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Abstract. We show that all elementary lattices that are free ZpCp-
modules admit an orthogonal decomposition into a sum of a free uni-
modular and a p-modular ZpCp-lattice.
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1. Introduction

Let R := ZpCp denote the group ring of the cyclic group of order p over the
localisation of Z at the prime p. The present paper considers free R-lattices
L ∼= Ra. The main observation in this situation is Theorem 2.2: Given two
free R-modules M and L with pM ⊆ L ⊆ M then there is an R-basis
(g1, . . . , ga) of M and 0 ≤ t ≤ a such that (g1, . . . , gt, pgt+1, . . . , pga) is an
R-basis of L. So these lattices do admit a compatible basis. Applying this
observation to Hermitian R-lattices shows that free elementary Hermitian
R-lattices admit an invariant splitting (see Theorem 4.1) as the orthogonal
sum of a free unimodular lattice and a free p-modular lattice.

The results of this note have been used in the thesis [1] to study extremal
lattices admitting an automorphism of order p in the case that p divides the
level of the lattice.

2. Existence of compatible bases

For a prime p we denote by

Zp := {a
b
∈ Q | p does not divide b}

the localisation of Z at the prime p. The following arguments also apply
accordingly to the completion of this discrete valuation ring. Let R := ZpCp
denote the group ring of the cyclic group Cp = 〈σ〉 of order p. Then e1 :=
1
p (1 + σ + . . .+ σp−1) ∈ QCp and eζ := 1− e1 are the primitive idempotents
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in the group algebra QCp with QCp = QCpe1⊕QCpeζ ∼= Q⊕Q[ζp], where ζp
is a primitive p-th root of unity. The ring T := Zp[ζp] is a discrete valuation
ring in the p-th cyclotomic field Q[ζp] with prime element π := (1− ζp) and
hence

Re1 ⊕Reζ ∼= Zp ⊕ Zp[ζp] =: S ⊕ T
is the unique maximal Zp-order in QCp.

Remark 2.1. With the notation above T/(π) ∼= Zp/(p) ∼= Fp and via this
natural ring epimorphism

R = {(x, y) ∈ Zp ⊕ Zp[ζp] | x+ pZp = y + πZp[ζp]}.

R is generated as Zp-algebra by 1 = (1, 1) and 1 − σ = (0, π). Moreover
Re1 ∩ R = pRe1 = pS and Reζ ∩ R = πReζ = πT and the radical J(R) :=
pS ⊕ πT of R is the unique maximal ideal of the local ring R.

By [6] the indecomposable R-lattices are the free R-module R, the trivial
R-lattice Zp = Re1 = S and the lattice Zp[ζp] = Reζ = T in the rational irre-
ducible faithful representation of Cp. The theorem by Krull-Remak-Schmidt-
Azumaya [2, Chapter 1, Section 11] ensures that any finitely generated R-
lattice L is a direct sum of indecomposable R-lattices

L ∼= Ra ⊕ T b ⊕ Sc.

In this note we focus on the case of free R-lattices. Though R is not a
principal ideal domain, for certain sublattices of free R-lattices there do exist
compatible bases:

Theorem 2.2. Let M ∼= Ra be a free R-lattice of rank a. Assume that L is
a free R-lattice with pM ⊆ L ⊆ M . Then there is an R-basis (g1, . . . , ga) of
M = Rg1 ⊕ . . .⊕Rga and 0 ≤ t ≤ a such that

L = Rg1 ⊕ . . .⊕Rgt ⊕ pRgt+1 ⊕ . . .⊕ pRga.

Proof. Let S̃ := Me1 and T̃ := Meζ . Now M ∼= Ra is a free R-lattice, so,

as in Remark 2.1, M is a sublattice of S̃ ⊕ T̃ of index pa, S̃ ∩M = pS̃, and
T̃ ∩M = πT̃ . The Jacobson radical is J(M) = J(R)M = pS̃ ⊕ πT̃ and of
index pa in M . We proceed by induction on a.
If a = 1, then M = R, S̃ ∼= S, T̃ ∼= T . As M/pM ∼= FpCp ∼= Fp[x]/(x− 1)p is
a chain ring, the R-sublattices of M that contain pM form a chain:

M ⊃ pS̃ ⊕ πT̃ ⊃ pS̃ ⊕ π2T̃ ⊃ . . . ⊃ pS̃ ⊕ πp−2T̃ ⊃ pS̃ ⊕ pT̃ ⊃ pM.

The only free R-lattices among these are M and pM .
Now assume that a > 1. If L 6⊆ J(M) then we may choose g1 ∈ L\J(M). As
g1 6∈ J(M) the R-submodule Rg1 of M is a free submodule of both modules
L and M , so M = Rg1 ⊕M ′, L = Rg1 ⊕ L′ where M ′ and L′ = L ∩M ′ are
free R-lattices of rank a−1 satisfying the assumption of the theorem and the
theorem follows by induction. So we may assume that

L ⊆ J(M) = pS̃ ⊕ πT̃ . (1)
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The element e1 ∈ QCp is a central idempotent in EndR(J(M)) projecting

onto pS̃ = J(M)e1. The assumption that pM ⊆ L ⊆ J(M) implies that

pS̃ = pMe1 ⊆ Le1 ⊆ J(M)e1 = pS̃.

So Le1 = pMe1 = pS̃.
To show that L = pM we first show that Leζ = pMeζ .

As pM ⊆ L we clearly have that pMeζ ⊆ Leζ .
To see the opposite inclusion put K := L ∩ Leζ to be the kernel of the
projection e1 : L → Le1. As L is free, we get, as in Remark 2.1, that K =
πLeζ . Let k be maximal such that K ⊆ πkT̃ . Then k ≥ 2 because Leζ ⊆ πT̃
(see equation (1)).

Assume that k ≤ p − 1. There is ` ∈ L such that y = `eζ 6∈ πkT̃ . As
pMe1 = Le1, there is m ∈M such that pme1 = `e1. Now pM ⊆ L so pm ∈ L
and `− pm ∈ K = Keζ .
We compute `− pm = (`− pm)eζ = y − pmeζ .
As pMeζ = pT̃ = πp−1T̃ and y 6∈ πkT̃ the assumption that k ≤ p− 1 shows

that `− pm 6∈ πkT̃ , which contradicts the definition of k.
Therefore k ≥ p and Leζ ⊆ pMeζ .
Now pM and L both have index pa in pMe1 ⊕ pMeζ = Le1 ⊕ Leζ (again by
Remark 2.1 as L and M are free). So the assumption pM ⊆ L implies that
pM = L. �

Remark 2.3. Let M ∼= T b⊕Sc and let L be a sublattice of M again isomorphic
to T b⊕Sc. Then M = Meζ⊕Me1 and L = Leζ⊕Le1. By the main theorem
for modules over principal ideal domains there is a T -basis (x1, . . . , xb) of
Meζ and an Zp-basis (y1, . . . , yc) of Me1, as well as 0 ≤ n1 ≤ . . . ≤ nb,

0 ≤ m1 ≤ . . . ≤ mc, such that L =
⊕b

i=1 π
niTxi ⊕

⊕c
i=1 p

miZpyi.

Example 2.4. For general modules M , however, Theorem 2.2 has no appropri-
ate analogue. To see this consider M ∼= R⊕S and choose a pseudo-basis (x, y)
of M such that x generates a free direct summand and y its complement iso-
morphic to S. Let L be the R-sublattice generated by pxe1 and x(1−σ) + y.
As x(1 − σ) + y generates a free R-sublattice of M and R(pxe1) ∼= S we
have L ∼= S ⊕ R. For p > 2 we compute that pM ⊆ L ⊆ M . Then the fact
that |M/L| = p2 implies that these two modules do not admit a compatible
pseudo-basis.

3. Lattices in rational quadratic spaces

From now on we consider Zp-lattices L in a non-degenerate rational quadratic
space (V,B). The dual lattice of L is

L# := {x ∈ V | B(x, `) ∈ Zp for all ` ∈ L}.

The lattice L is called integral, if L ⊆ L# and elementary, if

pL# ⊆ L ⊆ L#.
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Following O’Meara [5, Section 82 G] we call a lattice L unimodular if L = L#

and pj-modular if pjL# = L.
We now assume that σ is an automorphism of L of order p, so σ is an

orthogonal mapping of (V,B) with Lσ = L. Then also the dual lattice L#

is a σ-invariant lattice in V . As the dual basis of a lattice basis of L is a
lattice basis of L#, the symmetric bilinear form B yields an identification
between L# and the lattice HomZp(L,Zp) of Zp-valued linear forms on L.
The σ-invariance of B shows that this is an isomorphism of Zp[σ]-modules.

Remark 3.1. As a Zp[σ]-module we have L# ∼= HomZp(L,Zp).

As all indecomposable Zp[σ]-lattices are isomorphic to their homomor-
phism lattices, we obtain

Proposition 3.2. (see [4, Lemma 5.6]) If L ∼= Ra ⊕ T b ⊕ Sc as Zp[σ]-lattice
then also L# ∼= Ra ⊕ T b ⊕ Sc.

The group ring R comes with a natural involution , the unique Zp-
linear map : R → R with σi = σ−i for all 0 ≤ i ≤ p − 1. This involution
is the restriction of the involution on the maximal order S ⊕ T that is trivial
on S and the complex conjugation on T .

Remark 3.3. The Zp-lattice R is unimodular with respect to the symmetric
bilinear form

R×R→ Zp, (x, y) 7→ 1

p
Trreg(xy)

where Trreg : QCp → Q denotes the regular trace of the p-dimensional Q-
algebra QCp. We thus obtain a bijection between the set of σ-invariant Zp-
valued symmetric bilinear forms on the R-lattice L and the R-valued Hermit-
ian forms on L: If h : L×L→ R is such a Hermitian form, then B = 1

pTrreg◦h
is a symmetric bilinear σ-invariant form on L. As R = R# these forms yield
the same notion of duality. In particular the dual lattice L# of a free lattice
L = ⊕ai=1Rgi is again free L# = ⊕ai=1Rg

∗
i with the Hermitian dual basis

(g∗1 , . . . , g
∗
a) as a lattice basis, giving a constructive argument for Proposition

3.2 for free lattices.

4. Free elementary lattices

In this section we assume that L is an elementary lattice and σ an automor-
phism of L of prime order p. Recall thatR is the commutative ringR := Zp[σ],
so L is an R-module.

Theorem 4.1. Let p be a prime and let L be an elementary lattice with an
automorphism σ such that L ∼= Ra is a free R-module. Then also L# ∼=
Ra and there is an R-basis (g1, . . . , ga) of L# and 0 ≤ t ≤ a such that
(g1, . . . , gt, pgt+1, . . . , pga) is an R-basis of L. In particular L is the orthogonal
sum of the unimodular free R-lattice L0 := Rg1 ⊕ . . .⊕Rgt and a p-modular
free R-lattice L1 := L⊥0 .
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Proof. Under the assumption both lattices L and M := L# are free R-
modules satisfying pM ⊆ L ⊆ M . So by Theorem 2.2 there is a basis
(g1, . . . , ga) of M such that (g1, . . . gt, pgt+1, . . . , pga) is a basis of L. Clearly
L is an integral lattice and L0 := Rg1⊕ . . .⊕Rgt is a unimodular sublattice of
L. By [3, Satz 1.6] unimodular free sublattices split as orthogonal summands,

so L = L0 ⊥ L1 with L#
1 = 1

pL1, i.e. L1 is p-modular. �

Note that the assumption that the lattice is elementary is necessary, as
the following example shows.

Example 4.2. Let L = Rg1 ⊕ Rg2 be a free lattice of rank 2 with R-valued
Hermitian form defined by the Gram matrix(

(p, 0) (0, π)
(0, π) (p, 0)

)
.

Here we identify R as a subring of S⊕T , so (p, 0) = pe1 = 1 +σ+ . . .+σp−1

and (0, π) = (0, (1 − ζp)) = 1 − σ ∈ R. Then L is orthogonally indecompos-
able, because Leζ is an orthogonally indecomposable T -lattice, but L is not
modular. Note that the base change matrix between (g1, g2) and the dual
basis, an R-basis of L#, is the inverse of the Gram matrix above, so(

(p−1, 0) (0,−π−1)
(0,−π−1) (p−1, 0)

)
.

As (1, 0) = e1 6∈ R this shows that pL# 6⊆ L, so L is not an elementary
lattice.
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