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Abstract

We coin the notation maximal integral form of an algebraic group gener-
alizing Gross’ notion of a model. We extend the mass formula given by Gross
to our context. For the finite Lie primitive subgroups of G2 there are unique
maximal integral forms defined by them.

1 Introduction

There are various concepts to express that a given finite subgroup F' of a simple
algebraic group G is big. For instance sometimes one can require F' to be maximal
finite in G(k) for some number field k£, or F' to be irreducible, when one thinks
of G(k) as a subgroup of GL,(k). There are also such concepts which make use
of a more arithmetic situation, like Thompson’s concept of utter irreducibility (cf.
[Tho 76]) or its generalization to global irreducibility ([Gro 90]). These concepts
take the finite group F' as a primary object.

Another approach is suggested by Gross’ concepts of Z-models (cf. [Gro 96]),
which take the algebraic group G' and certain of its integral forms G as the primary
objects to obtain finite groups as G(Z), which one might hope are big, at least
sometimes. In the present paper we work from both ends. On the one hand we
extend Gross’ notion of Z-models to maximal integral forms (cf. Definition 3.4).
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The modification is twofold: The field of definition of the algebraic group is allowed
to be an algebraic number field and the condition at the finite primes is that one
obtains a maximal compact subgroup of the algebraic group over the local field
rather than a hyperspecial subgroup.

On the other hand we start with a finite subgroup F' of G(@). T. Springer
suggested to call F' irreducible if its centralizer in G is contained in the center of G.
It turns out (cf. Section 2) that in this case there exists a unique minimal number
field k and a unique k-form G of G, such that F is conjugate to a subgroup of G (k).
One might then ask what the maximal integral forms QZ of G are such that F lies
in G;(0x) where oy, is the ring of integers of k.

In Section 5 the maximal integral forms determined by the four Lie primitive
maximal finite subgroups F' of Go(@) (cf. [CNP 96]) are shown to be unique. The
result makes heavy use of the determination (in Section 4) of lattices in the 7-
dimensional G(k)-module invariant under a parahoric subgroup of Gy (k), where k
is a finite extension of @,.

The concept of being a maximal integral form G of G is shared by all integral
forms in the genus of G. A measure for the chance of finding other “big” finite
subgroups by looking at the other integral forms in the genus of G can be obtained
from the mass of the genus. In Section 3 we generalize Gross’ mass formula for
Z-forms in the genus of a given Z-model to given maximal integral forms.

Again in the example of G5 some of the genera described above are completely
enumerated. The class number is 1 in two cases, 8 in one, and big in the final case
(cf. Section 5).

We thank T. Springer for his inspiring remarks on our earlier paper [CNP 96].

2 Minimal defining field

In this paragraph we elaborate and extend some results communicated to us by T.
Springer as a reaction to [CNP 96].

Let G be a semisimple, connected, complex linear algebraic group (which can be
viewed as a complex connected Lie group with semisimple Lie algebra). It is well
known that G' can be defined over @ via the choice of a Chevalley basis in a faithful
representation, and we shall think of G that way. Denote the algebraic closure of @

by @.
Remark 2.1. Let F be a finite subgroup of G = G(@). Then F is conjugate in G

to a subgroup of G@).

PrOOF. By [Slo 97, Theorem 1] (which is based on earlier results by Weil) there
are only finitely many homomorphisms of F' into G(K) up to conjugacy in G(K) for
any algebraically closed field K of characteristic 0. Moreover, each conjugacy class
is a Zariski open subset of the subvariety

R(F,G(K)) :={p: F = G(K) | p(f1)p(f2) = ¢(f1f2) for all fi, f> € F'}



of the affine variety G(K)". Clearly R(F,G(@)) is already defined over @. Hence

R(F,G(@)) has as many connected components as R(F,G()) which implies the
statement. QED

From now on we work with G = G(@) and denote the Galois group of @ over @ by
I". For subfields k of @ denote by I'(k) the Galois group of @ over k.

Note that I" acts (continuously) on G(@); the action can be realized via a faithful
linear representation of G' defined over @. Choosing a basis for the underlying vector
space of the representation, we can view GG as a group of matrices. Now v € T’
acts entrywise on the representing matrices and hence on G; we shall write 27 to
denote the image of x € G under . Recall that Aut (G), the group of algebraic
automorphisms of G (cf. [Hum 75|, [Hoc 71)), is also an algebraic group defined
over (0, which we identify again with the group of @-rational points. The connected
component of Aut (G) is the group of inner automorphisms Int (G) isomorphic to
G/Z(@) as an abstract group, where Z(G) is the center of G. The I'-action on G
induces an action on Int (G), namely the inner automorphism induced by h € G is
mapped on the one induced by A7. This action can obviously be extended to an
action of I" on Aut (G) by viewing both Aut (G) and I" as bijections on G.

Let k be a finite extension field of @ contained in @. The T'-action G x I' = G;
(9,7) — ¢” may be restricted to I'(k) < I' and twisted by a continuous 1-cocycle
a:T'(k) = Aut (G), resp. « : ['(k) — Int (G). The resulting twisted I'(k)-action
G xT'(k) — G;(g,7) — (97)a(y) yields an algebraic group G, defined over k. This
group G, is called an outer resp. inner k-form of G.

Proposition 2.2. Let F' be a finite subgroup of G = G(@) where G is as above.

1) Assume that the centralizer Cq(F) := {g € G | gf = fgforall f € F} is
equal to the center Z(G) of G. Then there is a unique minimal number field
k = k;,; with the property that there exists an inner k-form G, of G such that
F is a subgroup of G, (k). Moreover G, is unique.

2) Assume that CAut(G)(F) = {8 € Aut(Q) | fB = f for all f € F} consists
only of idg. Then there is a unique minimal number field k = k,; with the
property that there exists an outer k-form G, of G such that F' is a subgroup
of G, (k). Moreover G, is unique.

PROOF. Let H = Aut (G) or Int (G). In both cases, we have Cy(F) = 1. Since the
number of H-orbits on representations of F in G is finite (cf. [Slo 97]),

A = {yeT| there exists an a, € H with f7 = fa, forall f € F} (1)

is a closed subgroup of I'. To show that A is open in I'; i.e., of finite index, note that
F < G(K') for some finite extension k' C@ of @, since F is finite. Hence I'(k') < A
and therefore [I" : A] < co.

Let k£ be the fixed field of A, so that A = I'(k). According to the definition
of A, for each v € A there exists o, € H such that, for all f € F, we have



f7 = fa,. As Cy(F) = 1, the element «, is uniquely determined. The resulting
map « : ['(k) — H is clearly a continuous 1-cocycle and therefore defines the k-form
G, of G with F < G, (k). If k' is another algebraic number field such that F' lies
in a k'-form of G, then the corresponding 1-cocycle o satisfies, for each v € I'(k')
and f € F, the identity f¥ = fa! so that v € A, whence I'(k') C A, proving
k C k'. Finally, if £ = k', then I'(k") = A, and, as Cy(F) = 1, the cocycles a and o’
coincide, proving uniqueness of the k-form. The assertions now follow with k£ = k;,;
if H=1Int(G) and k = kg if H = Aut (G). QED

Definition 2.3. We shall call k;,,; the minimal defining field and k,,; the minimal
outer defining field for F'. The corresponding k;,;-form G, will be called the en-
veloping (inner) form of G for F' and similarly, the corresponding k,,;-form G, will
be called the enveloping outer form of G for F.

We note that both cases of Proposition 2.2 hold also for G = GL,, in the same
formulation and with the same proof. The fact that Aut (GL,) is algebraic can be
found in [Hoc 71].

Example 2.4.

1. In the inner case for G = GL,, or G = SL,, the condition on the centralizer
of F boils down to (absolute) irreducibility. The minimal defining field k;,;
is the character field @[x] of the natural character x of F' obtained from the
embedding of F' in G. In the case of G = GL,, the group of k;,;-rational
points of the enveloping inner form is the unit group (e,@[x]F)* of the com-
ponent e,@[x|F of the group ring Q[x|F whose primitive central idempotent
ey corresponds to x. If G = SL,, one has to take the subgroup of elements of

norm 1 in (e,@[x|F)*.

2. In the outer case for G = GL, or G = SL,, the condition on the centralizer of
F' boils down to absolute irreducibility with a non-real valued natural character
X- The minimal outer defining field k,,; is the maximal real subfield of @[]
and the enveloping outer form is the unitary resp. special unitary group of
((ey + ex)kqutF,0) with the involution o induced by the natural involution
> aff = > aff’l of kguiF'.
For the proof one needs the fact that the k-forms of GL,, are in bijection with
the central simple k-algebras of dimension n?, cf. [Ser 94, p. 133].

3. In the case G = G5 one has Int (G) = Aut (G) and Proposition 2.2 explains
the observation that the four maximal finite subgroups of Go(@') considered in
[CNP 96] have a unique minimal defining field.

3 Integral forms and the mass formula

Let k£ be a number field and oy its ring of integers. Let G be a reductive linear
algebraic group defined over k. Consider G as a subgroup of GL,,. In this chapter



a more schematic view of algebraic groups is appropriate since we need to look at
integral and adelic structures.

An integral form G of G can be obtained from an og-lattice A in £™, i.e., a finitely
generated og-module with k®,, A = k™. Then G(o;) is the stabilizer of the o;-lattice
0, o, A in G(I) for any finite extension [ of k with o; the integral closure of o in
[. Similarly for any completion k, of k at a finite prime p the group G(o,) is the
stabilizer of the o,-lattice A, := o, ®,, A in G(k,) where o,, is the valuation ring of
0.

Since finite groups always fix lattices one has the following result.

Remark 3.1. Let F' be a finite subgroup of G(k). Then there exists an integral
form G of G such that F lies in G (o).

Obviously, G(k) acts on the set of all integral forms of G by conjugation. Integral
forms in the same orbit are called isomorphic. In general an isomorphism class of
integral forms cannot be defined by local data. But on the other hand a lattice A is
uniquely determined by all its completions A, where p runs over the set P = Py, of
all finite primes of k. This gives rise to an action of the adele group G(A) on the set
of integral forms of G, as follows. First of all A = {(z,)eepuy € [pepuy kp | o €
o, for almost all p € P} is the full adele ring of £ and V denotes the set of infinite
places of k (which will be relevant only later on). Now G(A) acts on the set of
integral forms of G as follows. Let § = (8,)pepuy € G(A). The lattice AG < k™ is
defined via 0, ®,, (Af) = (0, o, A) B, for all p € P. If G is defined as the stabilizer
of A, then Gf is the one of AB. Hence G =: H satisfies H(o,,) := ﬂ;lg(op)ﬂp for
all finite primes p € P.

Definition 3.2. Two integral forms G and H of G lie in the same genus, if there
isa € G(A) with GB = H. If such a (8 can be found within the subgroup G(k) of
G(A) then G and H are said to be isomorphic.

For semisimple groups GG, the number of isomorphism classes in a genus is known
to be finite ([BoH 62]).

An invariant of a genus of integral forms of G is the conjugacy class of G(o,,) in
G(k,). This opens the possibility to apply the Bruhat-Tits theory of affine buildings
to describe genera. The family of these invariants describes the genus.

Proposition 3.3. Let G be an integral form of the algebraic group G as above.
For all p € P the group G(o,,) is a subgroup of finite index in a maximal compact
subgroup of G(k,). The group G(o,) is a hyperspecial maximal compact subgroup
for all but finitely many primes p € P.

PROOF. Let A C k™ be a lattice that defines G. The group G(o,,) is clearly compact
and hence contained in a maximal compact subgroup H of G(k,). The group H is
a compact subgroup of G'L,,(k,), hence it preserves a lattice M, C kg'. Multiplying
A, by a certain power of p, we assume that A, C M, and choose o € IN such that
P*M, C A,. Since there are only finitely many o,-lattices between M, and p®M,,
the length of the orbit of A, under H is finite. As G(o,,) is the stabilizer of A, this
settles the first assertion. The second one is 3.9.1. of [Tit 79]. It follows because



two group schemes over o, with generic fibre G' are isomorphic almost everywhere.

QED

Extending Gross’ definition to arbitrary number fields, we call an integral form
G a model, if G(o,) is a hyperspecial maximal compact subgroup of G(k,) for all
finite primes p € P.

Beside the models, the most interesting integral forms G are the ones where
G(o,) is a maximal compact subgroup of G(k,,) for all p € P.

Definition 3.4. Let GG be a semisimple algebraic group defined over k. An integral
form G of G is called mazimal, if G(o,) is a maximal compact subgroup of G(k,,)
for all p € P.

Remarks. Let F be a finite subgroup of G(k). As in Remark 3.1 one sees that
there is always a maximal integral form G such that F' < G(og). But even if F
and G satisfy the assumptions of Proposition 2.2 and G(k) is the unique enveloping
k-form of F' such a maximal integral form G with F' < G(ok) need not be unique as
the following examples for the special orthogonal group resp. the spin group show:
Let L = BWj, be the Barnes-Wall lattice in dimension 32 (cf. [Wal 62]). Then L is
an even unimodular lattice with automorphism group F & 21+1°.0%(2). The group
F embeds into a unique @-form G(@) of the special orthogonal group of degree 32
since the natural representation of F' is absolutely irreducible. F' fixes a sublattice
L' of index 26 in L, that is a rescaling of a unimodular lattice. The two lattices L
and L' define two models G and G’ for G with G(Z) = G'(Z) = F. Though the
two models G and G’ are isomorphic they are not equal, because the group G(Z5)
does not fix the 2-adic completion of L.

Let F' be the maximal finite subgroup +D75.C15 of G Loy (@) (cf. [Neb 96]). Then the
natural representation of F' is absolutely irreducible and therefore F' embeds into
a unique @-form of the (special) orthogonal group of degree 24. Let L be the F-
invariant lattice of determinant 3'2132. For each a € IN the group F fixes a unique
sublattice of L of index 13%¢, namely L(1 — z)* where z generates the 13-Sylow
subgroup of F. They yield 6 different maximal integral forms G, (0 < a < 5) of the
special orthogonal group with F' = G,(Z).

There are other examples where the integral form of the orthogonal group de-
termined by a maximal finite subgroup of GL,@) (e.g., n = 12, F = (31 :
SLy(3) x SLy(3)).2) is not unique.

Integral forms can be viewed as a bridge between algebraic groups over fields of
characteristic zero and groups over fields of finite characteristic. Reducing scalars
modulo po,, one obtains from the algebraic group G an algebraic group G¥ defined
over oy /p such that G(o,) maps onto G*(0,,/po0,,) (cf. [Tit 79, 3.4]).

Definition 3.5. Let G be a maximal integral form of the algebraic group G as
above. Let G*™ be a Levi subgroup of the connected component (G*)° con-
taining a maximal split torus (cf. [Tit 79, 3.5]). The type of G is the function
tg : P — {Dynkin diagrams} assigning to each p € P the Dynkin diagram of G*"*
as defined in [Tit 79, 3.5.1].



We now derive a mass formula for integral forms in a given genus. The strategy
is the same as the one applied by Gross to models over Z and can be found in
[Wei 61], [Kne 67], [Cas 78]. Let G be a semisimple algebraic group defined over &.
We assume that £ is a totally real number field and G(k,) is compact for all v € V.

Let G; := GB; (j = 1,...,h) be a system of representatives of isomorphism
classes of integral forms in the genus of G = G, and S; < G(A) be the stabilizer of
G;. Then G(A) is a disjoint union G(A) = U;S13;G(k). By definition of the action
of G(A) we have

S; = 6,515 = I] G(k,) x II G,0,)-
veyY pEP

The Tamagawa number of G is defined as

&)= /G(A)/G(k) ¢

(if this integral converges) where w is a gauge form on the algebraic variety G (cf.
[Wei 61]). The Tamagawa measure w is a product measure w = j;" [T epuy W,
where the product is taken over all places of k£, the number n is the dimension of G
(as an algebraic variety), and py is the square root of the discriminant of k£ over @).

For the finite places p of £k let A\, := fG(O Wy = fG (0p) W for j=1,...,h. For

the infinite places v define A, := fG( k,) Wo Which is finite since G(ky) is assumed to
be compact.

The group G(k) embeds in G(A) as a discrete subgroup. Since w is left invariant
and additive, we have 7(G) = X7, Jx, w where X; = S;G(k)/G(k) = S;/G;(ok), as
G(k)NS; = G;(ox). Therefore,

/ w= "G (or) 7" T Ao
Xj PEPUY

This proves the following lemma, which is implicit in many derivations of mass
formulas, representing the step which can be proved in the above generality.

Lemma 3.6. With the notation introduced above, the following equality holds.

;|Qj(0k)|_1:T(G)NZ II »-

pEPUY

Now assume that G(k,) is split for all p € P. For all p € P for which G(o,,) is
not a hyperspecial maximal compact subgroup of G(k,) let H, be a hyperspecial
maximal compact subgroup of G(k,). Then a, := [H, : (G (op) N H,)] < oo and
by := [G(0y) : (G(0,) NH,)] < 0c. Define ¢, = ayb," and let ¢ be the product of all
these c,,.

Theorem 3.7. Let G be a simply connected quasisimple algebraic group defined
over a totally real number field k. Assume that G(k,) is split for all finite primes
o € P, and G(k,) compact for all infinite places v € V. Then the following mass
formula holds.



Here G,,...,G,, represent the isomorphism classes of integral forms in the genus
of G, c is defined above, N = [k : @], and dy,...,d, are the degrees of the basic
polynomial invariants of the Weyl group of G over @, usually referred to as the
degrees of G.

ProoF. This is a slight generalization of [Gro 96, Prop. 2.2 2)], which treats the case
of k =@ and c = 1. If G(o,) is hyperspecial, then A, = [G*(0,/p0,)|q," Where g, =
|0,/ $0,| is the order of the residue class field and n = dim(G) = Y_7_,(2d; — 1) is the
dimension of G (cf. [Wei 61, p. 20]). By [Car 72, Theorem 9.4.10] |G*(0,/po0,)| =
¢2TTi—1(¢% — 1) where a = ¥j_,(d; — 1). (Note that one has to omit the factor 3
since G is simply connected.) This shows that [[,cp A, = ¢ ' [T}y (k(di) " where
(k is the zeta-function of k (cf. [Gro 96]). If N := [k :@] is the degree of £ and d is
an even natural number, one has the following transformation formula for the zeta
function of k:

(d—1)!
(273)d

et = ) =@ () (et fan 70, p. 251),

Since G is simply connected and quasisimple, 7(G)) = 1 and since G(k,) is compact
forv € V, the d; (1 < i <r) are even (cf. [Gro 96, Prop. 2.2 1)]). Moreover, for the
real places v, one has A, = [];_, %%’, (cf. [Gro 96]). Hence the theorem follows

from Lemma 3.6. QED

In the most relevant cases, e.g., for maximal integral forms, the local factors of ¢
can be computed from the local Dynkin diagram.

Lemma 3.8. Let G, k be as in the theorem, and let g be a finite place of k. If
G is a maximal integral form of G, and ey, ..., e, are the degrees of the semisimple
algebraic group of type tg(p), then, with q, = |o,/po,| as before,

_ Ti<icr (g% = 1)
ngjgr(qg —1)

Cp

PROOF. As in the paragraph preceding Theorem 3.7, let H,, denote a hyperspecial
maximal compact subgroup of G(k,). Since the quotient ¢, does not depend on the
choices H,, and G(o,) within their G(k,) conjugacy classes, we may take them to
contain the same parahoric subgroup B. Then ¢, is the quotient of |H, : B| by
|G(0,) : B|, which is the number of chambers in the affine building of G' containing
H,, divided by the number of chambers containing G(o,,). The residues of the vertices
H, and G(o,) of that building are the buildings with types the Dynkin diagrams of
G and tg(p) over o,/po,, of order g, respectively (cf. [Tit 79, 3.5]). Hence the two
indices satisfy

gy — 1 g5 —1
|H,:B|= ] = 1and|Q(op):B|=1_[ i x
1<i<r 99 — 1<j<r 9o —
respectively. The quotient gives the asserted value for c,,. QED



4 The local picture for G,

4.1 The maximal local compact subgroups of G5

Let k be a finite extension of @, with valuation ring o, and maximal ideal p = 7oy,
and let Vj be the simple seven-dimensional Gs(k)-module. Then the G3(k)-module
Vo @k supports a unique G (k)-invariant (non-associative) Cayley algebra structure.

In this section the invariant lattices in V4 of all parahoric subgroups of G5 (k) are
classified. At the same time the maximal multiplicatively closed invariant lattices
in the Cayley algebra are determined. The latter turn out to be unique (this is
a consequence of Theorem 4.7 below). The results of this section allow for any
compact subgroup U of Gy(k) to determine the parahoric supergroups of U from
the U-invariant lattices in Vj. In the next section this will be used for the finite
Lie-primitive groups U studied in [CNP 96]. Since the nature of the results and
proofs is rather technical we state the relevant result for Section 5 first, before going
into details. Note first that the Cayley multiplication (Vo @ k) x (Vo @ k) = (Vo @ k)
induces a Gy(k)-invariant symmetric bilinear form @ : V5 x V5 — k. Fix an Iwahori
subgroup B of Go(k). The extended Dynkin diagram of G is

O 9=————20)

For 1 =1, 2, 3, omitting the i-th vertex yields the Dynkin diagram for the maxi-

mal compact subgroup P; containing B, namely G5, A; X A;, and As, respectively.

Theorem 4.1. (i) Assume that char(og/p) # 2. Then there are eight lattices Ly,
LY, Ly, ..., Ly in Vy such that each B-invariant lattice in Vj is a scalar multiple of
one of them, and such that their inclusion scheme is as given in Figure 1, while L,
and LY are selfdual with respect to ®. Moreover, up to scalar multiples, the only
P, -invariant lattice among them is L, the Py-invariant lattices are L3 and Lg, and
the P3-invariant ones are L), Ly, and Ls.

(ii) Assume that char(ox/p) = 2 and k is unramified over @, i.e., p = 20;. Then
there are lattices L;, L, (i = 1,...,7), LY , L, L{, whose inclusions are given in
Figure 2 such that, up to scalar multiples, the lattices invariant under one of P;,
P,, P; are among these 17 lattices. Moreover, the dual lattice of Lg with respect
to ® is 2L5; up to multiples the P,-invariant lattices among them are Ls and Lg,
the Ps-invariant lattices are Ly, LY, L4, Ly and in case k = @), the two additional
lattices L, and LY; the Ps-invariant lattices are the multiples of L', Lo, L3, Lf, and
L.



Figure 2

We note that for proper unramified extensions k£ of @, Figure 2 with L, and L}
omitted displays all B-invariant lattices (class number 15), whereas for k =@, this
class number is 31. In the proof below the general case will be treated which is much
more involved.

4.2 Preliminaries of the proof

With respect to the standard basis (ey, .. ., e7) of k7 the Lie algebra g = go(k) of type
G is realized as a subalgebra of the Lie algebra so; (k) := {g € k™7 | gF+Fg" = 0}
with

000O0O0O0T1
000O0O0OT1P O
00 0O0T1O0PO0
Fe=100022020020
001 0O0O0TO
01 00O0O0TO
1000000

We shall write out a basis for g. The Cartan subalgebra h of g is generated by
hy = diag(0,1,—1,0,1,—1,0) and hy = diag(—1,-1,0,0,0,1,1). The fundamental
roots a and 3 take values 2 and —1 on h; and —1 and 0 on hy, respectively. One
can choose g, := —eg3 + €56 and gg := e12 — €34 + 2e45 — €67 as root vectors of h for
a, 8. Here e;; = (0ixdj1)r (1 < 4,7 < 7) are the standard matrix units. Let A" be
the set of positive roots corresponding to «, 3. For each v € A, one finds the root
vector g, by taking successive Lie products of g, and gs in g as follows

Jai8 =[98, 90l Yat2s = 5198, 9at8],  Ya+3s = 5098 Ja+28], 920438 = [ Gat3s)-
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Choosing g_24—33 = €61 — €72 one builds up the other root vectors as

9—0—3p =1[9a, g—2a—3ﬂ]> g—a—28 = [gm g—a—3ﬁ]; .
g—a—p = §[gﬁag—a—2ﬂ]a g-p = [g—a—ﬁaga]a g—a = §[gﬁag—a—ﬂ]'

Thus the basis for g is (hi, he, g1, 9— | ¥ € AT).
We now describe the Iwahori subgroup B of Go(k). For t € k* and a root y write

w,(t) = exp(tg,) exp(—t~"g—,) exp(tg,)
and h,(t) = w,(t)w,(1) (cf. [Ste 68]). Then
B := (h,(t),exp(ag,), exp(rag_,) | a € oy, t € o}, v € AT).

To describe the invariant lattices of B and of the other six proper parahoric sub-
groups of G(k), we use the language of graduated orders and exponent matrices as
developed in [Ple 83].

Let O be an og-order in k%%¢. We take O to be graduated, i.e., O contains a
system of orthogonal primitive idempotents of ¥?*¢. Then one may assume without
loss of generality that e; € O (1 < i < d), and that O C 0%*% Then there are
ni,...,ny € IN and M = (myj)1<ij<i € Z"™" with d = ny + ... + n; such that O =
O(ny,...,ny; M), where the right hand side denotes the subset of ozx‘i, consisting
of all block matrices with ¢ x ¢ blocks, such that the 4, jth block is 7™i0," ™. M is
called the exponent matriz of O.

The O-invariant lattices in k¢ can immediately be read off from n4,...,n; and
M, namely they are of the form L(ni,...,n;m) = {(a1,...,a;) | a; € 7™0, ™}

where m = (mq,...,m;) satisfies m; + m;; > m; (1 < i,j < t) (cf. [Ple 83,
Remark II.4] for details). For instance, the exponent matrix E; given in the next
proposition yields the lattices of Figure 2 (with L), and L} omitted), where Ls =
L(1,1,1,1,1,1,1;(0,0,0,0,0,0,0)). The exponent rows of the lattices with exactly
one maximal sublattice correspond to the rows of the exponent matrix .

The investigation is subdivided according to the order of the residue class field
fo :=o0k/p. If | f,| > 3 then one obtains a full set of orthogonal primitive idempo-
tents in k™7 in 0y B as og-linear combination of the torus elements h,(t), t € o},
v € AT, If |f,| < 3 then oxB is only a suborder of a graduated order; the case
|fo| = 2 is the hardest one.

4.3 The case |o;/p| > 2

Let v: k — Z U {oo} denote the discrete valuation of k£ and put w = v(2).
Proposition 4.2.
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1) If |f,| > 3 then the enveloping order o B < o[*" is a graduated order oy B =

01,1,1,1,1,1,1; E,) =: O(E,) with exponent matrix

|
e
Il
[y
N = =t = - o
S
—
_— —_ =+ oo
S
—
r—tr—tr—*+©©©
S
= _O O OO
—_—_ 08 oo o
— oo oo o
cocoog oo o

2) Let |f,| = 3 and let O(Ey) be the graduated order with exponent matrix Ey
as in 1). Then

oxB = {A = (a;;) € O(Ey) | a11 = ar7, 092 = agg, 33 = 055  (mod p)}.

PROOF. 1) Since |f,| > 3, the idempotents e; (1 < i < 7) lie in o, B. Hence oy B is
a graduated order.

Looking at the valuations of the entries of the generating matrices of B one
sees that oy B is contained in O(E,) and contains the vector space with exponent
matrix E,, where (E,);; = (Ey)qij if (4,7) # (5,3),(6,2) and (Ey)s3 = (Ey)s2 = 2.
Hence the order o, B contains the multiplicative closure of this vector space, which

is O(E,).
2) Follows from an inspection of the generating matrices and from the fact that
o, B contains the idempotents e;; + e77, €29 + €6, €33 + €55, and €yy4. QED

With the preliminary remark in 4.2 we now find the B-invariant lattices as as-
serted in 4.1 (see Figure 1 for w = 0 and Figure 2 for w > 0). To determine
the lattices of the other parahoric subgroups the description of the Weyl group
in [Ste 68, Lemma 19] is used. According to this lemma, preimages of the re-

flections in the corresponding Weyl group may be chosen as o0y := w_g,_33(7) =
(617 %66: —Teéq, _66)(627 _%67: —Té, 67)7 02 1= wa(l)(627 —€3, —€, 63)(657 €6, —€s, _66):
o3 = wg(1l) = (e1,eq, —e1, —ea)(e3, —es)(es, —e4)(es, —€7, —€g,€7). For {h,4,j} =

{1,2,3}, the parahoric subgroups containing B are P; = (B, 0;,05) and Bj; :=
H N F)] = <B, O'h>.

Note that o; does not act on the og-lattice (eq, ..., er)q,.

To describe the order oy Py the basis (e1, Teq, e, 27, €3, €4, €5) is used, for o, Ps
we use (e1, ~e5, =€, €2, €3, ~€7, €4), and for P, the basis (e, €2, z€5, z€7, €3, €5, €4).
Then one finds the following

Corollary 4.3.

0 0 0 0 O
1 0 0 0 O
oxPi3s =0(1,2,1,2,1, 14w 1+w 0 w w [)=:01(0x) if |fo| >3
1 1 1 0 0
1 1 1 0



0x P13 = {A = (aij)1<ij<7 € O1(0g) | 11 = agr  (mod p)} if [f,| = 3.

0 0 0 O
1 0 0 0
OkP12:O(27251727 1+ w 0 w )

1 1 1 0
0 0 0 0 0
1 0 0 0 0

0 Pos = 0(2,2, 1,1, 1, 1 1 0 0 0 ) = O3(Ok), 1f|fp| >3

1+w 14w 1+w 0 w
1 1 1 1 0

o Pos =2 {A = (aij)lgi,jST € Os(ox) | ass = ar;  (mod p)} if|fp| =3.

0 0
OkP1:O(6,1,(w 0))

0 0 0
opPs = 0(3,3,1, 1 0 0 |)-
14w 14w O
0 0 0
o P, =2 0(4,2,1, 1 0 0 [).
14w w 0

PRroor. Follows immediately by grouping together the different 1-dimensional con-
stituents of ox B according to the orbits of the respective subgroups of the Weyl

group. QED

4.4 The case |op/p| =2

Proposition 4.4. Let |f,| = 2 and O(E,,) be the graduated order with exponent
matrix E,, as in Proposition 4.2. Let O be the suborder O = {A = (a;;) €
O(Ey) | ai; = aj; (mod p) forall1 < 4,5 < T,a61 = a7 (mod p?),a12 = azs =
ass = %a45 = dg7 (mod p),alg = %a46 (HlOd p),au = %a47 (mod p),agg, = 056
(mod p), 94 = A57 (IHOd p), Qos + Qo4 + G13 = A3p (mod p)} Then OkB = 0.

PROOF. It can easily be checked that O is indeed a suborder of O(FE,,). Since the
generators of the og-order o, B lie in O, it follows that o, B C O.

The order O is generated as an ogp-module by 7O(E,) and the matrices I,
€15, €16, €17, €26, €27, €37, Mei;, Where 4 # 4 > j, (i,5) # (7,1),(6,1) or (7,2),

2mes1, 2mess, 2meys, ke = Teg1 + Tera, Ty, kig 1= €12 — €34 — €35 + 2e45 — €qr,
ki3 := —e13 — €36 + 2€46, k14 := —e14 + €47, ko3 1= —e€93 + €56, ko4 := €24 + €36 — €57,
and ]{325 = €95 — €34-

Let
ap 1= exp(ga), po:=exp(mg—a), a1 :=exp(gp), p1 := exp(mg—p),

ay := exp(gatp); P2 :=exP(Tg_a—p), a3:=expP(gat2p), D3 := exp(TGg_a_2s),
a4 1= eXp(ga+3ﬁ), Dy = eXP(WQ—a—?,,B), a5 1= eXp(92a+3ﬁ): b5 = eXP(Wg—Qa—sﬂ)-
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Then the p; and a; lie in B. We claim that these matrices together with I
generate the og-order O. This can be seen by use of the following equalities:

ey = —Ir +as + a1 — aqas, eor = Iy — ag — a4 + apay,
el = I7 — ap — a4 + asaop, e = I7 — ag — az + apas,
mes; = (I7 — ao)(I7 — ps), and merz = Iy — ps + es1.

Thus o, B contains the left hand sides from which one constructs the me;, 1 <
1 < 7 as follows:

mepr = eg(ps — I7), megn = eyr(Ir —ps), mess = (I7 — aq)mers,
Tes5 = 7T€51(CL4 - 17), TCee — (p5 - 17)616; Ter7 = (—p5 + 17)627,
meqs = Tl7 — €11 — €29 — €33 — €55 — €66 — €77.

Multiplying the a; — I; and p; — I; (0 < ¢ < 5) from the left and from the right
with the elements 7e;; one finds that 7O(E,,) C oy B. Using this one sees that the

elements e5 = aias3 — a1 — a3 + I7 + 2637 and €37 = —Qa4 + I7 + e also belong to
OkB.
Now one easily computes the remaining generators:
kys = ag — I, kip = a, — I,
kiy = I7 + ayay — a; — ag + €16 + €37 + 2ezs,
kys = az — Iy — k14 + €7, koy = apay — kgs — ag — ay + I,
ker = ps — Iz, ki3 = I7 + ayag — a1 — ay,
e = 626(P5 - -77), T€s2 = 7re51(a1 - 17),

2mes = (az — Ir)(ps — Ir) + mear + mesa,
meg1 = kis(I7 — ps) + 2meu,

mesy = esr(I7 — ps), 2mes = kia(I7 — p5),

mes3 = (ao — I7)(ps — 1), mess = mes1 (I — ag) — (mess(ag — I7)),

mers = (—ps + I7)es, 2mesy = Iy — p1 — mPess + mesy — Teqg + mear,
Tega = (ps — I7)kra, megs = (I7 — a1)mers,

Tees = (17 —P5)k14, Tees = (p5 - 17)615»

mers = (ps — Ir) (a2 — Ir) + megs — mezs,

mers = (I7 — ps)(as — I7) — mees — (megs(I7 — a1)),
and Te71 = I7 — p3 + 2me 1 — Tesy + Tegy — Mera.

Hence O C o4 B. QED
Corollary 4.5. If |f,| = 2 then

op P13 = {A = (Gij)lgz’,jg € 01(0k) | a11 = Q44 = Q77, Q22 = 055, 023 = 056, A32 = Ags,

1 1 1

33 = Qgp, Q12 = 56145, a3 = 5046: a1y = 5047, Qo4 = Gs7, O34 = Gg7  (mod p)}
0 0 0 0
~ 1 0 1 0
Ok:P12 == {A = (aij)lgi,j§7 € 0(2, 2a 15 21 w + 1 w + 1 0 w ) |
1 1 1 0
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a11 = a33 = Ugs, O12 = G34 = Gg7, (91 = (43 = 76, U2 = Gus = a77  (mod p)}

(with respect to the basis (e, €, €3 + €4, €5 — €4, 2e3 + €4 + 2es5, €6, €7) ),

o Po3 & {A = (aij)1gi,jg7 € 03(0k) | 11 = (33, G12 = G34, G21 = (43, OG22 = Q44,

as55 = Qg = A77, Q56 = A57 = 5&(57 (mod p)}

(with respect to the basis (e;, %66, es, %67, es, €4, €5)).

0 0
OkPlgo(6717<,w 0))

(with respect to the basis (e, €2, €3, €5, €5, €7, €4) ),

0 0 0
Py 203,31, 1 0 0|
w—+1 w+1 0
(with respect to the basis (e, %65, %66, €s, €3, %67, es4)),
0 0 0
Py 204,21, 1 0 1)
w+1 w+1 0

(with respect to the basis (ej, e, %66, %67, e3 + €4, €5 — €4,2e3 + €4 + 2e5)).

PROOF. One has to keep track of the remaining congruences after joining the
additional generator. For instance orthogonal primitive idempotents in oxPo are
X = 2654 + 4655 + 2644 — ]€120’3 — 0'3]1712 - I7 + 0'3(2653)0'3 + 2653 and I7 - X (the
notation is as in the proof of the Proposition 4.4). QED

From Corollary 4.5 and 4.3 one now finds that the Pj-invariant lattices are as
described in Theorem 4.1.

4.5 The Cayley multiplication

In this section we determine the P;-invariant lattices among those of Theorem 4.1
that are multiplicatively closed.

Lemma 4.6. Let (ey,...,e7) be the standard basis of Vy = k7 as in the previous
sections and 1 be the unit element in the Cayley algebra V= Vy @& k. Then the
B-invariant Cayley multiplication is determined by the following table:

1 €1 () €3 €4 €y €g €7

el 0 0 0 el e —e3 % — %64
€9 0 0 €1 —€9 0 % + %64 —€5
€3 0 —eq 0 —€3 % + %64 0 €6

€4 —e1 €9 €3 1 —€x5 —€g €7

€5 —E€9 0 % - %64 €5 0 €7 0

s es % — %64 0 €s —ey 0 0

er |3+ 364 es —eg —er 0 0 0

Theorem 4.7. Let V =V, & k be as in Lemma 4.6.
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a) Let Ty := (e1, ez, €3,€5,¢€6,€7)0, and Ty := (e4),,. A set of representatives
of isomorphism classes of opP;-lattices in Vj is given by p®T) + T, where
0 <a <w=v(2). The multiplicatively closed oy P;-lattices in V are the ones
contained in T + Ty + ok(%e4 + %)

b) Let T} := <€1,%€5,%€6>0k’ Ty := <€2,€3,%€7>0k, and Ty := (e4),,- A set of
representatives of isomorphism classes of oy, Py-lattices in V} is given by {p*T; +
T +T3 | 0 <a<w+1} Wp*'Th+ 9Ty +T3 | 0 < a < w}. The
multiplicatively closed oy Ps-lattices in V' are the ones contained in o1 + 15+
T3 + Ok(%&; + %)

c) Let T1 = {eq, e, %66, %67)%, T, = (es,€5)0,, and T3 := (es)o,. A set of
representatives of isomorphism classes of o, Py-lattices in Vj is given by {p*T; +
L +T3 | 0<a<wt W'y +p*To+T3 | 0 <a<wh If|f] =2
then there are two additional isomorphism classes of oy Ps-lattices represented
by oTy + Ty + T3 and ¥ ™'T) + ¥ Ty, + T3. The multiplicatively closed
o Py-lattices in V are the ones contained in T, + Ty 4+ Ts + ox(5€4 + 3)-

Proor. The description of the invariant lattices follows immediately from the
description of the graduated orders o, P; in Corollaries 4.3 and 4.5. So we only show
the statements about the multiplicatively closed lattices:

a) By the multiplication table, one has T} - T} = Ty +0k(%e4+%), T, Ty =Ty Ty =Ty,
and Ty - Ty = o,. Suppose that L is a multiplicatively closed o P;-lattice in V.
Then L NV is an o P;-lattice in V; and hence of the form T} + p"T5, where
0 < (a—b) <w. Because (L-L)NVy = LNV, one finds 2a > a, 2a > b, and
a+b > a. Especially a,b > 0 and LNV} is contained in T} +T5. Since T,/2T, is the
largest trivial oy P;-constituent module of a lattice in 1}, the multiplicative closure
Ty + T, + ox(3e4 + 3) of Ty + T is the maximal Pj-invariant multiplicatively closed
lattice.

b) Let L be a multiplicatively closed o P3-lattice in Vg + k. Then LN Vy = p°T) +
o'y + pTs. Since Ty Ty = o 'To, Tty T = To - Tt = p lop(es + 3) + o '3,
Tl'T3 = T3'T1 = Tl, TQ‘T2 = Tl, TQ'Tg = T3'T2 = TQ, and T3'T3 = O,
one finds, as in a), that the integral numbers a, b, ¢ satisfy the following conditions:
20> b+1,a4+b>c+1,¢>0, and 2b > a. This implies that L NV} is contained
in pT7 + T + T5. Left multiplication with e, — 1 induces the identity on T3.
Hence L can not contain the vector 7~ '(2es — 3). The conclusion is that the lattice
pTi+pTo+T3+o0k(3es+3) is the unique maximal multiplicatively closed Ps-invariant
lattice in V.

c) As in a) and b), a multiplicatively closed oyPs-lattice L in V is found which
satisfies LNV C 17 + 15+ T3. As in b), one finds that pT; + 15+ T3 + ox(5es + 3)
is the unique maximal multiplicatively closed P»-invariant lattice in V. QED

Corollary 4.8. For ¢ = 1,2,3 let L; be the intersection with Vy of the maximal
multiplicatively closed oy P; lattice M; in V = Vy @ k. Then the discriminant of
L; with respect to the bilinear form ® of Lemma 4.6 is 276, 27%7* 27575 and the
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discriminant of M; with respect to the Cayley norm is 278, 27874 27875 in the
respective cases.

5 Arithmetic of the four maximal finite Lie prim-
itive subgroups of G,(?)

In this final section, we establish the connection with the paper [CNP 96]. There the
maximal multiplicatively closed F-invariant lattices in the Cayley algebra were de-
termined for F' one of the maximal finite Lie primitive subgroups of Go(@). That is,
F is isomorphic to one of 22.GL3(2), G2(2), PSL4(8) and PSLy(13) (cf. [CoW 83]).
Denote by C' the complex Cayley algebra and by k the character field of the F-
character belonging to the action of F' on C, := {x € C | tr(z) = 0}. According
to [CNP 96] F' acts on a unique k-form Cj of C. In the light of Section 2, k£ can
be identified as the unique minimal defining field k;,; = k4 for F' as subgroup of
G5(@) = Aut (C) and Aut (Cy) as the unique the enveloping k-form of G, for F.

It is also shown in [CNP 96] that there is a unique og-lattice that is F-invariant
and multiplicatively closed and maximal with these properties where oy is the ring
of integers of k. This result should be compared with the following theorem, which
is an immediate consequence of the results of the previous section (notably Theorem
4.1 and Corollary 4.8) and the description of the F-invariant lattices in [CNP 96].

Theorem 5.1. Let F' be one of the (four) maximal finite Lie primitive subgroups
of Go@), k = kint = kaut its minimal defining field, and G, its enveloping k-form.
Then there is a unique maximal integral form G of Gy with F = Q(ok), where oy, is
the ring of algebraic integers of k.

In this case, the genus of a maximal integral form is determined by its type.
The type ¢G of the integral form G of the theorem satisfies ts(p) = G for all finite
primes p of k that do not divide 2. Since 2 is inert in both fields k #@ the following
table gives complete information about the genus of G and the minimal defining
fields k.

Table 5.2.
F | 22.GL3(2) G2(2) PSLy(8) PSLy(13)
k @ Q@ Qe+ @V

té(Z) A2 GQ A1 + A1 GQ

An interesting point of course is what the other maximal integral forms in the
genus of G are. This can be studied using the mass formula developed in Section 3.

Theorem 5.3. Let F' be one of the four groups of the theorem above and G be the
corresponding unique maximal integral form. Then the genus of G consists of one
isomorphism class in the cases F = 23.GL3(2) or Go(2) (where k =@), of 8 classes
if F = PSLy(13) and of more than 13472 classes if F' = PSLy(8).

In order to apply the mass formula for maximal integral forms as given in The-
orem 3.7, one has to calculate the local factors of the constant ¢ given there.
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Let G be a maximal integral form of a k-form of G5 and let P be the set of finite
places of k. Put My :={p € P |tg(p) = A2} and My :={p € P | ta(p) = A1+ A }.
Then, by Lemma 4.8,

C =

II @+ I (g +42+1), (2)

peM; p€M>

where g, is as usual the order of the residue class field of o,,.

The enveloping k-forms G4 of G5 for the four groups F' in Theorem 5.1 are such
that the groups Go (ky) are compact for all real completions k, of k. This property
determines Gy uniquely. In the following Go always denotes such a compact form of
G.

Proposition 5.4. If k = @ then up to isomorphism there is a unique maximal

integral form G of Gy for which te(p) = Gy for all primes p > 2 and tg(2) = G,
AQ, resp. A1 + Al.

PRrROOF. If t5(2) = G, it is already shown by Gross ([Gro 96]) that the class of the
Z-model G with G(Z) = G, is unique in its genus.

If t¢(2) = Ag, computation of the right hand side of the mass formula of Theorem
3.7 withd;, =2,dy =6 and ¢ =23 +1 (cf. (2)) gives

pSYICT s L —
= S 26.33.7  26.3.7

hence the integral form defined by 23.GL3(2) is unique in its genus.
If t¢(2) = A; + Ay one gets

h

21 1
M |G;(Z)| ™t = = .
j:l‘Q]( )| 26.33.7 26 . 32

Here h = 1 again because there is a subgroup F := G,(Z) of order 25 - 32. In
fact, F' is isomorphic to a subgroup of index 2 in the Weyl group of type Fj. The
Cayley order defining GG; contains 48 units of norm 1. They form a loop which has
a subloop of index 2 isomorphic to the tetrahedral group SLy(3). QED

Proposition 5.5. Let k =@[v/13] and G be a model for G5. Then the genus of G
contains the following 8 classes.

j| F=G,o) |F| units |Aut (N¢)|
1 G2(2) 26.3%.7 Fy 210.3%.5.7
2 PSLy(13) 22.3.7-13 Ay 23.3.7-13
3| SLy(3) 0 SLy(3) 25 .32 F,+ F, 29.33
4 S5 x S; 22. 32 Ay + Ay + Ay + Ay 2°.33
5 SgXCQ 223 A1+A1+A1+A1 253
6 (03X03)22 2. 32 A2+A2 23 .33
7 GLy(3) 2.3 Ay 27 . 32
8] (QsoC3).2 24.3 Ay 25. 32
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The second column contains the automorphism group of the Cayley order, the
third its order. The notation to describe the groups is quite standard. Cyclic groups
of order n are denoted by C), or simply by n, The symbol x denotes a direct product
and o a central product, : stands for split extensions and . for extensions that are
most often non split.

The units of Cayley norm 1 € k form a root system, which is displayed in the
fourth column. The last column contains the order of the orthogonal group of the
lattice of trace 0 elements in the Cayley order with respect to the Cayley norm form
Nc.

PROOF. One calculates the mass of the genus to be
109 - 307
26.33.7.13
and easily checks the completeness of the list above. QED

Remark 5.6. To determine the integral forms in the genus, we calculate in the
group ég(kp) where g is a prime ideal of @[v/13] dividing 17. We choose a torus
T in ég(kp) and apply Weyl group elements o to the integral form QZ such that
(G40)(0,) runs through the maximal parahoric subgroups of G5(k,,) that correspond
to hyperspecial points in the apartment of the building of ég(kp). If T is chosen gen-
eral enough (with respect to G, (o)) one finds representatives of all the isomorphism
classes of integral forms in the genus of G, in this way.

PROOF OF 5.3. For F = (G5(2), 23.GL3(2), or PSLy(13) the theorem follows
from Propositions 5.4 and 5.5. For k& = @[(s + {;'] the genus of the maximal
integral form of Gy for PSLy(8) contains more than 13472 classes because its mass
is 4161% > 13472, so that there are at least this many class representatives

Gi(Z[¢ + G '). QED
We now give some more examples of genera of maximal integral forms.

Example 5.7. Any integral form G of Gy gives us an integral form H of the or-
thogonal group O7(N¢) by taking the lattice of the trace 0 elements in the Cayley
order with respect to the norm form N¢.

If the tg(p) is GQ, AQ, A1 + A1 then tg(p) is Bg, Ag, A1 + A1 + Al, and the
mass of H has to be multiplied by 1, ¢®+1, (¢2+1)(¢* +¢*> + 1), respectively, where
q=10,/p0,|.

For k = @ the genera of the integral forms of O;(N¢) derived from the three
integral forms of @2 described in Proposition 5.4 each contain only one class. For
k = @[V/13], the genus of the model of O;(N¢) defined by PSLy(13) consists of
h = 12 classes, only eight of which come from models of @2 as listed in the table
above. The other four models are:

J F = H (o) |F| root system

9 CQXCQXA4X53 25'32 A1+A1+A1+A2
10 +PSUL(2) : 2 28.3%.5 FEg

11 $5XCQXCQ 2635 A4+A1+A1
12 +S6 X S5 26.33.5 As + A,
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Example 5.8. If k& = A@ then there are up to isomorphism 1, respectively 2, maximal
integral forms G of Gy with tg(p) = G for all primes p # 3 and t5(3) = A,,
respectively A; 1 A, as listed in the following table.

o) [j]  F=G;0) [F[ ] units [ [Aut (No)|

Ay 1 312.QDs 24.3% | A, 29.3%.5
A LA [ 1| (Cs x Cg).(S3x Cy) [ 24-3%| A5 28 . 31
Al L Al 2 (SL2(3) o} Qg)z 26 -3 F4 210 : 32

Example 5.9 To give some more examples, we list the genera of the models of
Gy over @Q[v/5], @[v/3], and @[v/2]. For real quadratic fields k, there are maximal
Cayley orders of the form M @& Mj where j> = —1 and M is a maximal order in
the quaternion algebra over k ramified only at the 2 infinite places. For the four real
quadratic fields considered in this paper the corresponding automorphism groups
G;(o) are G3(Z[212)), Go(Z[X52), Go(Z[V3)), G5(Z[V3)), and G4(Z[V2)),
where the index j refers to the tables for the various rings or. The automorphism
groups of these Cayley orders can be described using only properties of M.

Model over oy, := Z[H‘[]

j| F=G,o) |F| units
1 Go(2) 25.35.7 | Ky
SL2(5)OSL2( ) 25'32-52 HZ

Model over oy, := Z[v/3]:

J F =G;(o) |F| units
1 Ga(2) 9. 33.7| By
2 LB oSLE)2 | % | F?
3 (012 X 012).(53 X CQ) 26, 33 Ag
4 SL2(3) O Qg 25 -3 F4
5] (SLy(3) 0 Qs)2 2.3 | F?
6 (04 X CQ)(CS) 26 A?
7 (03 X 03) : 06 2.3 A%
8 (C3X03)22 232 A%
9 (CQ X 02)(04 X Cg) 25 A%
Model over oy, := Z[v/2]:
F =G,(o) |F| units
G0) 95.33.7| Ey

(Qs 0 SLy(3))-2 2°-3 F42
(Cg X Cg)(og X Sg) 28 . 3 A%G
S, 03,4 97.3% | Fl

W N .
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Remark. In [Bou 89, III. 2.5], Cayley algebras C are constructed from quaternion
algebras as follows:

Let E be a positive definite quaternion algebra over k, ~ its canonical involution,
and v € k. Then one defines a multiplication on C := E' @ E by

(z,y)(@,y') == (zz' + 17y, yT +y'z) (z,2',y,y € E).

The unit element is 1 = (1,0) and (z,y) := (T, —y) defines an involution on C.
Hence £ = E x {0} is a subalgebra of C and C is a non-associative ”crossed
product algebra” C = E @ Ej where j := (0,1) € C.

Proposition 5.10. With the notation above assume that v = —1 and let M = M
be an order of the positive definite quaternion algebra E. Then O := M & Mj is a
(non-associative) order in C. If the lattice (M, trace(2T)) is orthogonally indecom-
posable, then Aut (O) is generated by the mappings x + yj — dzd * + (bdyd')j
where b € M with bb =1 and d € Ng-(M) normalizes the order M.

PrOOF. By [Neb 98, Cor. (4.5)] (cf. also [Vig 80]) the orthogonal group of the
lattice (M, trace(xT)) is generated by = — T and z — abzb™', where a € M satisfies
aa = 1 and b € E* normalizes M. The lattice O with respect to the norm form is
an orthogonal sum of two copies of (M, trace(zZ)). Since automorphisms of O map
1 to 1 and preserve the norm form, they induce automorphisms of the suborder M.
Hence the group Aut (O) is contained in the group G : (t), where G is generated
by ¢(a,b,d) : x +yj — axa + (bdyd—)j (a,d € Ng«(M), b € M, with bb = 1)
and t: x +yj — x +7j. Since the automorphism group of C consists of matrices of
determinant 1 and det(t) = —1 and det(é(a,b,d)) = 1, Aut (O) is contained in G.
Now ¢(a,b,d)((z +yj) (' +9'7)) = avz’a™ — ay'ya' + (bdyT'd ' + bdy'zd')j and
é(a,b,d)(z + yj)d(a,b,d)(z' + ¢'f) = azz’a! —d Fdbbdyd ! + (bdyd‘a'T'a +
bdy'd taxa1)j. If ¢(a,b,d) is an automorphism, then conjugation with a coincides
with conjugation with d and hence ¢(a, b,d) = ¢(d, b, d). QED

Remark 5.11. If the order M is of the form R+ Ri where R is an order in a number
field and 7 = 1, 42 = —1, then the mapping (a +bi) + (c+di)j — (a+ci) + (d+b)j
is an additional automorphism of O = M + Mj. See for example the second group
of Example 5.8 and G3(Z[v/3]) of Example 5.9.
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