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Abstract. For any natural number ` and any prime p ≡ 1 (mod 4) not divid-

ing ` there is a Hermitian modular form of arbitrary genus n over L := Q[
√
−`]

that is congruent to 1 modulo p which is a Hermitian theta series of an OL-
lattice of rank p− 1 admitting a fixed point free automorphism of order p. It
is shown that also for non-free lattices such theta series are modular forms.
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1. Introduction.

The purpose of the present note is to generalize the construction of Siegel modular
forms that are congruent to 1 modulo a suitable prime p given in [3] to the case of
Hermitian modular forms over L := Q[

√
−`]. For ` = 1 and ` = 3 this was done in

[11], in fact we use the same strategy by constructing an even unimodular lattice
Λ as an ideal lattice in K := L[ζp] for any prime p ≡ 1 (mod 4) not dividing `.
The existence of Λ essentially follows from class field theory and is predicted by
[2, Théorème 2.3, Proposition 3.1 (1)] (see also [1, Corollary 2]). Since the ring of
integers OL is in general not a principal ideal domain the lattice Λ is not necessarily
a free OL-module. We are not aware of an explicit statement in the literature that
the genus n Hermitian theta series θ(n)(Λ) of such a lattice Λ is a modular form
for the full modular group. Therefore the first section sketches a proof. In fact
the proofs in the literature never seriously use the fact that the lattice is a free
OL-module. The next section applies the results of [2] and [1] to the special case
of the field K = Q[

√
−`, ζp] and proves the existence of a Hermitian OK-lattice Λh

that is an even unimodular Z-lattice (with respect to the trace of the Hermitian
form). The invariance under OK yields both a Hermitian OL-module structure on
Λh and an OL-linear automorphism (the multiplication by the primitive p-th root
of unity ζp ∈ OK) of order p acting fixed point freely on Λh \{0}. Therefore all but
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the first coefficient in θ(n)(Λh) are multiples of p yielding the desired Hermitian
modular form.

2. Hermitian theta-series are Hermitian modular forms.

Let ` ∈ N such that −` is a fundamental discriminant (which means that either
` ≡ −1 (mod 4) is square-free or ` = 4m, where m ≡ 2 or 1 (mod 4) is square-
free). Let L := Q[

√
−`] be the imaginary quadratic number field of discriminant

−`, with ring of integers OL and inverse different

O∗

L := {a ∈ L | TrL/Q(aOL) ⊂ Z} =
√
−`−1OL.

For n ∈ N let trace : Ln×n → Q denote the composition of the matrix trace with

TrL/Q, the trace of L over Q. Let J :=

(

0 −In
In 0

)

. Then the full modular group

Γn := {M ∈ SL2n(OL) |MJM
t
= J} is generated by

Γn = 〈
(

In B
0 In

)

,

(

U 0
0 U−1

)

, J | B ∈ On×n
L Hermitian , U ∈ GLn(OL)〉

(see [7], [5, Anhang V], [8]) for the proof that these matrices really generate) acts
on the Hermitian half space

Hn := {Z ∈ Cn×n | 1/(2i)(Z − Zt
) Hermitian positive definite }

by

Z 7→ Z +B, Z 7→ U
t
ZU, Z 7→ −Z−1

for the respective generators.
Let (V, h) be a finite dimensional positive definite Hermitian vector space

over L. Recall that an OL-lattice Λ ⊂ V is a finitely generated OL-submodule of
V that spans V as a vector space. The OL-dual lattice

Λ∗ := {v ∈ V | h(v,Λ) ⊂ OL}
is again an OL-lattice in V . The Hermitian theta series of the lattice Λ is

θ(n)(Λ)(Z) :=
∑

(x1,...,xn)∈Λn

exp(2πi trace(h(xi, xj)Z)).

This section extends the results in [4] to not necessarily free Hermitian OL-lattices
in (V, h). Note that we use a different scaling for the Hermitian form resulting in
the additional factor of 2 in the definition of the Hermitian Siegel theta series. It
is already stated in [4] that the authors restrict to free lattices “for convenience”
and that the same results hold in the more general context.

Theorem 2.1. Let (V, h) be a positive definite Hermitian space of dimension d over
L. Let Λh ⊂ V be an OL-lattice such that

Λ∗

h =
√
−`Λh = (O∗

L)
−1Λh.
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Then its Hermitian theta series θ(n)(Λh) is a Hermitian modular form for the full
modular group Γn.

Proof. For x := (x1, . . . , xn) ∈ Λnh the Hermitian matrix H := Hx := (h(xi, xj)) ∈
(O∗

L)
n×n, so for any Hermitian matrix B ∈ On×n

L the trace trace(HB) is in Z.

This shows the invariance of θ(n)(Λh) under Z 7→ Z +B. Similarly

trace(HxU
t
ZU) = trace(UHxU tZ) = trace(HxUZ)

so the transformation Z 7→ U
t
ZU for U ∈ GLn(OL) just changes the order of

summation in θ(n)(Λh). It remains to prove the theta-transformation formula

(?) θ(n)(Λh)(−Z−1) = det(Z/i)dθ(n)(Λh)(Z)

also for non-free OL-lattices Λh of dimension d that satisfy Λ∗

h = (O∗

L)
−1Λh.

But Poisson summation only depends on the abelian group structure, not on the
underlying module, so the proof from [9, p. 110-112] can be adopted to the situation
here (for details we refer to [6]). Indeed, as in the usual proof, by the Identity
Theorem it suffices to prove (?) for Z = iY , Y Hermitian positive definite. Let

ϕ : R2dn → Cd×n be the obvious isomorphism and consider Λn
h as a lattice Λ̃ in

Cd×n choosing coordinates with respect to an orthonormal basis of (Cd, h). Then

there is some F ∈ R2dn×2dn such that Λ̃ = ϕ(FZ2dn) and Hϕ(x) = ϕ(Fx)
tr
ϕ(Fx).

Then
θ(n)(Λh)(iY ) =

∑

g∈Z2dn

ψ(g)

where

ψ : R2dn → C, x 7→ exp(−2π trace(ϕ(Fx)trϕ(Fx)Y )).

The condition Λ∗

h = (O∗

L)
−1Λh implies that |det(F )| = 1 and we can apply the

usual Poisson summation to get the result as in [9, pp. 110-112]. ¤

3. Congruences of Hermitian theta-series.

Let p be a prime p ≡ 1 (mod 4) such that ` is not a multiple of p. This section con-
structs a Hermitian OL-lattice (Λ, h) of rank p− 1 admitting an automorphism of
order p such that the Z-lattice (Λ,TrL/Q(h)) is a positive definite even unimodular
lattice. The existence of such a lattice follows from the much more general result
[2, Théorème 2.3] together with [2, Proposition 3.1] which are based on Artin’s
reciprocity law in global class field theory (see [10, Theorem (V.3.5)]). For our spe-
cial case it is however more convenient to use [1, Corollary 2], which is essentially
a consequence of [2, Théorème 2.3].

To this aim we consider the number field K = Q[
√
−`][ζp] = LM with

M = Q[ζp], where ζp = exp( 2πip ) is a primitive p-th root of unity. Then K is an

abelian number field of degree 2(p− 1) over Q which is a multiple of 8. The field
K is totally complex and admits an involution , the complex conjugation, with
fixed field F the totally real subfield of K.
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The following lemma is well known.

Lemma 3.1. K/F is unramified at all finite primes.

Proof. The discriminant dK/F of K/F divides the discriminant of any F -basis

of K that consists of integral elements. For B1 = (1,
√
−`) one finds dB1

=
det(TrK/F (bibj)) = −4` and for B2 = (1, ζp) one get dB2

= ζ−2p (ζ2p − 1)2 which

generates an ideal of norm p2 in F . Since p is an odd prime not dividing `, the gcd
of these two discriminants is 1 and hence dK/F = 1 which implies the lemma.
¤

Since all real embeddings of F extend to complex embeddings of K and
[K : Q] = 2(p− 1) ≡ 0 (mod 8) [1, Corollary 2] yields the existence of a fractional
OK-ideal A in K and a totally positive element a ∈ F such that the OK-module
A together with the symmetric integral bilinear form

ba : A×A → Z, (x, y) 7→ traceK/Q(axy)

is an even unimodular Z-lattice Λ := (A, ba). This means that ba(x, x) ∈ 2Z for
all x ∈ A and

Λ# := {x ∈ K | ba(x, y) ∈ Z for all y ∈ A} = Λ.

Corollary 3.2. The OL-lattice Λh := (A, h(x, y) := TrK/L(axy)) is a Hermitian

OL-lattice with automorphism x 7→ ζpx of order p such that Λ∗

h = (O∗

L)
−1Λh.

Proof. Since A is an ideal of K, the multiplication by ζp ∈ OK preserves the lattice
A. It also respects the Hermitian form h, because

h(ζpx, ζpy) = TrK/L(aζpxζpy)) = TrK/L(aζpζ
−1
p xy)) = h(x, y).

The fact that Λ∗

h = (O∗

L)
−1Λh follows from the unimodularity of the integral lattice

Λ: For y ∈ K we obtain

ba(x, y) = traceL/Q(h(x, y)) ∈ Z for all x ∈ A ⇔ h(x, y) ∈ O∗

L for all x ∈ A
using the fact that A is an OL-module and h is Hermitian over OL. Hence Λ∗

h =
(O∗

L)
−1Λ# = (O∗

L)
−1Λh. ¤

Together this implies the existence of a Hermitian modular form of weight
p−1 that is congruent to 1 modulo p for more general imaginary quadratic number
fields than those treated in [11]:

Theorem 3.3. Let L = Q[
√
−`] be an imaginary quadratic number field (−` a

fundamental discriminant) and let p be a prime p ≡ 1 (mod 4) not dividing `.
Then for arbitrary genus n ≥ 1 there is a Hermitian modular form

F
(n)
p−1 ∈Mp−1(Γn)

of weight p− 1 for the full modular group Γn such that

F
(n)
p−1 ≡ 1 (mod p).
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Proof. Corollary 3.2 constructs a Hermitian OL-lattice Λh of rank p− 1 admitting
an automorphism of order p (which necessarily acts fixed point freely) such that
Λ∗

h = (O∗

L)
−1Λh. By Theorem 2.1 its Siegel theta series is a Hermitian modular

form for the full modular group. Since Λh admits a fixed point free automorphism
of order p, all the representation numbers

RA := |{(x1, . . . , xn) ∈ Λn | (h(xi, xj)) = A}|

for any non-zero Hermitian matrix A ∈ Ln×n are multiples of p and hence

F
(n)
p−1 := θ

(n)
Λh
≡ 1 (mod p)

provides the desired Hermitian modular form. ¤

Since the root lattice E8 is the unique even unimodular lattice of dimension
8, we obtain the following corollary.

Corollary 3.4. Let ` ∈ N be not a multiple of 5. Then the root lattice E8 has a
Hermitian structure as a lattice Λh over the ring of integers of Q[

√
−`] such that

Aut(Λh) contains an element of order 5.
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