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Abstract. In this paper we extend results on Kneser-Hecke-operators for

codes over finite fields, to the setting of codes over finite chain rings. In
particular, we consider chain rings of the form Z/p2Z for p prime. On the set

of self-dual codes of length N , we define a linear operator, T , and characterize

its associated eigenspaces.

1. Introduction

Many of the concepts of lattice theory have analogues in coding theory and vice
versa.

Lattices L are Z-modules generated by a basis of Euclidean space (RN , (, )). So
they come with a given inner product that is used to define the dual lattice

L# := {x ∈ RN | (x, `) ∈ Z for all ` ∈ L}
which satisfies vol(RN/L) vol(RN/L#) = 1. The euclidean norm enables the count-
ing of lattice points according to their length and therewith defines a holomorphic
function

θL(z) :=
∑
`∈L

exp((`, `)πiz), z ∈ C,=(z) > 0

on the upper half plane, the so called theta series of the lattice L. From the theta
series, it is possible to read off important invariants of the lattice, such as the density
of the associated sphere packing. Theta series have nice invariance properties, they
are examples of modular forms. In particular for even unimodular lattices (i.e.
L = L# and (`, `) ∈ 2Z for all ` ∈ L), this theta series is a modular form for the
full modular group SL2(Z) ([6, Theorem 2.1]). Good upper bounds on the sphere
packing density of an even unimodular lattice can be found using the theory of
modular forms.

For the purpose of this note, codes C are R-submodules of RN , where R is a
finite commutative ring. Also RN has a standard inner product (, ) that is used to
define the dual code

C⊥ = {x ∈ RN | (x, c) = 0 for all c ∈ C}
for which one has |C||C⊥| = |R|N . Important invariants of the code C are given
in the complete weight enumerator of C (see Definition 10) which is a homogenous
polynomial of degree N in |R| variables. For self-dual codes (i.e. C = C⊥) this
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complete weight enumerator is invariant under the associated Clifford-Weil group
(as defined in [10]) which is a finite complex matrix group. Again for certain families
of self-dual codes invariant theory of these groups allow to find good upper bounds
on the error correcting properties of the codes.

There is a direct connection relating lattices and codes given by the well known
Construction A (cf. [4, Section 7.2]). This construction associates a lattice L(C) to
a code C over a finite prime field which inherits certain properties of the code: If C
is self-dual then so is L(C), more general L(C)# = L(C⊥) and also the theta-series
of L(C) is obtained from the complete weight enumerator of C by inserting certain
well defined theta functions (see [4, Theorem (7.3)]).

Also other concepts like Siegel theta series and Siegel’s phi operator have their
coding theory analogues: higher genus complete weight enumerators and Runge’s
phi operator [16]. Also theta-series with harmonic coefficients have a counterpart
in coding theory (see [1], [2]). One of the major tools to study modular forms
are Hecke-operators. Certain of these Hecke-operators may be expressed in terms
of lattices (see for instance [9]). In [11], Nebe translates the notion of Hecke-
operators for theta series to the setting of codes over finite fields, defining the
Kneser-Hecke-operator for codes when R = Fq is a finite field and therewith answers
a question raised in 1977 in [3]. The primary goal of this paper is to extend these
results to codes over finite chain rings, beginning with those chain rings of the form
R = Z/p2Z.

As in [11], we consider the family F of codes of a certain Type. While [11]
deals with self-dual codes over finite fields, the present note starts the investigation
for self-dual codes over R = Z/p2Z (for a complete discussion of code Types, see
[10]). The general strategy of these papers is the same, namely, we define some
notion of equivalence for codes, define a neighboring relation, and then define a
linear operator, T , on the set of equivalence classes of codes in F . This operator
maps a code C to the sum of equivalence classes containing neighboring codes
to C. One new ingredient here is that self-dual codes of the same length need
not be isomorphic as R-modules. This yields a natural partition of the set of
equivalence classes of self-dual codes into module isomorphism classes. We describe
the connected components of the restriction of the neighboring graph to each of
these subsets. It turns out that odd and even primes behave quite differently very
likely due to the fact that we only work with bilinear forms instead of quadratic
forms. For the ring R = Z/4Z we get a very nice description of these connected
components in Theorem 38.

This note reports on research on a WIN project for which time was limited.
As we are just at the starting point, this paper implicitly contains more questions
than answers. Therefore, it should be considered as a motivation to continue and
generalize the research on this topic.

2. Codes over Z/p2Z.

In this note we will discuss codes over base rings R of the form R = Z/p2Z
where p ∈ Z is prime. Our computations will be performed for p = 2 as there are
programs available to test equivalence of quaternary codes.

Recall that a code C over a finite ring R is an R-submodule C ≤ RN of the free
R-module of rank N ∈ N. The Krull-Schmidt theorem gives us valuable insight
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regarding structure of the R-module C. Before stating this result, it is helpful to
recall some facts about the ring R = Z/p2Z:

a) R is a local ring with maximal ideal pR and unit group R∗ = R \ pR. The
ideals in R are R, pR and {0}.

b) There are exactly two indecomposable R-modules,
(1) the regular R-module R and
(2) the simple R-module S ∼= R/pR ∼= pR.

Applying the Krull-Schmidt theorem, we have that every finitely generated R-
module M decomposes as M ∼= Ra ⊕ Sb for unique a, b ∈ N0 = {0, 1, 2, . . .}.

2.1. Self-dual codes. One class of codes of particular interest is self-dual codes.
Here we present the definition:

Definition 1. The standard inner product is given by b : RN × RN → R where

b(x, y) :=
∑N
i=1 xiyi. For a code C ≤ RN , the dual code is defined as

C⊥ := {x ∈ RN | b(x, c) = 0 for all c ∈ C}.
C is called self-orthogonal if C ⊆ C⊥ and C is called self-dual if C = C⊥.

Let C ≤ RN be a code of length N over the ring R. We write the elements of C as
rows. Let d ∈ N be the smallest integer such that there exist r1, ..., rd ∈ RN which
generate the R-module C. Then a generator matrix of C is a matrix G ∈ Rd×N
where the rows of G are d elements r1, ..., rd generating C. The isomorphism type
of C as an R-module may be read off from a canonical generator matrix which we
will define below. There is also a more structural way to obtain this information.

Remark 2. As |C||C⊥| = |R|N = p2N (see for instance [10, Lemma 3.3.4]) any
self-dual code C = C⊥ ≤ RN is isomorphic, as an R-module, to Ra ⊕ Sb with
2a+ b = N .

We first define families F of self-dual codes. Let F :=
{
C = C⊥ ≤ RN

}
. For

N = 2a+ b with a, b ∈ N0 we define the set

Fa,b :=
{
C ≤ RN | C = C⊥, C ∼= Ra ⊕ Sb

}
⊆ F .

Then F is the disjoint union of the sets Fa,b. Let [C] denote the permutation
equivalence class of the code C ∈ F . Then any of the sets Fa,b is the disjoint union
of finitely many equivalence classes

Fa,b = [C1]
·
∪ . . .

·
∪
[
Ch(a,b)

]
.

We call h(a, b) the class number of Fa,b. Note that, when a = 0 and b = N we
always have h(0, N) = 1, as F0,N consists of a single code:

F0,N =
{
pRN

}
=
[
pRN

]
.

Let C ∈ Fa,b. Then after replacing C by some equivalent code, if necessary, the
code C has a generator matrix

G =

[
Ia X Y
0 pIb pZ

]
where Ia and Ib denote the unit matrices of size a and b respectively, X ∈ {0, . . . , p−
1}a×b, Y ∈ Ra×a and Z ∈ {0, . . . , p− 1}b×a. The self-duality of C is equivalent to
GGtr = 0. Thus XXtr + Y Y tr = −Ia and Y Ztr = −X (mod p).
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2.2. Torsion and residue codes. To any code C over R we can associate a chain
of codes over Fp using the general constructions for codes over finite chain rings
(see [5] or [13]) as follows.

Definition 3. For a vector v ∈ RN , let v denote the canonical projection of v to
the vector space (R/pR)N ∼= FNp . Then the torsion code is given by

Tor(C) = {v : pv ∈ C} ≤ (R/pR)N ∼= FNp
and Tor(C) has the generator matrix[

Ia X Y
0 Ib Z

]
where X,Y and Z are given by the generator matrix G of C. The residue code is
given by

Res(C) = {v : v ∈ C} ≤ (R/pR)N ∼= FNp ,
and Res(C) has the generator matrix[

Ia X Y
]
.

From this definition, it is clear that Res(C) ⊆ Tor(C). It will be helpful for us
to consider the following equivalent definitions for Tor(C) and Res(C). Identifying
pR with Fp by p 7→ 1, we have

Tor(C) = C ∩ pRN ≤ FNp
and

Res(C) = (C + pRN )/pRN ≤ FNp .
We also note that C is of module isomorphism typeRa⊕Sb if and only if dim(Tor(C)) =
a+ b and dim(Res(C)) = a.

The lemma which follows is just [5, Lemma 5.4], but we present a proof here for
the sake of exposition.

Lemma 4. If the code C ≤ RN is self-dual then Res(C)⊥ = Tor(C) with respect
to the standard inner product on FNp .

Proof. Let C = C⊥ ∼= Ra⊕Sb ≤ RN . Then by Remark 2 we have that 2a+ b = N
and hence dim(Tor(C)) + dim(Res(C)) = N . Thus it is enough to show that
C ⊆ C⊥ implies that Tor(C) ⊆ Res(C)⊥.

Let v, w ∈ RN such that v ∈ Tor(C) and w ∈ Res(C). Then b(pv, w) =
pb(v, w) = 0, since pv, w ∈ C and C is self-dual. But then b(v, w) ∈ pR, and
consequently v and w have inner product 0 in FNp . �

Corollary 5. Let C = C⊥ ≤ RN . Then C is uniquely determined by any of its
maximal free submodules.

Proof. Assume that C ∼= Ra⊕Sb and let C1 ≤ C be such a maximal free submodule,
so C1

∼= Ra. Then Res(C) = Res(C1), so given such a C1 it is possible to find
Res(C). Combining this with Lemma 4, we have

Tor(C) = Res(C)⊥ = Res(C1)⊥

and therefore we can determine C ∩ pRN . But since C = C1 + (C ∩ pRN ), we see
that C1 uniquely determines C. �
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Suppose that we have a self-orthogonal code C1 ⊆ C⊥1 ≤ RN with C1
∼= Ra.

Then we also have that RN/C1
∼= HomR(C1, R) ∼= Ra and hence C⊥1

∼= RN−a.
Consequently, we have C1 + pC⊥1

∼= Ra ⊕ SN−2a. Moreover C1 + pC⊥1 is self-
orthogonal and hence self-dual, because |C1 + pC⊥1 | = pN . Therefore we make the
following remark:

Remark 6. Given any self-orthogonal code C1 ⊆ C⊥1 ≤ RN with C1
∼= Ra for

some a, there is always a unique self-dual code C ∼= Ra ⊕ SN−2a containing C1 as
a maximal free submodule, namely C = C1 + pC⊥1 .

A code C over F2 is called doubly-even if the number of nonzero entries in every
codeword in C is divisible by 4. This definition will be illuminated further in the
next section, but a preliminary notion is necessary for the following result.

Corollary 7. If C ⊆ C⊥ ≤ RN is a self-orthogonal code then Res(C) is a self-
orthogonal code of length N over Fp. Moreover if p = 2 then Res(C) is doubly-even.

A special case is b = 0: here C is a free R-module so Res(C) = Tor(C). If we
additionally have that C = C⊥, then Res(C) ≤ FNp is a self-dual code, which is
doubly even if p = 2.

Doubly-even self-dual binary codes exist if and only if the length N is a multiple
of 8. For odd primes p self-dual codes over Fp exist if and only if either the length
N is a multiple of 4, or N is even and p ≡ 1 (mod 4).

Corollary 8. Let C = C⊥ ≤ RN be a self-dual code that is also a free R-module.
Then C ∼= RN/2 so N is even. If p = 2 then the length N is a multiple of 8 and if
p ≡ 3 (mod 4), the length N is a multiple of 4.

We usually get a smoother theory of orthogonal groups (such as Witt’s extension
theorem) if we work with quadratic forms. This is straightforward if p 6= 2: The
function q : RN → R given by q(x) := 1

2b(x, x) is a quadratic form with associated
bilinear form b, as

b(x, y) = q(x+ y)− q(x)− q(y).

Thus the orthogonal groups of b and q coincide and any self-orthogonal code C
satisfies q(C) = {0}, i.e. C is isotropic.
If p = 2 and R = Z/4Z the situation is more complicated: There is a well defined
quadratic form

q : RN → Z/8Z, q(x) :=

N∑
i=1

x2i

where x2i = 1 ∈ Z/8Z if xi = 1 or 3 ∈ R, x2i = 0 if xi = 0, and x2i = 4 if xi = 2 ∈ R.
Then b(x, y) = 1

2 (q(x + y) − q(x) − q(y)) for all x, y ∈ RN . We call C isotropic if
q(C) = {0}. Clearly isotropic codes are always self-orthogonal. Isotropic self-dual
codes are also called doubly-even self-dual codes.

Essentially the same form q may also be obtained as an R-valued quadratic form.
If C ≤ RN is a self-orthogonal code, then b(c, c) = 0 for all c ∈ C, so the number
of odd entries in c is 0 mod 4. Let

X := {x ∈ RN | b(x,1) ≡ 0 (mod 2)}
(where 1 is the all-ones vector) denote the submodule of all vectors having an even
number of odd entries. Then b(x, x) is always even for x ∈ X , so

q : X → R, x 7→ 1

2
|{i | xi is odd }|+ 2|{i | xi = 2}|
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is a well defined R-valued quadratic form with associated bilinear form b. In fact this
quadratic form is obtained from the restriction of the Z/8Z valued form to X and
then dividing by 2. The radical of X is X⊥ = 〈2 · 1〉 and self-dual isotropic codes
correspond to the maximal isotropic subspaces of the non-degenerate quadratic
module (X/X⊥, q).

Note that any self-dual code C contains X⊥ = 〈2 · 1〉 as b(x, 2 · 1) = 2 times
the number of odd entries in x. So the doubly-even self-dual codes are in natural
bijection to the maximal isotropic subspaces of X/X⊥.

Note that the module structure of X/X⊥ is RN−2 ⊕ S2 if N is even and it is
RN−1 if N is odd. A similar situation has been investigated by J.A.Wood [18] for
the case that R = F2 and the quadratic form is Z/4Z-valued. The second approach
to the quadratic form clarifies his “obstruction” to the extendability of isometries.

2.3. Weight enumerators. In this section we will build to the definitions of two
different types of weight enumerators of codes.

Definition 9. Let R be any ring and N ∈ N.

(1) For any c := (c1, ..., cN ) ∈ RN the Hamming weight of c is

wt(c) := |{i, 1 ≤ i ≤ N : ci 6= 0}|.
(2) For any subset C ⊆ RN the minimal Hamming weight of C is

wt(C) = min{wt(c)|0 6= c ∈ C}.

More generally, for each c ∈ RN we can use the notion of the composition of c
to refine its Hamming weight. For each r ∈ R define ar(c) := |{i : ci = r}|. The
set {ar(c)|r ∈ R} is the composition of c and tells us the number of components of
c which are equal to each r ∈ R. This is connected to the Hamming weight in that
wt(c) = N − a0(c).

For a code C ≤ RN the weight enumerator of C is a polynomial attached to
the code and the associated weight. These may give, for example, the number of
codewords with a given weight or with a given composition. Here are two weight
enumerators associated to the Hamming weight:

Definition 10. Let R be a ring and C ≤ RN be a code of length N ∈ N.

(1) The Hamming weight enumerator of C is

hwe(C)(x, y) :=
∑
c∈C

xN−wt(c)ywt(c) ∈ C[x, y]

(2) The complete weight enumerator of C is

cwe(C) :=
∑
c∈C

N∏
i=1

xci =
∑
c∈C

∏
v∈V

xav(c)v ∈ C[xv : v ∈ V ].

Note that in the above definition, both weight enumerators are homogeneous
polynomials of degree N .

Another weight, the Lee weight, is defined on elements of rings of the form
R = Z/mZ for m ∈ N which we identify with the set {0, . . . ,m− 1} ⊂ Z. The Lee
weight can be thought of as the minimum “distance” of an element of r ∈ R to
0 ∈ R. More precisely:

Definition 11. Let R = Z/mZ for some m ∈ N .
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(1) The Lee weight of an element r ∈ R is Lee(r) := min{r,m− r}.
(2) For any N ∈ N and any vector c = (c1, ..., cN ) ∈ RN we define the Lee

weight of c as

Lee(c) =

N∑
i=1

Lee(ci).

Note that in the case where m = 2 we find that for any c ∈ RN wt(c) = Lee(c).
In the case of quartenary codes we have R = {0, 1, 2, 3} and the Lee weights of
these elements are, respectively, 0, 1, 2, 1.

2.4. The associated Clifford-Weil groups. One main goal of the book [10] is
to develop a general theory of a “Type” T of a self-dual code over a finite alphabet
V . To such a Type one may associate in a very natural way a finite subgroup
C(T ) ≤ GL|V |(C), the associated Clifford-Weil group such that the complete weight
enumerators of self-dual codes of Type T are invariant under C(T ). In fact one of
the main results of [10] is that for codes over finite chain rings (or more general
matrix rings over finite chain rings) the complete weight enumerators of self-dual
codes of Type T and lengthN span the space of degreeN homogeneous invariants of
C(T ). This section intends to explain the recipe to compute C(T ) for our situation
without introducing the general, but quite heavy, machinery from [10].

In our situation the alphabet V = R = Z/p2Z is the ring itself. As any code
C ≤ RN is an R-module we have C = rC for any r ∈ R∗ and hence also

cwe(C)(x0, x1, . . . , xp2−1) = cwe(C)(xr·0, xr·1, . . . , xr·(p2−1))

so complete weight enumerators of codes are invariant under all variable substitu-
tions

mr : xv 7→ xrv,

where r is a unit in R.
There is a famous theorem, proven in the PhD thesis of Jessie MacWilliams, that

relates the weight enumerator of a code over a finite field to the weight enumerator
of its dual code. This result is proved in greater generality in [10, Section 2.2]). In
our situation this reads as follows: Let ζ := exp( 2πi

p2 ) ∈ C be a primitive p2-th root

of unity. For v ∈ Z/p2Z we define h(xv) :=
∑
w∈Z/p2Z ζ

vwxw. Then for any code

C ≤ (Z/p2Z)N the complete weight enumerator of the dual code is

cwe(C⊥)(x0, x1, . . . , xp2−1) =
1

|C|
cwe(C)(h(x0), h(x1), . . . , h(xp2−1)).

In particular if C = C⊥ then |C| = pN and cwe(C) is invariant under

H :=
1

p
h : xv 7→

1

p

∑
w∈Z/p2Z

ζvwxw.

One additional ingredient of a Type are certain quadratic conditions. One of
these conditions comes from the inner product of codewords with themselves: If

C ≤ RN is self-orthogonal, then b(c, c) =
∑N
i=1 c

2
i = 0 for all c ∈ C and hence

cwe(C) is invariant under the variable substitution d with

d(xv) := ζv
2

xv
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Definition 12. The associated Clifford Weil group of the Type of all self-dual codes
over Z/p2Z is

C(p2) := 〈mr, H, d | r ∈ Z/p2Z∗〉 ≤ GLp2(Q[ζ]).

With this notation the main result of [10] implies that

Theorem 13. The invariant ring of C(p2) is spanned by the complete weight enu-
merators of all self-dual codes over Z/p2Z.

As an example we give explicit generators for p = 2 and p = 3:

C(4) = 〈m3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , H =
1

2


1 1 1 1
1 ζ −1 −ζ
1 −1 1 −1
1 −ζ −1 ζ

 , d = diag(1, ζ, 1, ζ)〉

of order 26 = 64 where ζ = i is a primitive fourth root of unity and

C(9) = 〈m2, H, d〉
where d = diag(1, ζ, ζ4, 1, ζ7, ζ7, 1, ζ4, ζ), and ζ is a primitive ninth root of unity,

m2 =



1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0


, and H =

1

3



1 1 1 1 1 1 1 1 1
1 ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

1 ζ2 ζ4 ζ6 ζ8 ζ ζ3 ζ5 ζ7

1 ζ3 ζ6 1 ζ3 ζ6 1 ζ3 ζ6

1 ζ4 ζ8 ζ3 ζ7 ζ2 ζ6 ζ ζ5

1 ζ5 ζ ζ6 ζ2 ζ7 ζ3 ζ8 ζ4

1 ζ6 ζ3 1 ζ6 ζ3 1 ζ6 ζ3

1 ζ7 ζ5 ζ3 ζ ζ8 ζ6 ζ4 ζ2

1 ζ8 ζ7 ζ6 ζ5 ζ4 ζ3 ζ2 ζ


.

We computed that |C(9)| = 2334 = 648.
Adding certain “quadratic” conditions we obtain overgroups of these associated

Clifford Weil groups: For instance we may consider only those self-dual codes that
contain the all ones vector 1 = (1, . . . , 1). We have that 1 ∈ C⊥ if and only if

b(c,1) =
∑N
i=1 ci = 0 for all c ∈ C. Then the weight enumerator of C is invariant

under d1 : xv 7→ ζvxv and we obtain the associated Clifford Weil groups

C1(p2) := 〈C(p2), d1〉.
For p = 2 we could also restrict to doubly-even self-dual codes which yields an
additional invariance condition of the weight enumerator under the transformation

dq : xv 7→ ζv
2

8 xv, where ζ8 is a primitive 8th root of unity. We hence obtain

Cq(4) := 〈C(4), dq〉 and C1,q(4) := 〈C(4), dq, d1〉.
The isomorphism type of these Clifford Weil groups may be read off from the

description of the hyperbolic co-unitary groups in [10, Definition 5.2.4]. From this
we obtain the following:

Remark 14. For odd primes p the group C(p2) is isomorphic to SL2(Z/p2Z) ∼=
(Z/pZ)3 : SL2(Z/pZ). The group C(4) is isomorphic to an extension of (Z/2Z)2 by
a certain Sylow 2-subgroup S of SL2(Z/4Z), namely

S = {
(
a b
c d

)
∈ SL2(Z/4Z) | ac ∈ 2Z, bd ∈ 2Z}.
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2.5. Equivalence of codes.

Definition 15. Let π ∈ SN be a permutation of {1, ..., N} and let a1, . . . , aN ∈ R∗.
A monomial map is a map ((a1, . . . , aN ), π) : RN → RN given by

((a1, . . . , aN ), π)(r1, ..., rN ) :=
(
a1rπ(1), . . . , aNrπ(N)

)
.

For the ring R, the set of all monomial maps is a group. We call this the
monomial group and denote it by MonN (R).

Monomial maps are interesting in this context because of their connection to the
Hamming weight. What follows is the MacWilliams extension theorem which was
originally proved for codes over finite fields, but later extend to the more general
setting of codes over finite rings by Wood in [17].

Theorem 16 (MacWilliams extension theorem). Let C ≤ RN and ϕ : C → RN be
a homomorphism which preserves the Hamming weight, i.e. wt(c) = wt(ϕ(c)) for
all c ∈ C. then there exists a monomial map ((a1, . . . , aN ), π) such that

((a1, . . . , aN ), π)(c) = ϕ(c)

for all c ∈ C.

So if one only considers the Hamming weight, the natural notion of equivalence
for codes is monomial equivalence, where two codes are called monomially equiva-
lent if they are in the same orbit under the monomial group.

Monomial maps do not preserve the bilinear form b and hence they do not
preserve self-duality. This leads to the notion of strong monomial equivalence: this
is where we restrict the values a1, ..., aN to the set {±1}. In this case, a2i = 1 and
thus the bilinear form b is preserved.

In this paper we consider an even finer equivalence relation, the permutation
equivalence:

Definition 17. Two codes C,D ≤ RN are called (permutation) equivalent, C ≡ D,
if there is a coordinate permutation π ∈ SN such that π(C) = D. Let

[C] := {D | D ≡ C}

denote the (permutation) equivalence class of the code C and

Aut(C) := {π ∈ SN | π(C) = C}

the automorphism group of C.

Note that permutation equivalent codes have the same complete weight enumer-
ator.

No matter which type of equivalence we take, equivalent codes are always iso-
morphic as modules. However, two codes of the same module type need not be
equivalent as codes. Thus

C ≡ D ⇒ C ∼= D.

3. The action of the orthogonal group

Definition 18. The orthogonal group ON (R) is the group of all R-linear maps
preserving the bilinear form b,

ON (R) := {ϕ ∈ GLN (R) | b(ϕ(x), ϕ(y)) = b(x, y) for all x, y ∈ RN}.
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For R = Z/4Z the theory becomes much smoother if we work with quadratic
forms. Recall that X = {x ∈ (Z/4Z)N | b(x, x) ∈ 2Z} with radical X⊥ = 〈2 · 1〉.
Then

q : X → R, x 7→ 1

2
|{i | xi is odd }|+ 2|{i | xi = 2}|

is a well defined R-valued quadratic form, and X/X⊥ is a nondegenerate quadratic
space with respect to q. Note that the module structure of X/X⊥ ∼= RN−2 ⊕ S2 if
N is even and it is RN−1 if N is odd.

For orthogonal groups of quadratic forms over fields, there is a famous theo-
rem attributed to Ernst Witt, that orthogonal mappings from subspaces extend to
orthogonal mappings of the full space.

Theorem 19. (Witt’s extension theorem) (See for instance [7] or [18])
Let (V, q) be a regular quadratic space over a field K and U ≤ V . For any K-linear
injective map ϕ : U → V with q(ϕ(u)) = q(u) for all u ∈ U , there is g ∈ O(V, q)
such that ϕ = g|U .

Martin Kneser [7] generalized this theorem to local rings, if U is a free module.
It is easy to see that Witt’s extension theorem is wrong without this assumption

that U be free: In our situation R = Z/p2Z we could choose u := (p, 0, . . . , 0) and
w := (p, . . . , p︸ ︷︷ ︸

p

, 0, . . . , 0). Then b(u, u) = b(w,w) = 0 but there is no g ∈ ON (R)

with g(u) = w, because any such g would map ũ := {x ∈ RN | px = u} =
(1, 0, . . . , 0) + pRN to w̃ = (1, . . . , 1, 0, . . . , 0) + pRN but the elements x ∈ ũ satisfy
b(x, x) ∈ 1 + pR and the elements y ∈ w̃ satisfy b(y, y) ∈ pR.

Note that this is also true for odd primes p, so this is not caused by the problem
of working with a bilinear form instead of a quadratic form.

Nevertheless, the following theorem is true:

Theorem 20. Let Fa,b := {C = C⊥ ≤ RN | C ∼=R Ra ⊕ Sb} so a, b ∈ N0,
2a+ b = N . If p 6= 2, then ON (R) acts transitively on Fa,b.

Proof: Let C,D ∈ Fa,b and choose subcodes C ′ ≤ C,D′ ≤ D so that C ′ ∼= Ra,
D′ ∼= Ra. Then C ′ is a free module, any R-isomorphism ϕ : C ′ → D′ preserves the
bilinear form (as this is 0 on C ′ and also on D′), and

HomR(C ′, R) = {c 7→ b(c, x) | x ∈ RN}.
So by [7, Folgerung (4.4)] there is g ∈ ON (R) such that g|C′ = ϕ. Then Corollary
5 implies that g(C) = D. q.e.d.

For p = 2 we want to proceed similarly as for odd primes but (C ′ +X⊥)/X⊥ ≤
X/X⊥ does not satisfy the conditions from [7, Folgerung (4.4)], because (C ′ +
X⊥)/X⊥ is usually not free.

Remark 21. If p = 2, then define

F (q)
a,b := {C = C⊥ ≤ RN | q(C) = {0}, C ∼= Ra ⊕ Sb}

2a+ b = N for a, b ∈ N0. For C ∈ F (q)
a,b there are two possibilities,

(1) 2 · 1 ∈ 2C and then C/X⊥ ∼= Ra−1 ⊕ Sb+1; or,
(2) 2 · 1 6∈ 2C then C/X⊥ ∼= Ra ⊕ Sb.
According to these two possibilities the orthogonal group O(X/X⊥, q) has at least

two orbits F (q)
a,b (1) and F (q)

a,b (2) on F (q)
a,b .
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Remark 22. Keeping the notation of the previous remark, let C ′ ≤ C be a subcode
of C that is free of rank a. Then 2C ′ = 2C and in the first case X⊥ ⊆ C ′ and
C ′/X⊥ = C1 ⊕ 〈v〉 with C1

∼= Ra−1 and 2v = 2 · 1. In the second case X⊥ 6⊆ C ′

and C ′+X⊥/X⊥ ∼= C ′ ∼= Ra is free. So here we may directly apply Witt’s theorem
for local rings [7, Folgerung (4.4)] to show that O(X/X⊥, q) acts transitively on

F (q)
a,b (2).

For F (q)
a,b (1) we can apply [7, Folgerung (4.4)] twice to obtain transitivity:

Lemma 23. Let C,D ∈ F (q)
a,b (1), C ′, D′ free submodules of rank a as before and

C ′ = C1 ⊕ 〈v〉, D′ = D1 ⊕ 〈w〉 as in Remark 22. Then there is u ∈ O(X/X⊥, q)
mapping C ′/X⊥ onto D′/X⊥.

Proof: We first want to find reflections in O(X/X⊥, q) that map v to w. As
both vectors v, w satisfy 2v = 2 · 1 = 2w, we have v, w ∈ {1,−1}N . The element
zi := 2ei = (0, . . . , 0, 2, 0, . . . , 0), with 2 at the i-th place lives in X . We have
q(zi) = 2, bq(zi, x) ∈ 2R for all x ∈ X , so the map

szi : X → X , x 7→ x− bq(zi, x)ei

is a well defined orthogonal mapping szi ∈ O(X/X⊥, q). If x = (x1, . . . , xN ), then
bq(zi, x) = 2xi and hence

q(szi(x)) = q(x− xizi) = q(x) + x2i q(zi)− xibq(x, zi) = q(x) + 2x2i − 2x2i = q(x).

Moreover szi multiplies the i-th coordinate of v by −1, so a certain product of these
reflections szi will map v to w. So we may assume without loss of generality that
v = w. We now replace X/X⊥ by the subspace

E := 〈v〉⊥ = {x+ X⊥ | x ∈ X , bq(x, v) = 0} ≤ X/X⊥.

As E⊥ = 〈v〉/X⊥ any g ∈ O(E, q) perserves v. Moreover C1
∼= C1 + X⊥/X⊥ ≤ E

and D1
∼= D1+X⊥/X⊥ ≤ E are both free submodules of E. By Witt’s theorem for

free modules over local rings, there is such a mapping g ∈ O(E, q) with g(C1) = D1.
q.e.d.

Corollary 24. The orthogonal group O(X/X⊥, q) has two orbits on the set F (q)
a,b :

F (q)
a,b (1) := {C ∈ F (q)

a,b | 2 · 1 ∈ 2C}
and

F (q)
a,b (2) := {C ∈ F (q)

a,b | 2 · 1 6∈ 2C}

One might replace O(X/X⊥, q) by the group ON (R, q) in this corollary, however
we have not yet closed a necessary gap in the proof. It would also be interesting
to have a similar result for p = 2 and ON (Z/4Z) for the set Fa,b. This might be
obtained along the lines of [15].

4. Hecke operators

4.1. Survey of the results over fields. The paper [11] defines and analyses
certain linear operators that are shown to be Hecke operators for the associated
Clifford Weil groups in [12]. Let F be a finite field, N ∈ 2N and F be the set
of all self-dual codes in FN . Assume that C1, . . . , Ch represent the permutation
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equivalence classes of codes in F . Let V denote the h-dimensional complex vector
space

V :=

{
h∑
i=1

ai[Ci] | ai ∈ C

}
,

and define a Hermitian positive definite scalar product by

([C], [D]) := |Aut(C)| δ[C],[D]

for all C,D ∈ F .

Definition 25. (1) For 0 ≤ k ≤ N/2, two codes C,D ∈ F are called k-neighbors,
written as C ∼k D, if dim(C ∩D) = dim(C)− k.

(2) Define a linear operator Tk on V by

Tk([C]) :=
∑
D∼kC

[D],

where the sum is over all k-neighbors D ∈ F of the code C. The operator Tk
is called the k-th Kneser-Hecke-operator for F .

(3) Let T := T1 be the Kneser-Hecke-operator and call 1-neighbors simply neigh-
bors.

The following result and it’s proof can be found as [11, Theorem 3], but we state
it here in order to illustrate the approach for codes over fields as compared to codes
over finite chain rings.

Theorem 26. For 0 ≤ k ≤ N/2, the operator Tk is a self-adjoint linear operator
on the Hermitian vector space V.

The main result of [11] is an explicit computation of the T -eigenspace decom-
position of V and the corresponding eigenvalues for all classical types of self-dual
codes over finite fields.

In [12] the action of T on the space of genus m-weight enumerators of the codes
in F coincides with the action of a certain linear combination of double cosets of
the associated Clifford Weil groups.

There is also a nice representation theoretic interpretation of T (see [14, Chapter
5]): Let A denote the adjacency matrix of the neighboring graph whose vertices
are the elements of F and two vertices C and D are connected by an edge, if and
only if C and D are neighbors. The associated orthogonal group O(FN ) acts on
the set F and respects the neighboring relation. In particular, A is an element in
the endomorphism ring of the corresponding permutation representation of O(FN ).
This endomorphism ring is well-known and can be described in the framework of
Bruhat Tits theory using the Weil group of O(FN ). In particular, it is shown in [14,
Section 5.3.13] that the action of A coincides with the one of a certain (very natural)
double coset of O(FN ). This implies that A generates the endomorphism ring of this
permutation representation as a C-algebra, and in particular, this endomorphism
ring is commutative and hence the permutation representation is multiplicity free.

The aim of the next section is to generalize some of these aspects to codes over
finite chain rings, where we start with R = Z/p2Z.
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4.2. Kneser-Hecke-operators for R. We now return to the situation where R =

Z/p2Z. As before, let F =
·
∪2a+b=N Fa,b denote the set of all self-dual codes in RN .

Assume that C1, . . . , Ch represent the permutation equivalence classes of codes in
F . Let V denote the h-dimensional complex vector space

V :=

{
h∑
i=1

ai[Ci] | ai ∈ C

}
,

and define a Hermitian positive definite scalar product by

([C], [D]) := |Aut(C)| δ[C],[D]

for all C,D ∈ F . Then, V is the orthogonal sum of all Va,b with 2a+ b = N , where
Va,b is the subspace of V generated by all [C] with C ∈ Fa,b.

Definition 27. (1) Two codes C,D ∈ F are called neighbors, denoted C ∼ D, if
C/(C∩D) ∼= D/(C∩D) ∼= pR. We call them free neighbors, denoted C ∼R D,
if C/(C ∩D) ∼= D/(C ∩D) ∼= R.

(2) We define a graph Γ with vertex set F . Two vertices C and D are joined by
an edge in Γ, if C ∼ D. Similarly we define the graph Γa as the restriction of
Γ to Fa,b.

In the following we will mainly be concerned with the neighboring relation ∼ and
the graphs Γa. However ∼R might be the more suitable generalization of neighbors
over fields, as this relation preserves the module isomorphism type.

Lemma 28. If C ∼R D, then C ∼= D as R-modules.

Proof. By definition, we have the exact sequences

0→ C ∩D → C → R→ 0, 0→ C ∩D → D → R→ 0.

As R is a free module, both sequences split and hence C ∼= C ∩D ⊕R ∼= D. �

Note that this lemma is not true if one replaces free neighbors by neighbors.
Now we define a linear operator T on V by T ([C]) =

∑
D∼C [D]. By arranging the

basis elements according to module isomorphism type, we have

T =


T0 . . .
... T1

. . .
...

. . . Tn

 ,
where n = bN2 c and

Ta : Va,b → Va,b, Ta([C]) :=
∑

D∼C,D∈Fa,b

[D]

can be computed from the adjacency matrix of the neighboring graph Γa. We
immediately observe that for any choice of F , T0 = [0], since there is only one code
in F of isomorphism type SN . Note that our notation does not imply that T is a
block diagonal matrix. On the contrary, as we will see below, for odd primes p the
matrices Ta are all 0. So the Ta are only interesting for p = 2 and for odd primes
one should probably consider free neighbors or the matrix T 2 to obtain interesting
operators on Va,b.



14 AMY FEAVER, ANNA HAENSCH, JINGBO LIU, AND GABI NEBE

Theorem 29. The Kneser-Hecke-operators T (and hence all the Ta) and TR are
self-adjoint linear operators on the Hermitian space V.

Proof. Let us prove the self-adjointness of T , this implies that the Ta as the sum-
mands of Va,b are orthogonal. By definition, T is linear. For basis vectors [C], [D]
with C,D ∈ F , one has

N !
|Aut(D)| |{C

′ ∈ F | C ′ ∼ D and C ′ ≡ C}|

=
∑
D̃≡D |{C ′ ∈ F | C ′ ∼ D̃ and C ′ ≡ C}|

=
∑
C̃≡C |{D′ ∈ F | D′ ∼ C̃ and D′ ≡ D}|

= N !
|Aut(C)| |{D

′ ∈ F | D′ ∼ C and D′ ≡ D}|.

The middle equality follows since the neighboring relation is symmetric and invari-
ant under equivalences. Therefore

(T ([C]), [D]) = |Aut(D)| |{D′ ∈ F | D′ ∼ C and D′ ≡ D}|

= |Aut(C)| |{C ′ ∈ F | C ′ ∼ D and C ′ ≡ C}| = ([C], T ([D])).

Hence T is self-adjoint. The self-adjointness of TR follows similarly. �

4.3. Connected components of Γa. Although it is known from [8] that Γ is a
connected graph, it does not follow that the Γa are connected. In fact, it is not
difficult to compute explicit examples in which the Γa have multiple connected
components; one such example will appear in Section 5. Therefore, it is of interest
to understand the size and composition of the connected components of the Γa. To
do this, we will begin by studying some of the natural lifts of neighboring codes
over R to codes over Fp, as described in Definition 2.

Lemma 30. Let C,D ∈ Fa,b be neighbors, C ∼ D. Then Tor(C) = Tor(D) and
Res(C) = Res(D).

Proof. Let C ∼ D and put E := C ∩ D. Then C/E and D/E are two distinct
minimal submodules of E⊥/E, and hence E⊥/E ∼= S ⊕ S is not cyclic.

It suffices to show that C ∩ pRN = D ∩ pRN as this implies Tor(C) = Tor(D).
The equality of the residue codes then follow from Lemma 30.

Seeking for a contradiction we suppose that C ∩ pRN 6= D ∩ pRN , we get

C = C ∩ pRN + E,

so we may choose x = pv ∈ C ∩ pRN such that C = E ⊕ 〈x〉.
Next, we will show that for any w ∈ E⊥ \ C, it follows that pw 6∈ pE. To show

this, suppose that w ∈ E⊥ \ C. Then 〈w, x〉 6= 0, or else it would follow that
〈w, e+x〉 = 0 for every e ∈ E, and hence w ∈ C = C⊥. Now suppose there is some
y ∈ E so that pw = py, then 〈y, x〉 = 0, since y ∈ E ⊆ C = C⊥. But then,

0 = 〈y, x〉 = 〈y, pv〉 = 〈py, v〉 = 〈pw, v〉 = 〈w, pv〉 = 〈w, x〉 6= 0,

a contradiction.
Since C ∩ pRN 6= D ∩ pRN , we may similarly say that D = E ⊕ 〈pw〉 for some

pw ∈ D ∩ pRN . But then clearly pw ∈ E⊥ \ C. However,

p · pw = p2w = 0 ∈ pE
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contradicting what was established in the preceding paragraph. Therefore, we may
conclude that C ∩ pRN = D ∩ pRN . �

Now we define the following set,

N(C) := {D ∈ Fa,b | Tor(D) = Tor(C)} ,

noting that in view of Lemma 30, N(C) contains all neighbors of C which are of
the same module isomorphism type. Recalling Definition 2, we have

Res(C) := (C + pRN )/pRN ≤ (R/pR)N = FNp ,

and so from Lemma 30, we also have

N(C) = {D ∈ Fa,b | Res(D) = Res(C)} .

For any D ∈ N(C) it is clear that N(C) = N(D). Furthermore, for D ∈ N(C) we
have D+pRN = C+pRN from Lemma 30. Hence, any such a family N(C) defines
a unique non-degenerate bilinear Fp-vector space

W := C + pRN/C ∩ pRN ∼= F2a
p ,

with the bilinear form 〈., .〉 : W ×W → Fp given by〈
c+ px+ (C ∩ pRN ), d+ py + (C ∩ pRN )

〉
=

1

p
b(c+ px, d+ py).

The Fp-bilinearity is clear as b is bilinear over R, and note that this product is
well-defined because for all c, d ∈ C and x, y ∈ RN we have

b(c+ px, d+ py) = b(c, d) + p(b(x, d) + b(c, y)) = p(b(x, d) + b(c, y)),

hence

〈c+ px+ (C ∩ pRN ), d+ py + (C ∩ pRN )〉 = b(x, d) + b(c, y) (mod p) ∈ Fp,

and since (C ∩ pRN ) = (C + pRN )⊥, this value is independent of choice of repre-
sentative. Finally, the non-degeneracy follows from the fact that

〈c+ px+ (C ∩ pRN ), d+ py + (C ∩ pRN )〉 = 0

for all d+ py ∈ C + pRN , if and only if c+ px ∈ (C + pRN )⊥ = C ∩ pRN , and thus
if and only if c+ px+ (C ∩ pRN ) = 0 ∈W .

Lemma 31. C/(C ∩ pRN ) and X := pRN/(C ∩ pRN ) are maximal isotropic sub-
spaces of W with

W = C/(C ∩ pRN )⊕ pRN/(C ∩ pRN ).

Proof. As C = C⊥ and pRN = (pRN )⊥ are maximal self-dual submodules of
(RN , b), their images are maximal self-dual subspaces of W . Note that both Fp-
vector spaces have dimension a and 2a = dim(W ). To see that the sum is direct,
it is enough to show that their intersection is 0, but this is clear, as

C/(C ∩ pRN ) ∩ pRN/(C ∩ pRN ) = (C ∩ pRN )/(C ∩ pRN ) = {0}.

�
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Let (e1, . . . , ea) be any Fp-basis of C/(C ∩ pRN ). By the non-degeneracy of 〈., .〉
there are elements (f1, . . . , fa) ∈ X := pRN/(C ∩ pRN ) such that 〈ei, fj〉 = δij .
Then (e1, . . . , ea, f1, . . . , fa) is a basis of W .

Let

M(C) := {Y ≤W | 〈Y, Y 〉 = {0},W = Y ⊕X}
denote the set of all totally isotropic complements of X in W .

Lemma 32. The mapping ϕ : N(C)→M(C), D 7→ D/(C ∩ pRN ) is a bijection.

Proof. For any code D ∈ N(C), we have that C ∩ pRN = D ∩ pRN and N(D) =
N(C). As we have already seen in the previous lemma that C/(C ∩ pRN ) is a
totally isotropic complement of X in W , the same is true for D/(C ∩ pRN ). So ϕ
is well-defined.

That the map is a bijection follows from the homomorphism theorem: The map
RN → RN/(C ∩ pRN ), x 7→ x + (C ∩ pRN ) is an R-module epimorphism with
kernel C ∩pRN , so it defines a bijection between the set of all submodules D of RN

that contain C ∩ pRN and the submodules of RN/(C ∩ pRN ). Such a submodule
D lies in N(C), if and only if dim(D/(C ∩ pRN )) = a, D/(C ∩ pRN ) is isotropic
and D ∩ pRN = C ∩ pRN , and thus if and only if D/(C ∩ pRN ) lies in M(C). �

Lemma 33. Any Y ∈M(C) has a unique basise1 +

a∑
j=1

S1jfj , . . . , ea +

a∑
j=1

Sajfj


for some matrix S ∈ Fa×ap such that S + Str = 0. Call this space Y (S).

Proof. Let Y ∈ M(C). Then Y is a complement of X = 〈f1, . . . , fa〉, and in
particular, there are b1, . . . , ba ∈ Y , z1, . . . , za ∈ X, such that ei = bi − zi for
i = 1, . . . , a. AsW = Y⊕X, these bi and zi are uniquely determined and (b1, . . . , ba)
is a basis of Y . Moreover there are unique Sij ∈ Fp such that zi =

∑a
j=1 Sijfj .

That S is skew symmetric follows from the fact that Y is isotropic:

〈bi, bk〉 =

〈
ei +

a∑
j=1

Sijfj , ek +

a∑
j=1

Skjfj

〉
= Sik + Ski = 0.

�

Combining these two bijections we hence obtain a bijection

skew : N(C)→
{
S ∈ Fa×ap | S + Str = 0

}
= Skewa .

We note that then skew(C) = 0 since C maps to C/(C ∩ pRN ) which already has
(e1, ..., ea) as a basis and consequently the S from Lemma 33 is the all zeros matrix.

Remark 34. Everything is completely analogous if we work with quadratic forms
for p = 2, but then the image of skew lies in the space of alternating matrices, so
that S = Str ∈ Fa×a2 , Sii = 0 for all i.

Remark 35. Let D ∈ N(C). Then dim(D/(D ∩ C)) = dim(C/(D ∩ C)) =
dim(ϕ(D)/(ϕ(D) ∩ ϕ(C))) = dim(ϕ(C)/(ϕ(D) ∩ ϕ(C))) = rank(skew(D)).

Because the rank of an alternating matrix is always even, the code C has no
neighbors in N(C).
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Corollary 36. If p is odd or we deal with quadratic forms for p = 2 (i.e. doubly
even quaternary codes), then Ta = 0 for all a.

5. Some results for Z/4Z

In this section we turn our attention to the special case where p = 2, and R =
Z/4Z. In this case we are able to compute the adjacency matrix, T , associated to
the linear operator on V. With these computations we make observations about the
eigenvalues associated to each orthogonal component, Ta, and eventually describe
the associated eigenspace. Before doing so, we establish the following results.

Lemma 37. For any doubly-even binary code H ≤ FN2 of dimension a, there exists
a code C ∈ Fa,b such that Res(C) = H. Hence, N(C) = {D ∈ Fa,b | Res(D) = H}.

Proof. Suppose that H ≤ FN2 is a doubly-even binary code of dimension a with

generator matrix G ∈ Fa×N2 . Then it is possible to lift G to an a × N matrix A
over R. It is clear that A · Atr = 2Z for some Z ∈ Fa×a2 . Moreover, this matrix
is symmetric with zeroes along the diagonal, since H is doubly-even. Now we will
show that for a suitable choice of A, we have Z = 0, and consequently we will have
the generating matrix for a self-dual code in RN . Replacing A with A+2B for some
B ∈ Fa×N2 , we obtain (A+ 2B)(A+ 2B)tr = 2Z + 2(A ·Btr +Atr ·B). But since A
has rank a, its columns contain a basis for Fa2 and it is therefore possible to choose
B so that A · Btr = [zij ] where zij = 0 for i ≤ j, and for i > j, zij is the entry in
the ith row and jth column of Z. From here it is clear that (A+2B)(A+2B)tr = 0,
and therefore A + 2B is the generating matrix for a self-orthogonal code, say C1,
which is a free R-module of rank a. By Remark 6, there is a unique self-dual code
C = C1 + 2C⊥1 ∈ Fa,b that contains C1 as a maximal free submodule. �

Combining this lemma with the general discussion in the previous section we
arrive at the following main results.

Theorem 38. For p = 2, the connected components of the graph Γa are in bijection
with the binary doubly-even codes of length N and dimension a.

Proof. To begin, suppose that C,D ∈ Fa,b, with C ∼ D, and let H = Res(C).
From Lemma 30, it follows that C + 2RN = D + 2RN , and hence Res(D) = H.
Extending this argument, we can easily see that for any C,D ∈ Fa,b which are
connected by a path of neighbors in Fa,b, all codes in that path will lift to H. This
proves one direction of the claim.

Now, suppose we have two arbitrary codes C,D ∈ Fa,b with Res(C) = Res(D) =
H where H ≤ FN2 is a doubly-even binary code. From here we know that C and
D are in N(C), and from the general results in the previous section, including the
bijectivity of the skew map, we can conclude that C and D are connected by a
chain of neighbors. �

Clearly if H and H ′ are equivalent doubly-even codes then the equivalence be-
tween H and H ′ (which is just a permutation in SN ) gives rise to a simultaneous
equivalence between any codes C and C ′ for which Res(C) = H and Res(C ′) = H ′.
Recalling that the nodes of Γa are defined as the permutation equivalence classes
of codes in Fa,b, the entire discussion above holds up to permutation equivalence;
that is to say, the equivalence classes of binary doubly-even codes of length N and
dimension a precisely described the connected components of Γ.
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Let H1, . . . ,Ht be a system of representatives of equivalence classes of binary
doubly even codes of length N and dimension a. When a = N/2 and N is not
congruent to 0 mod 8, then it is an immediate consequence of Corollary 8 that
t = 0, and therefore the associated eigenspace is trivial.

Corollary 39. The maximal eigenvalue of Ta is 2a−1. This occurs with multiplicity
t and the eigenspace of Ta to the eigenvalue 2a − 1 has a basis (σ1, . . . , σt) where

σi =
∑

C∈π−1(Hi)

1

|Aut(C)|
[C].

Proof. In view of Theorem 38, we know that counting the neighbors of C in Fa,b is
equivalent to counting the number of elements in M(C), which will be equal to the
number of (a−1)-dimensional subspaces of Fa2 . Consequently, Γa is (2a−1)-regular,
and therefore has the all ones eigenvector and 2a − 1 is an eigenvalue. Moreover,
from the Peron-Frobenius Theorem we can be guaranteed that this is indeed the
maximal eigenvalue.

Since the neighboring relation is symmetric, the connected components of Γa are
strongly connected, therefore the multiplicity of the eigenvalue 2a − 1 is the same
as the number of connected components, namely, t. �

Now we will compute an explicit example when N = 8. Using Magma, we
compute the permutation equivalence classes of the codes. There are 29 distinct
permutation equivalence classes when N = 8, which we will enumerate by module
isomorphism type, where [4a2b]n will denote the nth permutation equivalence class
of codes isomorphic to Ra ⊕ Sb as R-submodules. Then we have

[4028]1

[4126]n where 1 ≤ n ≤ 4

[4224]n where 1 ≤ n ≤ 8

[4322]n where 1 ≤ n ≤ 9

[4420]n where 1 ≤ n ≤ 7

Using Magma we compute the adjacency matrix associated to T and its component
block matrices, the Ta, which we give below.

T0 =
[
0
]
, T1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , T2 =



2 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 1 2 0 0 0
0 0 1 0 0 2 0 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0
0 0 0 0 0 2 0 1
0 0 0 0 2 0 1 0


,
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T3 =



6 1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
0 0 0 4 0 3 0 0 0
0 0 1 0 3 0 0 3 0
0 0 0 1 2 1 2 0 1
0 0 1 0 4 2 0 0 0
0 0 0 0 4 0 1 1 1
0 0 0 4 0 0 2 0 1
0 0 0 0 4 0 2 1 0


, T4 =



6 0 6 0 1 1 1
0 0 0 0 8 0 7
8 0 5 1 0 1 0
0 0 6 0 8 1 0
7 1 0 7 0 0 0
8 0 6 1 0 0 0
8 1 0 0 0 0 6


.

Now we can view the graphs Γa associated to each Ta, in particular we take a closer
look at T2. Figure 1 is the graph associated to Γ2, whose nodes are precisely the
permutation equivalence classes of codes isomorphic to R2 ⊕ S4.

[4224]3

[4224]1

[4224]4

[4224]5

[4224]6

[4224]2

[4224]7

[4224]8

Figure 1. Graph of Γ2

The two distinct connected components of Γ2 are determined by the two distinct
permutation equivalence classes of binary doubly-even codes of length 8 and dimen-
sion 2, namely those with generator matrices

H =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]
and H ′ =

[
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0

]
.

The equivalence classes [4224]1 and [4224]2 contain codes with the following gen-
erator matrices,

G1 =


2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 2
0 0 0 0 2 0 2 2
0 0 0 0 0 2 2 2

 and G2 =


2 0 0 0 0 0 0 0
0 1 0 1 0 1 0 3
0 0 1 1 0 0 3 1
0 0 0 2 0 0 0 2
0 0 0 0 2 0 0 0
0 0 0 0 0 2 2 2

 ,
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respectively. Let C1 be the code with generator matrix G1, and C2 the code with
generator matrix G2. Then it’s clear that both C1 and C2 lift to H ′. Similarly, it
can be shown each of the codes in the remaining permutation equivalence classes
lift to H.

Furthermore, for each a we compute the eigenvalues, λ, associated to each Ta,
and their multiplicities t, which we give in the table below, noting that in any case
the largest eigenvalue corresponds to 2a − 1.

a 〈λ, t〉
0 〈0, 1〉
1 〈1, 2〉, 〈−1, 2〉
2 〈3, 2〉, 〈1, 2〉, 〈−1, 3〉, 〈−3, 1〉
3 〈7, 2〉, 〈3, 2〉, 〈−1, 4〉, 〈−5, 1〉
4 〈15, 1〉, 〈7, 2〉, 〈−1, 3〉, 〈−9, 1〉

References

[1] C. Bachoc, On harmonic weight enumerators of binary codes, Designs, Codes, and Cryptog-
raphy 18 (1999), 11–28

[2] C. Bachoc, Harmonic weight enumerators of non-binary codes and MacWilliams identities, in

Codes and association schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001; pp. 1–23
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