Hermitian modular forms congruent to 1 modulo p.

Michael Hentschel and Gabriele Nebe

Abstract. For any natural number ℓ and any prime $p \equiv 1 \pmod{4}$ not dividing ℓ there is a Hermitian modular form of arbitrary genus n over $L := \mathbb{Q}[\sqrt{-\ell}]$ that is congruent to 1 modulo p which is a Hermitian theta series of an O_L -lattice of rank p-1 admitting a fixed point free automorphism of order p. It is shown that also for non-free lattices such theta series are modular forms.

Mathematics Subject Classification (2000). Primary 11F46; Secondary 11E12. Keywords. Hermitian modular forms, ideal lattices, Hermitian lattices.

1. Introduction.

The purpose of the present note is to generalize the construction of Siegel modular forms that are congruent to 1 modulo a suitable prime p given in [3] to the case of Hermitian modular forms over $L := \mathbb{Q}[\sqrt{-\ell}]$. For $\ell = 1$ and $\ell = 3$ this was done in [11], in fact we use the same strategy by constructing an even unimodular lattice A as an ideal lattice in $K := L[\zeta_p]$ for any prime $p \equiv 1 \pmod{4}$ not dividing ℓ . The existence of Λ essentially follows from class field theory and is predicted by [2, Théorème 2.3, Proposition 3.1 (1)] (see also [1, Corollary 2]). Since the ring of integers O_L is in general not a principal ideal domain the lattice Λ is not necessarily a free O_L -module. We are not aware of an explicit statement in the literature that the genus n Hermitian theta series $\theta^{(n)}(\Lambda)$ of such a lattice Λ is a modular form for the full modular group. Therefore the first section sketches a proof. In fact the proofs in the literature never seriously use the fact that the lattice is a free O_L -module. The next section applies the results of [2] and [1] to the special case of the field $K = \mathbb{Q}[\sqrt{-\ell}, \zeta_p]$ and proves the existence of a Hermitian O_K -lattice Λ_h that is an even unimodular \mathbb{Z} -lattice (with respect to the trace of the Hermitian form). The invariance under O_K yields both a Hermitian O_L -module structure on Λ_h and an O_L -linear automorphism (the multiplication by the primitive p-th root of unity $\zeta_p \in O_K$) of order p acting fixed point freely on $\Lambda_h \setminus \{0\}$. Therefore all but the first coefficient in $\theta^{(n)}(\Lambda_h)$ are multiples of p yielding the desired Hermitian modular form.

2. Hermitian theta-series are Hermitian modular forms.

Let $\ell \in \mathbb{N}$ such that $-\ell$ is a fundamental discriminant (which means that either $\ell \equiv -1 \pmod{4}$ is square-free or $\ell = 4m$, where $m \equiv 2$ or 1 (mod 4) is square-free). Let $L := \mathbb{Q}[\sqrt{-\ell}]$ be the imaginary quadratic number field of discriminant $-\ell$, with ring of integers O_L and inverse different

$$O_L^* := \{ a \in L \mid \operatorname{Tr}_{L/\mathbb{Q}}(aO_L) \subset \mathbb{Z} \} = \sqrt{-\ell}^{-1} O_L$$

For $n \in \mathbb{N}$ let trace : $L^{n \times n} \to \mathbb{Q}$ denote the composition of the matrix trace with $\operatorname{Tr}_{L/\mathbb{Q}}$, the trace of L over \mathbb{Q} . Let $J := \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$. Then the **full modular group** $\Gamma_n := \{M \in SL_{2n}(O_L) \mid MJ\overline{M}^t = J\}$ is generated by

$$\Gamma_n = \langle \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix}, \begin{pmatrix} U & 0 \\ 0 & U^{-1} \end{pmatrix}, J \mid B \in O_L^{n \times n} \text{ Hermitian }, U \in \operatorname{GL}_n(O_L) \rangle$$

(see [7], [5, Anhang V], [8]) for the proof that these matrices really generate) acts on the Hermitian half space

$$\mathcal{H}_n := \{ Z \in \mathbb{C}^{n \times n} \mid 1/(2i)(Z - \overline{Z}^t) \text{ Hermitian positive definite } \}$$

by

$$Z \mapsto Z + B, \ Z \mapsto \overline{U}^t Z U, \ Z \mapsto -Z^{-1}$$

for the respective generators.

Let (V, h) be a finite dimensional positive definite Hermitian vector space over L. Recall that an O_L -lattice $\Lambda \subset V$ is a finitely generated O_L -submodule of V that spans V as a vector space. The O_L -dual lattice

$$\Lambda^* := \{ v \in V \mid h(v, \Lambda) \subset O_L \}$$

is again an $O_L\text{-}\text{lattice}$ in V. The Hermitian theta series of the lattice Λ is

$$\theta^{(n)}(\Lambda)(Z) := \sum_{(x_1, \dots, x_n) \in \Lambda^n} \exp(2\pi i \operatorname{trace}(h(x_i, x_j)Z)).$$

This section extends the results in [4] to not necessarily free Hermitian O_L -lattices in (V, h). Note that we use a different scaling for the Hermitian form resulting in the additional factor of 2 in the definition of the Hermitian Siegel theta series. It is already stated in [4] that the authors restrict to free lattices "for convenience" and that the same results hold in the more general context.

Theorem 2.1. Let (V, h) be a positive definite Hermitian space of dimension d over L. Let $\Lambda_h \subset V$ be an O_L -lattice such that

$$\Lambda_h^* = \sqrt{-\ell}\Lambda_h = (O_L^*)^{-1}\Lambda_h.$$

Then its Hermitian theta series $\theta^{(n)}(\Lambda_h)$ is a Hermitian modular form for the full modular group Γ_n .

<u>Proof.</u> For $x := (x_1, \ldots, x_n) \in \Lambda_h^n$ the Hermitian matrix $H := H_x := (h(x_i, x_j)) \in (O_L^*)^{n \times n}$, so for any Hermitian matrix $B \in O_L^{n \times n}$ the trace trace(*HB*) is in \mathbb{Z} . This shows the invariance of $\theta^{(n)}(\Lambda_h)$ under $Z \mapsto Z + B$. Similarly

$$\operatorname{trace}(H_x\overline{U}^{\iota}ZU) = \operatorname{trace}(UH_x\overline{U^{\iota}}Z) = \operatorname{trace}(H_{xU}Z)$$

so the transformation $Z \mapsto \overline{U}^t Z U$ for $U \in \operatorname{GL}_n(O_L)$ just changes the order of summation in $\theta^{(n)}(\Lambda_h)$. It remains to prove the theta-transformation formula

(*)
$$\theta^{(n)}(\Lambda_h)(-Z^{-1}) = \det(Z/i)^d \theta^{(n)}(\Lambda_h)(Z)$$

also for non-free O_L -lattices Λ_h of dimension d that satisfy $\Lambda_h^* = (O_L^*)^{-1}\Lambda_h$. But Poisson summation only depends on the abelian group structure, not on the underlying module, so the proof from [9, p. 110-112] can be adopted to the situation here (for details we refer to [6]). Indeed, as in the usual proof, by the Identity Theorem it suffices to prove (\star) for Z = iY, Y Hermitian positive definite. Let $\varphi : \mathbb{R}^{2dn} \to \mathbb{C}^{d \times n}$ be the obvious isomorphism and consider Λ_h^n as a lattice $\tilde{\Lambda}$ in $\mathbb{C}^{d \times n}$ choosing coordinates with respect to an orthonormal basis of (\mathbb{C}^d, h) . Then there is some $F \in \mathbb{R}^{2dn \times 2dn}$ such that $\tilde{\Lambda} = \varphi(F\mathbb{Z}^{2dn})$ and $H_{\varphi(x)} = \overline{\varphi(Fx)}^{tr} \varphi(Fx)$. Then

$$\theta^{(n)}(\Lambda_h)(iY) = \sum_{g \in \mathbb{Z}^{2dn}} \psi(g)$$

where

$$\psi: \mathbb{R}^{2dn} \to \mathbb{C}, x \mapsto \exp(-2\pi \operatorname{trace}(\overline{\varphi(Fx)}^{tr} \varphi(Fx)Y)).$$

The condition $\Lambda_h^* = (O_L^*)^{-1} \Lambda_h$ implies that $|\det(F)| = 1$ and we can apply the usual Poisson summation to get the result as in [9, pp. 110-112].

3. Congruences of Hermitian theta-series.

Let p be a prime $p \equiv 1 \pmod{4}$ such that ℓ is not a multiple of p. This section constructs a Hermitian O_L -lattice (Λ, h) of rank p-1 admitting an automorphism of order p such that the \mathbb{Z} -lattice $(\Lambda, \operatorname{Tr}_{L/\mathbb{Q}}(h))$ is a positive definite even unimodular lattice. The existence of such a lattice follows from the much more general result [2, Théorème 2.3] together with [2, Proposition 3.1] which are based on Artin's reciprocity law in global class field theory (see [10, Theorem (V.3.5)]). For our special case it is however more convenient to use [1, Corollary 2], which is essentially a consequence of [2, Théorème 2.3].

To this aim we consider the number field $K = \mathbb{Q}[\sqrt{-\ell}][\zeta_p] = LM$ with $M = \mathbb{Q}[\zeta_p]$, where $\zeta_p = \exp(\frac{2\pi i}{p})$ is a primitive *p*-th root of unity. Then *K* is an abelian number field of degree 2(p-1) over \mathbb{Q} which is a multiple of 8. The field *K* is totally complex and admits an involution $\overline{}$, the complex conjugation, with fixed field *F* the totally real subfield of *K*.

The following lemma is well known.

Lemma 3.1. K/F is unramified at all finite primes.

<u>Proof.</u> The discriminant $d_{K/F}$ of K/F divides the discriminant of any F-basis of K that consists of integral elements. For $B_1 = (1, \sqrt{-\ell})$ one finds $d_{B_1} =$ $\det(\operatorname{Tr}_{K/F}(b_i b_j)) = -4\ell$ and for $B_2 = (1, \zeta_p)$ one get $d_{B_2} = \zeta_p^{-2}(\zeta_p^2 - 1)^2$ which generates an ideal of norm p^2 in F. Since p is an odd prime not dividing ℓ , the gcd of these two discriminants is 1 and hence $d_{K/F} = 1$ which implies the lemma. \Box

Since all real embeddings of F extend to complex embeddings of K and $[K : \mathbb{Q}] = 2(p-1) \equiv 0 \pmod{8} [1, \text{ Corollary 2}]$ yields the existence of a fractional O_K -ideal \mathcal{A} in K and a totally positive element $a \in F$ such that the O_K -module \mathcal{A} together with the symmetric integral bilinear form

$$b_a: \mathcal{A} \times \mathcal{A} \to \mathbb{Z}, \ (x, y) \mapsto \operatorname{trace}_{K/\mathbb{Q}}(ax\overline{y})$$

is an even unimodular \mathbb{Z} -lattice $\Lambda := (\mathcal{A}, b_a)$. This means that $b_a(x, x) \in 2\mathbb{Z}$ for all $x \in \mathcal{A}$ and

$$\Lambda^{\#} := \{ x \in K \mid b_a(x, y) \in \mathbb{Z} \text{ for all } y \in \mathcal{A} \} = \Lambda.$$

Corollary 3.2. The O_L -lattice $\Lambda_h := (\mathcal{A}, h(x, y) := \operatorname{Tr}_{K/L}(ax\overline{y}))$ is a Hermitian O_L -lattice with automorphism $x \mapsto \zeta_p x$ of order p such that $\Lambda_h^* = (O_L^*)^{-1} \Lambda_h$.

<u>Proof.</u> Since \mathcal{A} is an ideal of K, the multiplication by $\zeta_p \in O_K$ preserves the lattice \mathcal{A} . It also respects the Hermitian form h, because

$$h(\zeta_p x, \zeta_p y) = \operatorname{Tr}_{K/L}(a\zeta_p x\overline{\zeta_p y})) = \operatorname{Tr}_{K/L}(a\zeta_p \zeta_p^{-1} x\overline{y})) = h(x, y).$$

The fact that $\Lambda_h^* = (O_L^*)^{-1} \Lambda_h$ follows from the unimodularity of the integral lattice Λ : For $y \in K$ we obtain

$$b_a(x,y) = \operatorname{trace}_{L/\mathbb{O}}(h(x,y)) \in \mathbb{Z}$$
 for all $x \in \mathcal{A} \Leftrightarrow h(x,y) \in O_L^*$ for all $x \in \mathcal{A}$

using the fact that \mathcal{A} is an O_L -module and h is Hermitian over O_L . Hence $\Lambda_h^* = (O_L^*)^{-1} \Lambda^{\#} = (O_L^*)^{-1} \Lambda_h$.

Together this implies the existence of a Hermitian modular form of weight p-1 that is congruent to 1 modulo p for more general imaginary quadratic number fields than those treated in [11]:

Theorem 3.3. Let $L = \mathbb{Q}[\sqrt{-\ell}]$ be an imaginary quadratic number field $(-\ell \ a fundamental \ discriminant)$ and let p be a prime $p \equiv 1 \pmod{4}$ not dividing ℓ . Then for arbitrary genus $n \geq 1$ there is a Hermitian modular form

$$F_{p-1}^{(n)} \in M_{p-1}(\Gamma_n)$$

of weight p-1 for the full modular group Γ_n such that

$$F_{p-1}^{(n)} \equiv 1 \pmod{p}.$$

<u>Proof.</u> Corollary 3.2 constructs a Hermitian O_L -lattice Λ_h of rank p-1 admitting an automorphism of order p (which necessarily acts fixed point freely) such that $\Lambda_h^* = (O_L^*)^{-1} \Lambda_h$. By Theorem 2.1 its Siegel theta series is a Hermitian modular form for the full modular group. Since Λ_h admits a fixed point free automorphism of order p, all the representation numbers

$$R_A := |\{(x_1, \dots, x_n) \in \Lambda^n \mid (h(x_i, x_j)) = A\}$$

for any non-zero Hermitian matrix $A \in L^{n \times n}$ are multiples of p and hence

$$F_{p-1}^{(n)} := \theta_{\Lambda_h}^{(n)} \equiv 1 \pmod{p}$$

provides the desired Hermitian modular form.

Since the root lattice E_8 is the unique even unimodular lattice of dimension 8, we obtain the following corollary.

Corollary 3.4. Let $\ell \in \mathbb{N}$ be not a multiple of 5. Then the root lattice E_8 has a Hermitian structure as a lattice Λ_h over the ring of integers of $\mathbb{Q}[\sqrt{-\ell}]$ such that $\operatorname{Aut}(\Lambda_h)$ contains an element of order 5.

References

- E. Bayer-Fluckiger, Determinants of integral ideal lattices and automorphisms of given characteristic polynomial. J. Algebra 257 (2002) 215-221.
- [2] E. Bayer-Fluckiger, J. Martinet, Formes quadratiques lieés aux algèbres semi-simples. J. reine angew. Math. 451 (1994) 51-69
- [3] S. Boecherer, S. Nagaoka, On mod p properties of Siegel modular forms. Math. Ann. 338 (2007) 421-433
- [4] D.M. Cohen, H.L. Resnikoff, Hermitian quadratic forms and hermitian modular forms. Pacific J. Math. 76 329-337 (1978)
- [5] E. Freitag, Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254 Springer (1983)
- [6] M. Hentschel, *Hermitian theta-series as modular forms*. PhD thesis, RWTH Aachen (in preparation).
- [7] H. Klingen, Bemerkung über Kongruenzuntergruppen der Modulgruppe n-ten Grades. Arch. Math. 10 113-122 (1959)
- [8] A. Krieg, Siegelsche Modulformen. Skript RWTH Aachen (2007)
- [9] A. Krieg, Modular forms on half-spaces of quaternions. Lecture Notes in Mathematics, 1143. Springer-Verlag, Berlin, 1985.
- [10] J.S. Milne, *Class field theory*. Lecture Notes available via http://www.jmilne.org/math/
- [11] T. Kikuka, S. Nagaoka, Congruence properties of Hermitian modular forms. Proceedings AMS (to appear).

Michael Hentschel

Lehrstuhl A für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: hentschel@mathA.rwth-aachen.de

Gabriele Nebe

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: nebe@math.rwth-aachen.de