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Abstract. We show that all elementary lattices that are free Z,C)p-
modules admit an orthogonal decomposition into a sum of a free uni-
modular and a p-modular Z,C)p-lattice.

MSC: 11H56; 11E08

KEYWORDS: quadratic forms over local rings; automorphism groups of
lattices; free modules; Jordan decomposition; Smith normal form.

1. Introduction

Let R := Z,C),, denote the group ring of the cyclic group of order p over the
localisation of Z at the prime p. The present paper considers free R-lattices
L = R®. The main observation in this situation is Theorem 2.2: Given two
free R-modules M and L with pM C L C M then there is an R-basis
(g1,-+-,94) of M and 0 < ¢t < a such that (g1,...,9t PGt+1,---,Pga) is an
R-basis of L. So these lattices do admit a compatible basis. Applying this
observation to Hermitian R-lattices shows that free elementary Hermitian
R-lattices admit an invariant splitting (see Theorem 4.1) as the orthogonal
sum of a free unimodular lattice and a free p-modular lattice.

The results of this note have been used in the thesis [1] to study extremal
lattices admitting an automorphism of order p in the case that p divides the
level of the lattice.

2. Existence of compatible bases
For a prime p we denote by
Ly = {% € Q| p does not divide b}

the localisation of Z at the prime p. The following arguments also apply
accordingly to the completion of this discrete valuation ring. Let R := Z,C,
denote the group ring of the cyclic group C, = (o) of order p. Then e; :=
%(1 +o+...+0P71) € QC, and e; := 1 — e; are the primitive idempotents
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in the group algebra QC, with QC), = QCpe; & QCprec = Q@ Q[(p)], where (,
is a primitive p-th root of unity. The ring T := Z,[(,] is a discrete valuation
ring in the p-th cyclotomic field Q[¢,] with prime element 7 := (1 — ¢,) and
hence

Re, ® Re¢ 27, ZP[CP] =SeT

is the unique maximal Z,-order in QC,.

Remark 2.1. With the notation above T'/(7) & Z,/(p) = F, and via this
natural ring epimorphism

R={(z,y) € Ly @ Zp[Cp] | +ply =y +7TZp[Cp]}-

R is generated as Zp-algebra by 1 = (1,1) and 1 — o = (0, 7). Moreover
Rei N R = pRe; = pS and Re¢ N R = mRe; = 7T and the radical J(R) :=
pS @ 7T of R is the unique maximal ideal of the local ring R.

By [6] the indecomposable R-lattices are the free R-module R, the trivial
R-lattice Z, = Re; = S and the lattice Z,[(,] = Re; = T in the rational irre-
ducible faithful representation of C),. The theorem by Krull-Remak-Schmidt-
Azumaya [2, Chapter 1, Section 11] ensures that any finitely generated R-
lattice L is a direct sum of indecomposable R-lattices

LR &T" & S°
In this note we focus on the case of free R-lattices. Though R is not a

principal ideal domain, for certain sublattices of free R-lattices there do exist
compatible bases:

Theorem 2.2. Let M = R® be a free R-lattice of rank a. Assume that L is
a free R-lattice with pM C L C M. Then there is an R-basis (g1,...,94) of
M=Rg1 ®...® Rg, and 0 <t < a such that

L=Rgp®...®Rg: ®pRGt41 S ... ®pRYa.

Proof. Let S := Me; and T := Me;. Now M = R® is a free R-lattice, so,

as in Remark 2.1, M is a sublattice of S @ T of index p*, SN M = pS, and

TN M = 7T. The Jacobson radical is J(M) = J(R)M = pS @ «T and of

index p® in M. We proceed by induction on a.

Ifa=1,then M =R, S= S, T=T. As M/pM = TF,C, = F,[z]/(x — 1) is

a chain ring, the R-sublattices of M that contain pM form a chain:
M>pSarT >pSer?T >...>pS@® P~ 2T > pSapT > pM.

The only free R-lattices among these are M and pM.

Now assume that a > 1. If L & J(M) then we may choose g1 € L\ J(M). As

g1 € J(M) the R-submodule Rg; of M is a free submodule of both modules

Land M,so M = Rgi ®M', L = Rg; ® L' where M’ and L' = LN M’ are

free R-lattices of rank a — 1 satisfying the assumption of the theorem and the

theorem follows by induction. So we may assume that

LCJM)=pS@®nT. (1)
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The element e; € QC, is a central idempotent in Endg(J(M)) projecting
onto pS = J(M)e;y. The assumption that pM C L C J(M) implies that

pS =pMey C Ley C J(M)ey = pS.

So Le; = pMey, = pS.

To show that L = pM we first show that Les = pMec.
As pM C L we clearly have that pMes C Lec.
To see the opposite inclusion put K := L N Le¢ to be the kernel of the
projection ey : L — Lej. As L is free, we get, as in Remark 2.1, that K =
mLe¢. Let k be maximal such that K C 7*T. Then k > 2 because Le; C T
(see equation (1)).
Assume that & < p — 1. There is £ € L such that y = fe; & 7T, As
pMey = Ley, there is m € M such that pme; = fe;. Now pM C Lsopm € L
and { —pm € K = Ke¢.
We compute £ — pm = ({ —pm)ec =y — pmec.
As pMe¢ = pT = 77T and y € 7T the assumption that k < p — 1 shows
that £ —pm ¢ 7+ T, which contradicts the definition of k.
Therefore k > p and Le¢ C pMec.
Now pM and L both have index p® in pMe, @ pMecs = Le; & Lec (again by
Remark 2.1 as L and M are free). So the assumption pM C L implies that
pM = L. O

Remark 2.3. Let M = T?®S¢ and let L be a sublattice of M again isomorphic
to T @ S¢. Then M = Me;®Mey and L = Le¢; ® Le;. By the main theorem
for modules over principal ideal domains there is a T-basis (z1,...,xp) of
Me; and an Zp-basis (y1,...,y:) of Mey, as well as 0 < nq < ... < ny,

0<m <...<me, such that L = @?:1 i Tx; ® @5, p™ Lpy.

Ezample 2.4. For general modules M, however, Theorem 2.2 has no appropri-
ate analogue. To see this consider M = R®S and choose a pseudo-basis (z, y)
of M such that x generates a free direct summand and y its complement iso-
morphic to S. Let L be the R-sublattice generated by pxe; and 2(1—0) +y.
As z(1 — o) + y generates a free R-sublattice of M and R(pre;) = S we
have L 2 S @ R. For p > 2 we compute that pM C L C M. Then the fact
that |M/L| = p? implies that these two modules do not admit a compatible
pseudo-basis.

3. Lattices in rational quadratic spaces

From now on we consider Z,-lattices L in a non-degenerate rational quadratic
space (V, B). The dual lattice of L is

L# .= {x €V |B(x,f) € Z, for all £ € L}.
The lattice L is called integral, if L C L# and elementary, if
pL* CLCL¥”.
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Following O’Meara [5, Section 82 G] we call a lattice L unimodularif L = L#
and p/ -modular if p/ L# = L.

We now assume that o is an automorphism of L of order p, so ¢ is an
orthogonal mapping of (V, B) with Lo = L. Then also the dual lattice L#
is a o-invariant lattice in V. As the dual basis of a lattice basis of L is a
lattice basis of L#, the symmetric bilinear form B yields an identification
between L# and the lattice Homyg, (L,Z,) of Zy-valued linear forms on L.
The o-invariance of B shows that this is an isomorphism of Z,[c]-modules.

Remark 3.1. As a Zy[o]-module we have L# = Homg, (L,Z,).

As all indecomposable Z,[o]-lattices are isomorphic to their homomor-
phism lattices, we obtain

Proposition 3.2. (see [4, Lemma 5.6]) If L & R* & T® & S¢ as Zy[o]-lattice
then also L# = R*@® T @ S°.

The group ring R comes with a natural involution —, the unique Z,-
linear map — : R — R with ¢¢ = ¢~% for all 0 < i < p — 1. This involution
is the restriction of the involution on the maximal order S @ T that is trivial
on S and the complex conjugation on T.

Remark 3.3. The Z,-lattice R is unimodular with respect to the symmetric
bilinear form

1
R xR — Zyp, (z,y) — ETrreg(xy)

where Tr..q : QC, — Q denotes the regular trace of the p-dimensional Q-
algebra QC),. We thus obtain a bijection between the set of o-invariant Z,-
valued symmetric bilinear forms on the R-lattice L and the R-valued Hermit-
ian forms on L: If h : L x L — R is such a Hermitian form, then B = %Trregoh

is a symmetric bilinear o-invariant form on L. As R = R# these forms yield
the same notion of duality. In particular the dual lattice L# of a free lattice
L = ®%,Rg; is again free L# = ®¢_,Rg} with the Hermitian dual basis
(97, -..,9%) as a lattice basis, giving a constructive argument for Proposition
3.2 for free lattices.

4. Free elementary lattices

In this section we assume that L is an elementary lattice and o an automor-
phism of L of prime order p. Recall that R is the commutative ring R := Z,[o],
so L is an R-module.

Theorem 4.1. Let p be a prime and let L be an elementary lattice with an
automorphism o such that L = R® is a free R-module. Then also L# =2
R® and there is an R-basis (g1,...,94) of L¥ and 0 < t < a such that
(g1, -+ Gt, PGtt1, - - -y DGa) is an R-basis of L. In particular L is the orthogonal
sum of the unimodular free R-lattice Ly := Rg1 @ ... ® Rg; and a p-modular
free R-lattice Ly := L.
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Proof. Under the assumption both lattices L and M := L# are free R-
modules satisfying pM C L C M. So by Theorem 2.2 there is a basis
(g1,---,94) of M such that (g1,...9t,pgt+1,---,Pga) is a basis of L. Clearly
L is an integral lattice and Ly := Rg1 ®...® Rg; is a unimodular sublattice of
L. By [3, Satz 1.6] unimodular free sublattices split as orthogonal summands,
so L =Ly 1L L with L?& = %Lh i.e. Ly is p-modular. O

Note that the assumption that the lattice is elementary is necessary, as
the following example shows.

Ezample 4.2. Let L = Rg1 ® Rgs be a free lattice of rank 2 with R-valued
Hermitian form defined by the Gram matrix

( (1.0) (0.7) ) |
0,7) (p,0)
Here we identify R as a subring of S& T, so (p,0) =pe; =1+o+...+0P7!
and (0,7) = (0,(1 — ¢)) =1 —0 € R. Then L is orthogonally indecompos-
able, because Le¢ is an orthogonally indecomposable T-lattice, but L is not
modular. Note that the base change matrix between (g1,¢92) and the dual
basis, an R-basis of L#, is the inverse of the Gram matrix above, so
(p—l’o) (Oa _ﬁ_l)
0,-7=Y) (=10 )’
As (1,0) = e; ¢ R this shows that pL# ¢ L, so L is not an elementary
lattice.
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