.g. ℘ = (109, 106 + ζ108). In the maximal real subfield F+ there are unique prime
ideals ℘2 and ℘3 dividing 2 resp. 3. As the class number of F+ is 1, both ideals are
principal, but none of them has a totally positive generator. However ℘2℘3 = (α2,3)
has some totally positive generator as well as ℘2

3 = (α2
3). So the norms of the totally

positive elements in ZF+ that divide 3 are powers of 34. The lattice (ZF , b1/18) has
determinant 318, so there is no ideal lattice in the 108-th cyclotomic number field
of determinant 312.
m=120: The classnumber is hF = 4 and the class group is generated by some prime
ideal dividing 5, e.g. ℘5 = (5, 2 + 4ζ120 + ζ2

120). In Z+
F both prime ideals dividing 3

have totally positive generators, α3a, α3b. Also the unique prime ideal that divides 2
has a totally positive generator, α2, whereas the two prime ideals dividing 5 are not
generated by totally positive elements, their product and their squares are generated
by the totally positive elements α5ab, α2

5a and α2
5b. In particular ℘5℘5 ∩ F+ is not

generated by some totally positive element, so there are only two ideal classes to be
considered. The totally positive units lie in the classes of 1 = u0, u1, u2, u3.
Now we have two possibilities for det(M):
a) d = 40, p = 3, type of σ40 is 3 − (16, 16) − 16, det(M) = 316. Since σ40 acts
trivially on K#/K the ZF -module M#/M is isomorphic to ZF /(1 − ζ40

120) and σ

acts on M#/M with minimal polynomial Φ40. So M is one of the 8 ideal lattices

(∆℘2j
5 , (x, y) 7→ trace(60α−2j

5 uα−1
5abxy)) for some j = 0, 1, u ∈ {1, u1, u2, u3}.

Only the lattices for j = 0 and u = u1, u3 have minimum 6. Both lattices are
isometric to the Eisenstein lattice described by Christine Bachoc [3].
In principle we have two possibilities for the fixed lattice K, K ∼=

√
3D+

16 or K ∼=√
3(E8 ⊥ E8). The automorphism group of D+

16 does not contain elements with
minimal polynomial Φ40, so K ∼=

√
3(E8 ⊥ E8). For this lattice Aut(E8 ⊥ E8)

contains a unique conjugacy class of such elements, represented by, say, a1. We now
need to compute the (σ, a1)-invariant unimodular overlattices of M ⊥ K for the
two possibilities for M . A straight forward approach is too memory consuming, as
we now need to handle invariant submodules of F32

3 . The lattices L are of the form

Lϕ = {(x, y) ∈M# ⊥ K# | ϕ(x+M) = y +K}

for some isometry ϕ : (M#/M,FM ) → (K#/K,−FK) so that σϕ = ϕa1. For any
c ∈ CAut(K)(a1) = 〈a1〉 the lattices Lϕ and Lϕc are isometric. Fixing one such isome-
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try ϕ0, we hence obtain all Lϕ by letting ϕ vary in {ϕ0u | u ∈ CO(K#/K)(a1)/〈a1〉}.
To compute the centralizer in the orthogonal group O(K#/K) we compute the
orthogonal elements in the endomorphism algebra EndK#/K(a1) ∼=

⊕4
i=1 F34ei.

As the involution x 7→ x = (FKxtrF−1
K ) on EndK#/K(a1) interchanges the

idempotents, say, e1 = e2, e3 = e4, the orthogonal elements are of the form
xe1 + x−1e2 + ye3 + y−1e4, so |CO(K#/K)(a1)| = 802 and CO(K#/K)(a1)/〈a1〉 has
160 coset representatives. For each lattice M there are exactly 4 lattices Lϕ that
have minimum norm 6.
To obtain an isometry between Lϕ and P48n we observe that Aut(P48n) has a unique
conjugacy class of automorphism of order 120, say represented by τ . We compute a
lattice Λ such that Λ/2Lϕ is the (4-dimensional) fixed space of the action of σ5 on
Lϕ/2Lϕ. The dual D of Λ (rescaled to be integral) is a lattice of determinant 28,
minimum 6 and kissing number 3264000 and automorphism group of order 5760.
We compute the corresponding sublattice D0 of P48n and an isometry between D0

and D. For all eight lattices Lϕ the isometry maps Lϕ to P48n.
b) d = 24, p = 5, type of σ24 is 5 − (8, 16) − 8, det(M) = 58. Again M#/M ∼=
ZF /(1− ζ24

120) as σ24 acts trivially on K and σ acts on M#/M as a primitive 24-th
root of unity. So M is one of the 8 ideal lattices

(∆℘2j
5 , (x, y) 7→ trace(60α−2j

5 uα−1
3a α

−1
3b xy)) for some j = 0, 1, u ∈ {1, u1, u2, u3}.

None of these lattices has minimum ≥ 6.
m=132: Then d = 12, p = 11, σ12 has type 11 − (4, 8) − 4, det(M) = 114,
℘ = (23, ζ2

132 + 22ζ132 + 8), hF = 11. U = {1, u0} and ℘℘ ∩ ZF+ = αZF+ for some
totally positive element α ∈ F+. Therefore the lattice M is isometric to one of the
2 · 11 ideal lattices

Jj := (∆℘j , (x, y) 7→ trace(uα−jxy)) for some j = 0, . . . , 10, u ∈ {1, u0}.

10 · 2 of these lattices (j = 1, . . . , 10 and all u) have minimum 6.
The automorphism group of the fixed lattice K of σ12 contains a unique conjugacy
class of elements of order 12 with irreducible minimal polynomial, say represented
by a1. We compute the unimodular overlattices L of M ⊥ K that are invariant
under diag(σ, a1) and find 240 lattices of minimum 6. For all these 240 lattices L
we compute the 50 orbits of 〈a1〉 on the norm 12-vectors v in the fixed lattice LK
and find one orbit for which the neighbor L(v),2 contains a 3-frame. So L = Λ(C)
for some extremal ternary code which turns out to be equivalent to the Pless code
P48.

6. The automorphism group of the 72-dimensional extremal lattice

In the paper [22] I describe the construction of some extremal even unimod-
ular lattice Γ of dimension 72 such that G := Aut(Γ) contains the subgroup
U ∼= (SL2(25) × PSL2(7)) : 2. As in Section 3.2 we may prove that U is indeed
the full automorphism group of Γ. With the same strategy as in the proof of [20,
Theorem 5.3] one shows the following lemma.
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Lemma 6.1. U = NG(SL2(25)).

Proof. Let N := SL2(25) be the normal subgroup of U that is isomorphic to
SL2(25). With Magma one computes that the endomorphism algebra of N is

A := {x ∈ Q72×72 | xg = gx for all g ∈ N} ∼= Q3×3
∞,5

so the natural character of N is a multiple of one of the two irreducible characters of
degree 12 ([9]) with real Schur index 2. The outer automorphism group of SL2(25)
has order 4, but only a subgroup of order 2 stabilises this character. Since U contains
an element inducing this non-trivial outer automorphism, it is enough to show that
U contains the centraliser C := CG(N). Then C is a subgroup of the unit group
A∗; moreover C stabilizes Γ and the U-invariant quadratic form. Let v 6= 0 be any
vector in Γ and let Lv := vA ∩ Γ ≤ Γ. The dimension of Lv divides dim(A) = 36
and C is a subgroup of Aut(Lv). Computations in Magma find a vector v such that
dim(Lv) = 36 and Aut(Lv) ∼= ±PSL2(7). Therefore C ∼= ±PSL2(7) ≤ U .

Using the classification of finite simple groups and in particular the tables in
[14] we now conclude as in Section 3.2 that U = Aut(Γ).

Theorem 6.2. Let Γ be the extremal even unimodular 72-dimensional lattice con-
structed in [22]. Then Aut(Γ) ∼= (SL2(25)× PSL2(7)) : 2.

Proof. Explicit generators for the subgroup U ∼= (SL2(25) × PSL2(7)) : 2 of G :=
Aut(Γ) have been constructed in [22]. Remark 2.4 of this paper also shows that U is
absolutely irreducible and that all U-invariant lattices are similar to Γ. In particular
U does not fix an orthogonally decomposable lattice and therefore U and hence also
G is a primitive maximal finite rational matrix group. In particular the maximal
normal p-subgroups of G are given in the Theorem of Ph. Hall on [15, p. 357]. None
of the possible groups contains SL2(25) as an automorphism group. The tables in
[14] show that there are no finite quasisimple groups in GL72(Q) that contain the
group U . Therefore one concludes that SL2(25) is normal in G, so by Lemma 6.1
we obtain G = U .
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