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1 PAIRS OF DUAL CONES
Around 1900 Voronoï [10] formulated his fundamental algorithm

to enumerate all similarity classes of perfect lattices in a given

dimension. This algorithm has far reaching generalisations ([7], [6],

[4]) used to compute generators and relators for arithmetic groups.

A quite general situation, where one may apply Voronoï’s algo-

rithm, is described in [7]:

Let σ : V1 ×V2 → R be a non-degenerate bilinear mapping on

a pair of isomorphic finite-dimensional real vector spaces V1, V2.
Two open non-empty subsets Pi ⊆ Vi form a pair of dual cones, if

σ is strictly positive on P1 × P2 and for all f ∈ V1 \ P1, y ∈ V2 \ P2
there are f ′ ∈ P1, y

′ ∈ P2 such that σ ( f ,y′) ≤ 0, σ ( f ′,y) ≤ 0.

We now fix a discrete subset D ⊆ P2 \ {0}. For f ∈ P1 we define

• The minimum of f as min( f ) := min{σ ( f ,d ) | d ∈ D},
• S ( f ) := {d ∈ D | σ ( f ,d ) = min( f )},
• and the Voronoï domain V ( f ) := {

∑
d ∈S (f ) add | ad ≥ 0}.

• The element f is called perfect, if S ( f ) spans V2, so if V ( f )
has a non-empty interior.

• PD := { f ∈ P1 | min( f ) = 1, f is perfect }

denotes the set of perfect elements of minimum 1.

In his original application Voronoï aimed to classify all locally

densest lattices. Here

P1 = P2 = { f ∈ R
n×n
sym
| f is positive definite }

is the cone of positive definite symmetric real matrices, Vi = R
n×n
sym

,

σ : V1 ×V2 → R,σ (x ,y) = Tr(xy)

is the trace bilinear form and the set D is

D = {xtrx | 0 , x ∈ Zn }.

Then for f ∈ P1 and x ∈ Z
n
we compute

σ ( f ,xtrx ) = Tr( f (xtrx )) = Tr(x f xtr ) = x f xtr = f [x]

the value of the quadratic form f evaluated at the point x .
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An important point is the admissibility of D, where D is called

admissible if for any sequence ( fi )i ∈N of elements in P1 converging
to the boundary of P1 the sequence min( fi ) converges to 0.

In this very general situation, the main result of Voronoï theory

remains true:

Theorem 1.1. ([7, Theorem 1.9]) Let D ⊂ P2 \ {0} be a discrete
admissible set. Then the Voronoï domains of the perfect elements in
P1 form an exact tessellation of P2.

Exact means that every codimension 1 face of any V (x ) is con-
tained in exactly one other V (y) and it is again a face of V (y). In
this case x ,y ∈ PD are called neighbours. The Voronoï graph ΓD has

vertices PD . Two vertices x ,y ∈ PD are connected by an edge in ΓD
if and only if they are neighbours. Then ΓD is a connected, locally

finite graph.

2 DISCONTINUOUS GROUPS
Assume that we have a subgroup

Ω ≤ Aut(P1) := {д ∈ GL(V1) | P1д = P1}

that acts properly discontinuously on P1, i.e. the stabilizer in Ω
of any point in P1 is finite and the orbit f Ω (f ∈ P1) has no

cluster point. Choose D ⊂ P2 \ {0} discrete, admissible and in-

variant under the adjoint group Ωad ≤ Aut(P2). Recall that for

д ∈ Aut(P1) the element дad is the unique element in Aut(P2) such

that σ ( f д,y) = σ ( f ,yдad ) for all f ∈ V1,y ∈ V2. Then Ω acts on

PD . Assume that there are only finitely many orbits. Then we may

choose representatives R := { f1, . . . , ft } of these Ω orbits on PD
that form the vertices of a connected subtree of ΓD . Let T ⊂ PD \ R
be the (finite) set of all vertices in ΓD that are neighbours of some

element of R. Then for each f ∈ T there is some ωf ∈ Ω such that

f ωf ∈ R and

Theorem 2.1. (see [7, Theorem 2.2])

Ω = ⟨StabΩ ( fi ),ωf | 1 ≤ i ≤ t , f ∈ T ⟩.

To turn this theorem into a constructive algorithm one needs to

be able to fulfill the following tasks

(a) Find some element f ∈ PD .
(b) Compute the stabiliser in Ω of an element f ∈ PD .
(c) Find all neighbors y of f (up to the action of StabΩ ( f )).
(d) Check for all y whether there is some ω ∈ Ω such that yω is

already known.

Problems (b) and (d) often can be solved by computing isometries

of lattices in Euclidean spaces (see [8]).

Defining relations are obtained using Bass-Serre theory by walk-

ing around the codimension 2 faces of the Voronoï domains of the

elements in R (see [5]). For more details the reader is referred to

[4], in particular [4, Theorem 4.1].
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The infrastructure provided by the Voronoï algorithm can be

used for a constructive membership test: Given some element д ∈
Aut(P1) decide whether д ∈ Ω and express д as a word in the

generators from Theorem 2.1. This problem can be solved as follows:

(1) Put F :=
⋃t
i=1V ( fi ).

(2) Choose some p in the interior of F .

(3) Compute q := pдad ∈ P2.
(4) The geodesics G := {p + s (p − q) | s ∈ [0,1]} ⊂ P2 intersect

the boundary of F in some point which is very likely in the

relative interior of a codimension 1 face of some V ( fi ).
(5) Let f ∈ T be the neighbour of fi corresponding to this face.

Then pωad
f is “closer” to q than p.

(6) Replace д by ω−1f д and repeat from Step (3).

For more details see [4, Section 5].

3 APPLICATIONS
3.1 The integral normaliser [7]
Let G ≤ GLn (Z) be some finite unimodular group and put

V1 := F (G ) := {F ∈ Rn×n
sym
| дFдtr = F for all д ∈ G}

the space of G-invariant forms. Then

P1 := {F ∈ V1 | F is positive definite }

is a non-empty open cone in V1 spanning V1 as a vector space. The
Bravais group

B (G ) = {д ∈ GLn (Z) | дFд
tr = F for all F ∈ F (G )}

is hence a finite overgroup of G. The integral normaliser

N
GLn (Z) (G ) := {д ∈ GLn (Z) | дGд

−1 = G}

acts on F (G ) and N
GLn (Z) (G ) is a finite index subgroup of

Ω := N
GLn (Z) (B (G )) = {д ∈ GLn (Z) | дP1д

tr = P1} ≤ Aut(P1).

To obtain a natural dual cone we takeV2 := F (Gtr ), P2 the positive
definite elements in V2 and

σ : V1 ×V2 → R, (F1,F2) 7→ Tr(F1F2).

Then

D = {πx :=
1

|G |

∑
д∈G

(xд)tr (xд) | 0 , x ∈ Zn }

is a discrete admissible subset of P2 \ {0} (see [7, Section 3]) and

σ (F ,πx ) = F [x] for all x ∈ Zn , F ∈ V1.

3.2 Automorphism groups of hyperbolic
lattices, see [6]

3.3 Cohomology of arithmetic groups
There are many contributions based on [2].

3.4 Unit groups of orders [4]
Let K be a number field with ring of integers ZK , A be some

simple K-algebra and Λ ⊆ A a ZK -order. The paper [4] uses the
ideas from Section 2 to compute the unit group Ω = Λ∗ of the
ring Λ. The algebra AR := A ⊗Q R is a semisimple R-algebra, so
it is isomorphic to a direct sum of matrix rings over R, C or the

Hamilton quaternion algebraH. Any choice of such an isomorphism

defines a “canonical” involution,
†
, on AR, the transposition of

the matrices composed by the identity, the complex conjugation

or the quaternionic conjugation of the entries. Though in general

A† , A, the unit group A∗ and its subgroup Λ∗ act on the space

of symmetric elements

V1 = V2 := {F ∈ AR | F
† = F }

by (F ,д) 7→ д†Fд. This space supports the positive definite inner
product

σ : V1 ×V2 → R, (F1,F2) 7→ Tr(F1F2)

where Tr = TrAR/R is the reduced trace. Let M be the simple

A-module. Then any F ∈ Vi defines a quadratic form on MR by

F [x] := σ (F ,xx†) and the sets Pi of elements in Vi for which this

quadratic form is positive definite forms a pair of dual cones.

For any Λ-lattice L ≤ M the set

D := {xx† | 0 , x ∈ L}

is an admissible discrete Ωad = (Λ†)∗-invariant set D ⊂ P2 \ {0}.

3.5 S-arithmetic groups
In the situation of 3.4 let S = {℘1, . . . ,℘s } be some finite set of finite

places of the number field K and put

ZK,S := {a ∈ K | | |a | |℘ ≤ 1 for all ℘ < S }

the ring of S-integers in K .
Then the S-unit group of Λ is the group of invertible elements

in ΛS := ZK,S ⊗ZK Λ. This is an example of an S-arithmetic group.

In the 1970s Borel and Serre [3] used actions of S-arithmetic

groups on certain contractible CW-complexes to prove finiteness

results for these groups. In our special situation this CW-complex

is constructed in the product X ×
∏s

i=1 Xi , where the factor X

could be replaced by the rational closure of the cone P2 from 3.4

and the Xi are the Bruhat-Tits buildings of the groups SL(A℘i ).
In particular these Xi are simplicial complexes and one can use

the lattice chain model from [1] to explicitly compute in these

buildings. In combination with the algorithm in [4] this allows us

to make the results from Borel and Serre constructive and compute

presentations also for Λ∗S . The design and implementation of the

corresponding algorithms is work in progress [9].
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