On free elementary $\mathbb{Z}_{p} C_{p}$-lattices.

Gabriele Nebe

Abstract

We show that all elementary lattices that are free $\mathbb{Z}_{p} C_{p^{-}}$ modules admit an orthogonal decomposition into a sum of a free unimodular and a p-modular $\mathbb{Z}_{p} C_{p}$-lattice. MSC: 11H56; 11E08 KEYWORDS: quadratic forms over local rings; automorphism groups of lattices; free modules; Jordan decomposition; Smith normal form.

1. Introduction

Let $R:=\mathbb{Z}_{p} C_{p}$ denote the group ring of the cyclic group of order p over the localisation of \mathbb{Z} at the prime p. The present paper considers free R-lattices $L \cong R^{a}$. The main observation in this situation is Theorem 2.2: Given two free R-modules M and L with $p M \subseteq L \subseteq M$ then there is an R-basis $\left(g_{1}, \ldots, g_{a}\right)$ of M and $0 \leq t \leq a$ such that $\left(g_{1}, \ldots, g_{t}, p g_{t+1}, \ldots, p g_{a}\right)$ is an R-basis of L. So these lattices do admit a compatible basis. Applying this observation to Hermitian R-lattices shows that free elementary Hermitian R-lattices admit an invariant splitting (see Theorem 4.1) as the orthogonal sum of a free unimodular lattice and a free p-modular lattice.

The results of this note have been used in the thesis [1] to study extremal lattices admitting an automorphism of order p in the case that p divides the level of the lattice.

2. Existence of compatible bases

For a prime p we denote by

$$
\mathbb{Z}_{p}:=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, p \text { does not divide } b\right\}
$$

the localisation of \mathbb{Z} at the prime p. The following arguments also apply accordingly to the completion of this discrete valuation ring. Let $R:=\mathbb{Z}_{p} C_{p}$ denote the group ring of the cyclic group $C_{p}=\langle\sigma\rangle$ of order p. Then $e_{1}:=$ $\frac{1}{p}\left(1+\sigma+\ldots+\sigma^{p-1}\right) \in \mathbb{Q} C_{p}$ and $e_{\zeta}:=1-e_{1}$ are the primitive idempotents
in the group algebra $\mathbb{Q} C_{p}$ with $\mathbb{Q} C_{p}=\mathbb{Q} C_{p} e_{1} \oplus \mathbb{Q} C_{p} e_{\zeta} \cong \mathbb{Q} \oplus \mathbb{Q}\left[\zeta_{p}\right]$, where ζ_{p} is a primitive p-th root of unity. The ring $T:=\mathbb{Z}_{p}\left[\zeta_{p}\right]$ is a discrete valuation ring in the p-th cyclotomic field $\mathbb{Q}\left[\zeta_{p}\right]$ with prime element $\pi:=\left(1-\zeta_{p}\right)$ and hence

$$
R e_{1} \oplus R e_{\zeta} \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\left[\zeta_{p}\right]=: S \oplus T
$$

is the unique maximal \mathbb{Z}_{p}-order in $\mathbb{Q} C_{p}$.
Remark 2.1. With the notation above $T /(\pi) \cong \mathbb{Z}_{p} /(p) \cong \mathbb{F}_{p}$ and via this natural ring epimorphism

$$
R=\left\{(x, y) \in \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\left[\zeta_{p}\right] \mid x+p \mathbb{Z}_{p}=y+\pi \mathbb{Z}_{p}\left[\zeta_{p}\right]\right\}
$$

R is generated as \mathbb{Z}_{p}-algebra by $1=(1,1)$ and $1-\sigma=(0, \pi)$. Moreover $R e_{1} \cap R=p R e_{1}=p S$ and $R e_{\zeta} \cap R=\pi R e_{\zeta}=\pi T$ and the radical $J(R):=$ $p S \oplus \pi T$ of R is the unique maximal ideal of the local ring R.

By [6] the indecomposable R-lattices are the free R-module R, the trivial R-lattice $\mathbb{Z}_{p}=R e_{1}=S$ and the lattice $\mathbb{Z}_{p}\left[\zeta_{p}\right]=R e_{\zeta}=T$ in the rational irreducible faithful representation of C_{p}. The theorem by Krull-Remak-SchmidtAzumaya [2, Chapter 1, Section 11] ensures that any finitely generated R lattice L is a direct sum of indecomposable R-lattices

$$
L \cong R^{a} \oplus T^{b} \oplus S^{c}
$$

In this note we focus on the case of free R-lattices. Though R is not a principal ideal domain, for certain sublattices of free R-lattices there do exist compatible bases:

Theorem 2.2. Let $M \cong R^{a}$ be a free R-lattice of rank a. Assume that L is a free R-lattice with $p M \subseteq L \subseteq M$. Then there is an R-basis $\left(g_{1}, \ldots, g_{a}\right)$ of $M=R g_{1} \oplus \ldots \oplus R g_{a}$ and $0 \leq t \leq a$ such that

$$
L=R g_{1} \oplus \ldots \oplus R g_{t} \oplus p R g_{t+1} \oplus \ldots \oplus p R g_{a}
$$

Proof. Let $\tilde{S}:=M e_{1}$ and $\tilde{T}:=M e_{\zeta}$. Now $M \cong R^{a}$ is a free R-lattice, so, as in Remark 2.1, M is a sublattice of $\tilde{S} \oplus \tilde{T}$ of index $p^{a}, \tilde{S} \cap M=p \tilde{S}$, and $\tilde{T} \cap M=\pi \tilde{T}$. The Jacobson radical is $J(M)=J(R) M=p \tilde{S} \oplus \pi \tilde{T}$ and of index p^{a} in M. We proceed by induction on a.
If $a=1$, then $M=R, \tilde{S} \cong S, \tilde{T} \cong T$. As $M / p M \cong \mathbb{F}_{p} C_{p} \cong \mathbb{F}_{p}[x] /(x-1)^{p}$ is a chain ring, the R-sublattices of M that contain $p M$ form a chain:

$$
M \supset p \tilde{S} \oplus \pi \tilde{T} \supset p \tilde{S} \oplus \pi^{2} \tilde{T} \supset \ldots \supset p \tilde{S} \oplus \pi^{p-2} \tilde{T} \supset p \tilde{S} \oplus p \tilde{T} \supset p M
$$

The only free R-lattices among these are M and $p M$.
Now assume that $a>1$. If $L \nsubseteq J(M)$ then we may choose $g_{1} \in L \backslash J(M)$. As $g_{1} \notin J(M)$ the R-submodule $R g_{1}$ of M is a free submodule of both modules L and M, so $M=R g_{1} \oplus M^{\prime}, L=R g_{1} \oplus L^{\prime}$ where M^{\prime} and $L^{\prime}=L \cap M^{\prime}$ are free R-lattices of rank $a-1$ satisfying the assumption of the theorem and the theorem follows by induction. So we may assume that

$$
\begin{equation*}
L \subseteq J(M)=p \tilde{S} \oplus \pi \tilde{T} \tag{1}
\end{equation*}
$$

The element $e_{1} \in \mathbb{Q} C_{p}$ is a central idempotent in $\operatorname{End}_{R}(J(M))$ projecting onto $p \tilde{S}=J(M) e_{1}$. The assumption that $p M \subseteq L \subseteq J(M)$ implies that

$$
p \tilde{S}=p M e_{1} \subseteq L e_{1} \subseteq J(M) e_{1}=p \tilde{S}
$$

So $L e_{1}=p M e_{1}=p \tilde{S}$.
To show that $L=p M$ we first show that $L e_{\zeta}=p M e_{\zeta}$.
As $p M \subseteq L$ we clearly have that $p M e_{\zeta} \subseteq L e_{\zeta}$.
To see the opposite inclusion put $K:=L \cap L e_{\zeta}$ to be the kernel of the projection $e_{1}: L \rightarrow L e_{1}$. As L is free, we get, as in Remark 2.1, that $K=$ $\pi L e_{\zeta}$. Let k be maximal such that $K \subseteq \pi^{k} \tilde{T}$. Then $k \geq 2$ because $L e_{\zeta} \subseteq \pi \tilde{T}$ (see equation (1)).
Assume that $k \leq p-1$. There is $\ell \in L$ such that $y=\ell e_{\zeta} \notin \pi^{k} \tilde{T}$. As $p M e_{1}=L e_{1}$, there is $m \in M$ such that $p m e_{1}=\ell e_{1}$. Now $p M \subseteq L$ so $p m \in L$ and $\ell-p m \in K=K e_{\zeta}$.
We compute $\ell-p m=(\ell-p m) e_{\zeta}=y-p m e_{\zeta}$.
As $p M e_{\zeta}=p \tilde{T}=\pi^{p-1} \tilde{T}$ and $y \notin \pi^{k} \tilde{T}$ the assumption that $k \leq p-1$ shows that $\ell-p m \notin \pi^{k} \tilde{T}$, which contradicts the definition of k.
Therefore $k \geq p$ and $L e_{\zeta} \subseteq p M e_{\zeta}$.
Now $p M$ and L both have index p^{a} in $p M e_{1} \oplus p M e_{\zeta}=L e_{1} \oplus L e_{\zeta} \quad$ (again by Remark 2.1 as L and M are free). So the assumption $p M \subseteq L$ implies that $p M=L$.

Remark 2.3. Let $M \cong T^{b} \oplus S^{c}$ and let L be a sublattice of M again isomorphic to $T^{b} \oplus S^{c}$. Then $M=M e_{\zeta} \oplus M e_{1}$ and $L=L e_{\zeta} \oplus L e_{1}$. By the main theorem for modules over principal ideal domains there is a T-basis $\left(x_{1}, \ldots, x_{b}\right)$ of $M e_{\zeta}$ and an \mathbb{Z}_{p}-basis $\left(y_{1}, \ldots, y_{c}\right)$ of $M e_{1}$, as well as $0 \leq n_{1} \leq \ldots \leq n_{b}$, $0 \leq m_{1} \leq \ldots \leq m_{c}$, such that $L=\bigoplus_{i=1}^{b} \pi^{n_{i}} T x_{i} \oplus \bigoplus_{i=1}^{c} p^{m_{i}} \mathbb{Z}_{p} y_{i}$.

Example 2.4. For general modules M, however, Theorem 2.2 has no appropriate analogue. To see this consider $M \cong R \oplus S$ and choose a pseudo-basis (x, y) of M such that x generates a free direct summand and y its complement isomorphic to S. Let L be the R-sublattice generated by $p x e_{1}$ and $x(1-\sigma)+y$. As $x(1-\sigma)+y$ generates a free R-sublattice of M and $R\left(p x e_{1}\right) \cong S$ we have $L \cong S \oplus R$. For $p>2$ we compute that $p M \subseteq L \subseteq M$. Then the fact that $|M / L|=p^{2}$ implies that these two modules do not admit a compatible pseudo-basis.

3. Lattices in rational quadratic spaces

From now on we consider \mathbb{Z}_{p}-lattices L in a non-degenerate rational quadratic space (V, B). The dual lattice of L is

$$
L^{\#}:=\left\{x \in V \mid B(x, \ell) \in \mathbb{Z}_{p} \text { for all } \ell \in L\right\} .
$$

The lattice L is called integral, if $L \subseteq L^{\#}$ and elementary, if

$$
p L^{\#} \subseteq L \subseteq L^{\#}
$$

Following O'Meara [5, Section 82 G] we call a lattice L unimodular if $L=L^{\#}$ and p^{j}-modular if $p^{j} L^{\#}=L$.

We now assume that σ is an automorphism of L of order p, so σ is an orthogonal mapping of (V, B) with $L \sigma=L$. Then also the dual lattice $L^{\#}$ is a σ-invariant lattice in V. As the dual basis of a lattice basis of L is a lattice basis of $L^{\#}$, the symmetric bilinear form B yields an identification between $L^{\#}$ and the lattice $\operatorname{Hom}_{\mathbb{Z}_{p}}\left(L, \mathbb{Z}_{p}\right)$ of \mathbb{Z}_{p}-valued linear forms on L. The σ-invariance of B shows that this is an isomorphism of $\mathbb{Z}_{p}[\sigma]$-modules.
Remark 3.1. As a $\mathbb{Z}_{p}[\sigma]$-module we have $L^{\#} \cong \operatorname{Hom}_{\mathbb{Z}_{p}}\left(L, \mathbb{Z}_{p}\right)$.
As all indecomposable $\mathbb{Z}_{p}[\sigma]$-lattices are isomorphic to their homomorphism lattices, we obtain
Proposition 3.2. (see [4, Lemma 5.6]) If $L \cong R^{a} \oplus T^{b} \oplus S^{c}$ as $\mathbb{Z}_{p}[\sigma]$-lattice then also $L^{\#} \cong R^{a} \oplus T^{b} \oplus S^{c}$.

The group ring R comes with a natural involution ${ }^{-}$, the unique $\mathbb{Z}_{p^{-}}$ linear map ${ }^{-}: R \rightarrow R$ with $\overline{\sigma^{i}}=\sigma^{-i}$ for all $0 \leq i \leq p-1$. This involution is the restriction of the involution on the maximal order $S \oplus T$ that is trivial on S and the complex conjugation on T.

Remark 3.3. The \mathbb{Z}_{p}-lattice R is unimodular with respect to the symmetric bilinear form

$$
R \times R \rightarrow \mathbb{Z}_{p},(x, y) \mapsto \frac{1}{p} \operatorname{Tr}_{r e g}(x \bar{y})
$$

where $\operatorname{Tr}_{r e g}: \mathbb{Q} C_{p} \rightarrow \mathbb{Q}$ denotes the regular trace of the p-dimensional \mathbb{Q} algebra $\mathbb{Q} C_{p}$. We thus obtain a bijection between the set of σ-invariant $\mathbb{Z}_{p^{-}}$ valued symmetric bilinear forms on the R-lattice L and the R-valued Hermitian forms on L : If $h: L \times L \rightarrow R$ is such a Hermitian form, then $B=\frac{1}{p} \operatorname{Tr}_{r e g} \circ h$ is a symmetric bilinear σ-invariant form on L. As $R=R^{\#}$ these forms yield the same notion of duality. In particular the dual lattice $L^{\#}$ of a free lattice $L=\oplus_{i=1}^{a} R g_{i}$ is again free $L^{\#}=\oplus_{i=1}^{a} R g_{i}^{*}$ with the Hermitian dual basis $\left(g_{1}^{*}, \ldots, g_{a}^{*}\right)$ as a lattice basis, giving a constructive argument for Proposition 3.2 for free lattices.

4. Free elementary lattices

In this section we assume that L is an elementary lattice and σ an automorphism of L of prime order p. Recall that R is the commutative ring $R:=\mathbb{Z}_{p}[\sigma]$, so L is an R-module.

Theorem 4.1. Let p be a prime and let L be an elementary lattice with an automorphism σ such that $L \cong R^{a}$ is a free R-module. Then also $L^{\#} \cong$ R^{a} and there is an R-basis $\left(g_{1}, \ldots, g_{a}\right)$ of $L^{\#}$ and $0 \leq t \leq a$ such that $\left(g_{1}, \ldots, g_{t}, p g_{t+1}, \ldots, p g_{a}\right)$ is an R-basis of L. In particular L is the orthogonal sum of the unimodular free R-lattice $L_{0}:=R g_{1} \oplus \ldots \oplus R g_{t}$ and a p-modular free R-lattice $L_{1}:=L_{0}^{\perp}$.

Proof. Under the assumption both lattices L and $M:=L^{\#}$ are free R modules satisfying $p M \subseteq L \subseteq M$. So by Theorem 2.2 there is a basis $\left(g_{1}, \ldots, g_{a}\right)$ of M such that $\left(g_{1}, \ldots g_{t}, p g_{t+1}, \ldots, p g_{a}\right)$ is a basis of L. Clearly L is an integral lattice and $L_{0}:=R g_{1} \oplus \ldots \oplus R g_{t}$ is a unimodular sublattice of L. By [3, Satz 1.6] unimodular free sublattices split as orthogonal summands, so $L=L_{0} \perp L_{1}$ with $L_{1}^{\#}=\frac{1}{p} L_{1}$, i.e. L_{1} is p-modular.

Note that the assumption that the lattice is elementary is necessary, as the following example shows.

Example 4.2. Let $L=R g_{1} \oplus R g_{2}$ be a free lattice of rank 2 with R-valued Hermitian form defined by the Gram matrix

$$
\left(\begin{array}{cc}
(p, 0) & (0, \pi) \\
(0, \bar{\pi}) & (p, 0)
\end{array}\right)
$$

Here we identify R as a subring of $S \oplus T$, so $(p, 0)=p e_{1}=1+\sigma+\ldots+\sigma^{p-1}$ and $(0, \pi)=\left(0,\left(1-\zeta_{p}\right)\right)=1-\sigma \in R$. Then L is orthogonally indecomposable, because $L e_{\zeta}$ is an orthogonally indecomposable T-lattice, but L is not modular. Note that the base change matrix between $\left(g_{1}, g_{2}\right)$ and the dual basis, an R-basis of $L^{\#}$, is the inverse of the Gram matrix above, so

$$
\left(\begin{array}{cc}
\left(p^{-1}, 0\right) & \left(0,-\bar{\pi}^{-1}\right) \\
\left(0,-\pi^{-1}\right) & \left(p^{-1}, 0\right)
\end{array}\right)
$$

As $(1,0)=e_{1} \notin R$ this shows that $p L^{\#} \nsubseteq L$, so L is not an elementary lattice.

References

[1] Simon Eisenbarth. Gitter und Codes über Kettenringen. Thesis, RWTH Aachen University, 2020.
[2] Walter Feit. The representation theory of finite groups. North Holland, 1982.
[3] M. Kneser. Quadratische Formen. Springer-Verlag, Berlin, 2002. Revised and edited in collaboration with Rudolf Scharlau.
[4] G. Nebe. Automorphisms of modular lattices. Journal of Pure and Applied Algebra, to appear.
[5] O. T. O'Meara. Introduction to Quadratic Forms. Springer, 1973.
[6] Irving Reiner. Integral representations of cyclic groups of prime order. Proc. Amer. Math. Soc., 8:142-146, 1957.

Gabriele Nebe
e-mail: nebe@math.rwth-aachen.de
Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, 52056 Aachen, Germany

