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1 Introduction

This paper studies maximal even lattices from the geometric, arithmetic and analytic point
of view. It is interesting to find even lattices L such that the dual lattice L# has the highest
possible minimum. The most promising candidates for L are clearly the maximal even
lattices.

The maximal even lattices L of level N are characterized by the arithmetic property
that the discriminant group L#/L is an anisotropic quadratic abelian group of exponent
N . If m := dim(L) = 2k is even, then this property can be translated into transformation
rules for the theta series of L under the Atkin-Lehner involutions for all prime divisors of
N (Theorem 3.1). If det(L) = N2 then the theta series of the adjoint lattice

√
NL# lies

in the space Mk(N)∗ introduced in [1]. This space has the Weierstrass property as defined
in Definition 5.1 and hence allows to define extremality. The even lattice L is called dual-
extremal if the theta series θ(

√
NL#) of the adjoint lattice is the extremal modular form in

Mk(N)∗. The dual-extremal lattices of level N are the maximal even lattices of level N for
which the minimum minQ of the quadratic form on the adjoint lattice is ≥ dim(Mk(N)∗).
Remark 6.5 shows that in general this inequality may be strict. The dimension of Mk(N)∗

is calculated in [1]. It is interesting to note that for k > 2 the space Mk(N)∗ is spanned by
theta series of adjoint lattices of even maximal lattices of level N , so this space is as small
as it can be to obtain bounds on the minimum with the theory of modular forms.

The space M(N)∗ = ⊕M2k(N)∗ is a module over the ring of modular forms for the full
modular group. Theorem 5.12 proves that M(N)∗ is a free C[E4, E6]-module of rank N
generated by homogeneous elements of weight ≤ 10.

Analogous results for maximal isotropic codes over fields Fq, q = 2, 3, 4 are obtained in
[19].

The last section of this paper lists some examples of dual-extremal lattices. The level
2 case is remarkable. Its connection to the notion of s-extremal (odd) unimodular lattices
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in [9] allows to prove that for a dual-extremal lattice L of level 2 and dimension 2k the
minimum minQ(

√
2L#) = dim(Mk(2)∗). Also for k ≡ 2 (mod 12) the layers of L# and of

L all form spherical 5-designs (Proposition 6.1) and hence both lattices are strongly perfect
(see [28]) and therefore local maxima of the sphere packing density function.

2 Preliminaries

2.1 Modular forms

For basic facts about modular forms we refer to [20]. We denote by Mk(N) and Sk(N) the
spaces of modular forms and cusp forms of weight k for the congruence subgroup Γ0(N) =

{
(

a b
c d

)

∈ SL2(Z) | c ≡ 0 (mod N)}. Throughout the paper, we assume N to be

squarefree. For γ =

(

a b
c d

)

and any function f on the upper half plane H we define the

slash operator |k by

(f |k γ) (τ) = det(γ)
k
2 (cτ + d)−kf(

aτ + b

cτ + d
) (τ ∈ H).

For primes p we use the Hecke operators T (p) (if p ∤ N), and U(p) (for p | N) acting on
Mk(N) in the usual way. We also use the operator V (p) defined by

f 7−→ (f | V (p)) (τ) := f(p · τ).

Occasionally we need a variant U(p)0 of the operator U(p), defined for functions f on H
periodic with respect to p · Z:

f(τ) =
∑

n

ane
2πi n

p
τ 7−→ f | U0(p)(τ) =

∑

n

anpe
2πinτ .

Let p be a prime with p | N . We denote by ωN
p any element of SL(2, Z) satisfying

ωN
p ≡

(

0 −1
1 0

)

mod p

and

ωN
p ≡ I2 mod

N

p
.

For such a matrix ωN
p we put

WN
p := ωN

p ·
(

p 0
0 1

)

and we recall that this defines an “Atkin-Lehner involution” on the space Mk(N).
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2.2 Lattices

We mainly consider even lattices L in some positive definite rational quadratic space (V,Q).
Here L is called even, if Q(L) ⊂ Z. Then L is automatically contained in its dual lattice
L# := {x ∈ V | (x, ℓ) ∈ Z for all ℓ ∈ L} where (x, y) := Q(x + y) − Q(x) − Q(y) is
the associated bilinear form. The minimal number N ∈ N such that the adjoint lattice√

NL# := (L#, NQ) is again even is called the level of L. We also define the minimum of
the quadratic form

minQ(L) := min{Q(ℓ) | 0 6= ℓ ∈ L}.
Note that this is half of the usual minimum of the lattice.

For a quadratic space (V,Q) over Q we define the local Witt invariants sp(V ) as in [26,
p.80]. This normalization is very convenient for our purposes, in particular we will use the
following lemma from [5].

Lemma 2.1. Let L be an even lattice of level N · p with p ∤ N in the quadratic space (V,Q)
Then the following statements are equivalent
i) sp(V ) = 1
ii) V carries (even) lattices of level N .

iii) If Lp = L
(0)
p ⊥ L

(1)
p denotes the Jordan splitting of Lp = L⊗Zp, then L

(1)
p is an orthogonal

sum of hyperbolic planes.

3 Lattices maximal at p and their theta series

We assume that L is an even lattice in a positive definite quadratic space (V,Q) of dimension
m = 2k . We denote by N the (exact) level of L. We put D = det(L); then (−1)kD is a
discriminant (i.e. it is congruent 1 or 0 mod 4) and we denote by (−1)kd the corresponding
fundamental discriminant (= a discriminant of a quadratic number field or equal to 1). Note
that d is odd because N is squarefree.

We consider the theta series

θ(L)(τ) :=
∑

x∈L

e2πiQ(x)·τ =
∑

x∈L

qQ(x)

for τ ∈ H and q = e2πiτ . Let p be a prime with p | N .
We recall the transformation properties of θ(L) under ωN

p :

θ(L) |k ωN
p = γp(dp)sp(V )D

− 1
2

p θ(L#,p)

Here L#,p = L# ∩ Z[1
p
] · L is the lattice dualized only at p, sp(V ) is the Witt invariant and

γp depends only on dp · (Q×
p )2, more precisely, γp(1) = 1 and for odd primes p, δ ∈ Z×

p

γp(δ) = 1, γp(δ · p) = (δp, p)p · (−i)
p(p−1)

2

For details see [6, Lemma 8.2], [5], or in more classical language, [12], for the explicit
determination of γp see [8]. We do not need the more complicated γ2 here.
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Theorem 3.1. Let p be a prime divisor of N with p || N .

Lp is maximal ⇐⇒
θ(L) |k ωN

p | U o(p) = −γp(d)p−1d
1
2
p θ(L)

We remark here that the statement of the theorem is local; actually the assumption that
N is squarefree is not necessary here.
Proof. ”⇐=”: The transformation properties of theta series imply

θ(L) |k ωN
p = γp(dp)sp(V )D

− 1
2

p θ(L#,p)

Comparing constant terms on the right sides implies

sp(V ) = −1, Dp = p2 · d−1
p .

In any case, (V,Q) does not carry a p-unimodular lattice and Dp = p2 or Dp = p.
“=⇒”: Suppose that Lp is maximal, in particular, Vp does not carry a lattice, which is
unimodular (at p), hence sp(V ) = −1. The local lattice Lp has a decomposition

Lp = L(0)
p ⊥ L(1)

p

such that L
(0)
p is unimodular and the lattice

√
p−1L

(1)
p is anisotropic mod p and of rank 1

or 2. This implies that any vector in L#
p with length in Zp, is already in the sublattice Lp,

which implies the global statement

θ(L#,p) | U0(p) = θ(L).

Taking into account that sp(Vp) = −1 and using the transformation formula from above, we
therefore obtain

θ(L) |k ωN
p | U0(p) = −γp(d)D

− 1
2

p θ(L)

Moreover, Dp is either p or p2, i.e. Dp = p2 · d−1
p . The assertion follows. ¤

Remark 3.2. We can more generally consider theta series with harmonic polynomials of
degree ν,

θP (L) :=
∑

x∈L

P (x)e2πiQ(x)·τ .

Then we obtain again

θP (L) |k+ν ωN
p | U o(p) = −γp(d)p−1d

1
2
p θP (L)

provided that Lp is maximal and p || N .

Remark 3.3. Theorem 3.1 covers all maximal lattices except those where the fundamental
discriminant d is divisible by 2 (where the level N is divisible by 4 and 8 respectively).

We will mainly consider lattices which are maximal at all primes p. Concerning the
existence we state
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Proposition 3.4. Suppose that N is squarefree; then there is an even maximal lattice of
even rank m = 2k with det(L) = N2 if and only if m ≡ 4 (mod 8) and the number of prime
divisors of N is odd or 8 | m and the number of prime divisors of N is even.

Proof. Let (V,Q) be a quadratic space over Q possibly carrying such a lattice. Then we
have for finite primes

sp(V ) = −1 ⇐⇒ p | N

and

s∞(V ) =

{

−1 if m ≡ 4 (mod 8)
1 if 8 | m

By the product formula for the Witt invariant, the number of prime divisors has to be odd
(m ≡4 (mod 8)) or even (if 8 | m). In the other direction we prefer to give an explicit
construction: For N squarefree with an odd number of prime divisors, we choose a maximal
order O(N) in the quaternion algebra over Q ramified exactly in the primes dividing N .
We view it as usual as quadratic space (with the norm form). If m ≡ 4 (mod 8) we may
then take O(N) ⊕ M as an example and for 8 | m we take O(N1) ⊕ O(N2) ⊕ M . Here M
is an appropriate even unimodular lattice and N = N1 · N2 is a decomposition of N into
factors with an odd number of prime factors. The maximality of these lattices is then easily
checked locally. ¤

4 The space Mk(N)∗

4.1 Definition and basic properties

The space of interest for us is (for any squarefree N > 1 and even weight k)

Mk(N)∗ = {f ∈ Mk(N) | ∀p | N : f | WN
p + p1− k

2 f | U(p) = 0}.

The subspace Sk(N)∗ of cuspforms in Mk(N)∗ was investigated in [1]. We recall some prop-
erties from there:

1) The definition may be rephrased in terms of the “trace”-operator (familiar from the
theory of newforms [17]):

∀p | N : traceN
N
p

(f | WN
p ) = 0.

We recall that traceN
N
p

: Mk(N) −→ Mk(
N
p
) is defined by f 7−→ ∑

γ f |k γ, where γ

runs over Γ0(N)\Γ0(
N
p
); using explicit representatives for the γ we obtain the expression

traceN
N
p

(f) = f + p1− k
2 f | WN

p | U(p).

2) When we compare the definition of Sk(N)∗ with the characterization of newforms in
terms of traces, we see that Sk(N)∗ satisfies half of the conditions describing newforms, see
[17] for details. In particular, the space of newforms of level N is contained in Sk(N)∗ and
in fact it is easy to see from the theory of newforms that each eigenvalue system for the
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collection {T (p) ∈ End(Sk(N)) | p coprime to N} occurs with multiplicity one in Sk(N)∗.
More precisely, Sk(N)∗ can be built out of the spaces of newforms of level M | N as follows:
For a normalized Hecke eigenform f =

∑

n af (n)qn in Sk(M)new we put

f (N)(τ) :=
∑

d| N
M

µ(d)
daf(d)

σ1(d)
f(d · τ)

By the same reasoning as in [1], section 2.1, remark 2, we see that this defines an element
of Sk(N)∗. We put

Sk(M)new,N := C{f (N)
i },

where fi runs over the normalized Hecke eigenforms in Sk(M)new. Then

Sk(N)∗ = ⊕M |NSk(M)new,N .

3) We computed the dimension of this space for even k ≥ 2

dim Sk(N)∗ =
(k − 1)N

12
− 1

2
− 1

4

( −1

(k − 1)N

)

− 1

3

( −3

(k − 1)N

)

.

4) It is easy to see that Sk(N)∗ has codimension one in Mk(N)∗, so there is only one
Eisenstein series in this space. Actually, we can (at least for k ≥ 4) compute the Eisenstein
series in Mk(N)∗ explicitly from the level one Eisenstein series Ek by the same reasoning as
above:

E
(N)
k :=

∑

d|N

µ(d)
dσk−1(d)

σ1(d)
Ek(d · τ).

4.2 The basis problem for Mk(N)∗

We want to span this space Mk(N)∗ by appropriate theta series. In [3] we already proved
that Sk(N)new is always generated by linear combinations of theta series of quadratic forms
from any fixed genus of quadratic forms with (exact) level N and determinant D such that
p2 | D and pm ∤ D. The machinery developed in [3], section 8 can also be applied to oldforms
in Mk(N).

Theorem 4.1. Suppose that the data m = 2k > 4, N admit the existence of a genus S of
maximal lattices of determinant N2 and rank m. Then

Mk(N)∗ = Θ(S∗),

where S
∗ is the genus adjoint to S and Θ(S∗) denotes the C-vector space generated by the

theta series θ(L), L ∈ S
∗.

The statement above is false for m = 4 unless Sk(N)∗ = Sk(N)new, as follows from the
work of Eichler [7] and Hijikata-Saito [10] on the basis problem. Anyway, our proof would
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not work here (because of convergence reasons and because here (and only here) the genus
of maximal lattices is equal to its adjoint genus).

Before we sketch the proof of this theorem, we recall from Theorem 3.1 that the inclusion

Θ(S∗) ⊆ Mk(N)∗

holds. To simplify the exposition, we only consider the case N = p. We have to study the
map

Λ :

{

Sk(p) −→ Θ(S∗)
g 7−→ ∑

i
1

m(Li)
< g, θ(Li) > θ(Li)

Here m(L) is the number of automorphisms of the lattice L and the Li run over represen-
tatives of the classes in the genus (S∗); the bracket <,> denotes the Petersson product
for modular forms. It is a general fact (“pullback formulas” for Eisenstein series) that this
map can also be described completely in terms of Hecke operators, the explicit form of the
contribution of the bad place p depends on the genus at hand, see [3].

The case of newforms of level p was discussed in [3].
We just have to add for a Hecke eigenform f of level one an explicit description of the

map Λ for the two-dimensional space

M(f) := C{f, f | V (p)}.
Indeed, it is of the form

(

Λ(f)
Λ(f | V (p))

)

= c · L2(f, 2k − 2) · Ap ·
(

f
f | V (p)

)

.

Here c is an unimportant constant, L2(f, s) denotes the symmetric square L-function
attached to f and Ap is a certain 2 × 2-matrix (involving the “Satake parameters” αp and
βp of f) which can be computed from [3]. The inclusion Θ(S∗) ⊆ Mk(p)∗ already implies
that the image of M(f) under Λ is at most one-dimensional. An inspection of Ap shows
that it is always different from the zero matrix (i.e. of rank one), in other words, M(f) will
always be mapped onto the one-dimensional space C · f (p) ⊆ Mk(p)∗.

Remark 4.2. The case of an arbitrary squarefree number N goes along the same line
(Kronecker products of such 2 × 2-matrices have then to be considered). A more detailed
analysis of these matrices Ap for arbitrary genera S will be given elsewhere [4].

By the same reasoning (or by applying the Fricke involution

(

0 −1
N 0

)

to both sides

of the theorem) we obtain

Corollary 4.3. Under the same assumptions as in the theorem we have

Mk(N)∗ = Θ(S),

where

Mk(N)∗ := Mk(N)∗ |k
(

0 −1
N 0

)

= {f ∈ Mk(N) | ∀p | N : traceN
N
p

(f) = 0}.
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Remark: Both the theorem and the corollary are remarkable because they describe
precisely the “old” part of Θ(S∗) and Θ(S). From the point of view of [5] it may be of
interest to study the trace of such an oldform: We consider the simplest case, N = p and
f ∈ Sk(1) is a normalized Hecke eigenform. Then

tracep
1(f

(p)) = tracep
1(f − p

p + 1
af (p)f | V (p)) = λ · f

with λ = p+1− p
p+1

af (p)2p−k+1. By an elementary estimate (see e.g. [16]) |af (p)| < p
k
2 (1+ 1

p
)

and therefore λ cannot be zero. On the other hand, f (p) is a linear combination of the θ(L)
with L ∈ S

∗. The trace of such theta series is not understood at all, see [5]. The situation
is completely different for f (p) | W p

p ∈ Sk(p)∗: this function is in Θ(S) and the traces of the

theta series are all zero. This fits well with the fact that trp
p(f

(p) | W p
p ) = 0.

5 Extremality

5.1 Generalities on analytic extremality

Definition 5.1. A subspace M ⊆ Mk(N) has the Weierstrass property (W) if the projection
M −→ Cr to the first r = dimM coefficients of the Fourier expansion

f =
∑

n≥0

anq
n 7−→ (a0, a1, . . . , ar−1)

is injective. If this holds, the unique element

F = FM ∈ M

with Fourier expansion

F = 1 +
∑

n≥r

anq
n

is called the extremal modular form in M.

If M contains (say, by definition) only modular forms with vanishing Fourier coefficient
a0, the definition of “Weierstrass property” has to be modified in the obvious way. Note
that (W) holds for M iff (W) holds for the cuspidal subspace of M, provided that the
codimension of the cuspidal part in M is one.
The notion “Weierstrass property” is motivated by the connection of this property with ∞
being a Weierstrass points on the modular curve X0(N) if M = S2(N), see e.g. [25].
Suppose now that we have a lattice L such that θ(L) ∈ M for a space M with property
(W). Then we may call the lattice L analytically extremal with respect to M if

θ(L) = FM.

In particular, such an analytically extremal lattice satisfies

minQ(L) ≥ dim(M).
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In this generality this definition was introduced in [27].

Of course these notions only make sense, if we know interesting classes of such distin-
guished subspaces M.

Example 5.2. (1) Clearly, for any lattice L, the one-dimensional space M := C · θ(L) has
the property (W) and then L is extremal with respect to this space.
(2) The full space Mk(1) of modular forms of level 1 has the Weierstrass property and the
well-known Leech lattice is then an M = M12(1)- extremal lattice.
(3) The spaces of modular forms for the Fricke groups considered by Quebbemann [23, 24]
in his work on modular lattices all have the Weierstrass property.

5.2 Analytic extremality with respect to Mk(N)∗

In general, neither the spaces Sk(N) nor Sk(N)new (or versions of it appropriately enlarged
by some Eisenstein series) have the Weierstrass property. In the case of squarefree level N
we showed in [1] that the intermediate space Sk(N)∗ (and therefore also Mk(N)∗) has the
property (W), therefore there is an extremal modular form

FN,k := FMk(N)∗

in this case.

Definition 5.3. A maximal lattice L of level N and determinant N2 in dimension m = 2k
is called dual-extremal, if θ(

√
NL#) = FN,k.

Remark 5.4. (1) Our definition allows to define analytic extremality for all squarefree lev-
els. This is in contrast to the situation studied by Quebbemann [23, 24]; we also note that
(again in contrast to [23, 24]) we cannot give an explicit construction for the extremal mod-
ular form.
(2) The additional information Θ(S∗) = Mk(N)∗ is not necessary for the definition of dual-
extremal lattices; it shows however that the space M = Mk(N)∗ is the appropriate (smallest)
space with Weierstrass property containing all the theta series for lattices adjoint to maximal
ones.
(3) The notion of (analytic) extremality has a geometric counterpart. Whereas extremal lat-
tices are those for which the theta series has certain analytic extremality properties, extreme
lattices are those that realise a local maximum of the sphere packing density function on the
space of all lattices in n-dimensional euclidean space. The dual-extreme lattices are the local
maxima of the Bergé-Martinet-function

γ′(L) =
√

γ(L)γ(L#) = 2(minQ(L)minQ(L#))1/2

simultaneously considering both lattices, L and its dual. So one could expect that the notion
of dual-extremality describes the analytic counterpart of this definition, which is in general
not the case, since only the theta series of the dual lattice of a maximal lattice satisfies an
analytic extremality condition. However, the dual-extremal lattices of level 2 and dimension
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24ℓ + 4 have the property that both lattices, L and its dual, realise a local maximum of
the sphere-packing density and hence those dual-extremal lattices are also dual-extreme (cf.
Proposition 6.1).
(4) Using an R-basis of

⊕

Mk(N)∗ for N = 2 and N = 3 as given in Section 5.4 we
checked with MAGMA [18] that the first 200 coefficients of the extremal modular form f =
1 + aqdim(Mk(N)∗) + . . . ∈ Mk(N)∗ and of f(− 1

Nz
) ∈ Mk(N)∗ are even non-negative integers

and that a > 0 for k ≤ 242, k ≡ 2 (mod 4) and N = 2, 3.

Example 5.5. Let D be a rational definite quaternion algebra ramified exactly at the prime
p. Then any lattice L of level p in the quadratic space (D,n), where n is the norm form,
is a maximal even lattice. These lattices L are fractional left-ideals for some maximal
order in D. The non principal L satisfy minn(L) ≥ 2. If the class number (the number of
isomorphism classes of left-ideals for a fixed maximal order in D) is two, then dim M2(p)∗ =
2 since S2(p)∗ = S2(p)new and any non-principal L is dual-extremal. Note that the definite
quaternion algebras over Q with class number two are classified by the work of Kirschmer
and Voight [13] confirming the work by Pizer [22]: N = p ∈ {11, 17, 19} and N = 2·3·5, N =
2 · 3 · 7, N = 2 · 3 · 13, N = 2 · 5 · 7. The condition S2(N)∗ = S2(N)new, which is quite special
for the case m = 4, is automatically satisfied if N = p, but never in the other cases of class
number two as can be seen by evaluating the dimension formula for S2(N)∗.

5.3 A remark about extremal modular forms of level p and weight

divisible by p − 1

Proposition 5.6. Let p be a prime. Assume that the weight k is divisible by p − 1. Then
any modular form f ∈ Mk(1) with Fourier expansion

f ≡ 1 +
∑

n≥d

anq
n mod p (d = dim Mk(1))

satisfies
f ≡ 1 mod p

Corollary 5.7. Let p ≥ 5 be a prime and let k be a multiple of p − 1. Then the extremal
modular form g ∈ Mk(p)∗ satisfies

g ≡ 1 mod p

Proof. (of Proposition 5.6) There exists a modular form E of weight k with E ≡ 1 mod p.
For p ≥ 5 we may take an appropriate power of the Eisenstein series Ep−1 of weight p − 1.

For p = 2 or p = 3 we can take a suitable monomial Eα
4 · Eβ

6 . Therefore we can write f as

f = E + F

with
F =

∑

n≥1

bnq
n
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such that the first d − 1 coefficients bi are congruent zero mod p. For 1 ≤ i ≤ d − 1 we
choose fj ∈ Sk(1) with integral Fourier coefficients ci,n such that for 1 ≤ i, j ≤ d − 1

ci,j = δi,j

Such cusp forms always exist, see e.g. [15, Theorem 4.4].
Then

f = E +
∑

aifi + H

such that the first d Fourier coefficients of H are zero, hence H is identically zero. The
assertion follows. ¤

To prove the corollary we note that (by [1]) g is equivalent mod p to a modular form
G ∈ Mk+(p−1)(k−1)(1) provided that p ≥ 5. We apply Proposition 5.6 to this G.

Remark: Using a suitable interpretation of the congruence of modular forms, it is not
necessary in the statements above to assume that the Fourier coefficients of the modular
forms are rational.
Remark: It would be desirable to include the cases p = 2 and p = 3 in the corollary.

5.4 M(N)∗ as a module over the ring of modular forms of level

one.

The orthogonal sum of a maximal lattice with an even unimodular lattice is again a maximal
lattice. This elementary observation corresponds to fact that M(N)∗ =

⊕

k Mk(N)∗ is a
module over the ring of modular forms of level one. The corresponding module structure for

M(N)∗ is defined by multiplying f ∈ Mk(N)∗ with g |ℓ
(

0 −1
N 0

)

∈ C[[qN ]] for g ∈ Mℓ(1).

From the dimension formula we obtain

dim Mk(N)∗ =: dk(N) =
(k − 1)N

12
+

1

2
− 1

4

( −1

(k − 1)N

)

− 1

3

( −3

(k − 1)N

)

for even k ≥ 2 and dim M0(N)∗ = 1. The next remark follows from the periodicity of the
Jacobi symbol.

Remark 5.8. dk+12(N) = dk(N) + N for all even k ≥ 2.

In connection with theta series of lattices of prime level N (or more general when N
is a product of an odd number of primes, see Proposition 3.4) the structure of the direct
sum M ′(N)∗ := ⊕k≡2 (mod 4)Mk(N)∗ as a module over the graded ring R := ⊕4|kMk(1) =
C[θ(E8), ∆] is of interest.

Theorem 5.9. M ′(N)∗ is a free R-module of rank N generated by homogeneous elements
of weight ≤ 14.

Proof. We first note that Remark 5.8 implies that (
∑

k≡2 (mod 4) dk(N)xk)(1−x4)(1−x12) =

d2(N)x2 + (d6(N) − d2(N))x6 + (d10(N) − d6(N))x10 + (d14(N) − d10(N) − d2(N))x14.
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so we obtain in total at least d14(N) − d2(N) = N generators of the R-module M ′(N)∗.
On the other hand, by the Weierstrass property of Mk(N)∗, there are dk(N) elements in
Mk(N)∗ whose Fourier development starts with 1, q, q2, . . . , qdk(N)−1. If dk(N) ≤ N then
these are clearly linearly independent over C((qN)) and hence also over the quotient field of
R.
Taking the series pi = qi + . . . ∈ M∗

ki
(N) of minimal weight ki ≡ 2 (mod 4) for i =

0, . . . , N − 1 we hence obtain a sequence (p0, . . . , pN−1) which is R-linear independent and
generates an R-submodule 〈p0, . . . , pN−1〉R of M ′(N) whose Hilbert series is at least as big
as the one of M ′(N). Therefore

M ′(N) = Rp0 ⊕ Rp1 ⊕ . . . ⊕ RpN−1.

¤

An analogous proof shows

Theorem 5.10.
⊕

M4k(N)∗ is a free R-module of rank N generated by homogeneous ele-
ments of weight ≤ 16.

From the point of view of modular forms the full space

M(N)∗ :=
⊕

M2k(N)∗

deserves attention as well as a module over the full graded ring M(1) = C[E4, E6] of modular
forms of level one.

Lemma 5.11. Fix N and put dk := dk(N) = dim(Mk(N)∗). Then d0 = 1 and for all even
k ≥ 2

d10+k − d6+k − d4+k + dk = 0.

Moreover d10 + d8 − d4 − d2 = N.

Proof. The first statement follows from the multiplicativity of the Jacobi symbol and the
fact that

( −1

(k − 1)

)

+

( −1

(k + 9)

)

−
( −1

(k + 3)

)

−
( −1

(k + 5)

)

= 0 for all even k ≥ 2

because this Jacobi symbol has period 4 and
( −3

(k − 1)

)

+

( −3

(k + 9)

)

−
( −3

(k + 3)

)

−
( −3

(k + 5)

)

= 0 for all even k ≥ 2

because this symbol has period 6.
Similarly we obtain d10 + d8 − d4 − d2 = N. ¤

In the same spirit as Theorem 5.9 we now can prove

Theorem 5.12. M(N)∗ is a free C[E4, E6]-module of rank N generated by homogeneous
elements of weight ≤ 10.

Proof. Put dk := dk(N). From Lemma 5.11 (
∑

d2kx
2k)(1 − x4)(1 − x6) =

d0 + d2x
2 + (d4 − d0)x

4 + (d6 − d2 − d0)x
6 + (d8 − d4 − d2)x

8 + (d10 − d6 − d4 + d0)x
10

so we obtain in total at least d10 + d8 − d4 − d2 = N generators of the C[E4, E6]-module
M(N)∗ of weight ≤ 10. We now proceed as in the proof of Theorem 5.9. ¤
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6 Examples for dual-extremal maximal lattices.

This section lists some examples of dual-extremal maximal lattices of small level N and
small dimension m. For N = 2 and N = 3, one may deduce the classification of all dual-
extremal lattices from suitable known classifications of unimodular lattices. For the higher
levels N ≥ 5 we use Kneser’s neighboring method [14] to list the whole genus of maximal
lattices together with the mass formula to double check the completeness of the result.
The computer calculations were performed with MAGMA [18]. Gram matrices for the new
lattices are available in [21].

6.1 N = 2.

Let L be a maximal 2-elementary lattice of exact level 2 and even dimension m := dim(L) =
2k ≡ 4 (mod 8). Then L is the even sublattice of an odd unimodular lattice M and
L# = M ∪v+M where 2v ∈ M is a characteristic vector of M , i.e. (2v, x) ≡ (x, x) (mod 2)
for all x ∈ M . If µ = min(M) = 2 minQ(M) and 4σ is the minimal norm of a characteristic
vector in M , then 4σ ≡ m (mod 8) and minQ(

√
2L#) = min(µ, σ). Philippe Gaborit proved

in [9] that for m 6= 23

µ +
σ

2
≤ 1 +

m

8
(⋆).

Lattices achieving this bound are called s-extremal. We use (⋆) to show that dual-extremal
lattices L satisfy minQ(L#) = 1

2
⌊k+4

6
⌋.

Proposition 6.1. Let L be a dual-extremal maximal lattice of level 2 and dimension m =
24ℓ + 4. Then L# has minimum 1/2 + ℓ and all layers of L and of L# form spherical 5-
designs. In particular L and L# are strongly perfect. If M is one of the three odd unimodular
lattices with even sublattice L, then M is s-extremal of minimum 1/2 + ℓ.

Proof. Let µ := 2 minQ(M) and σ := 2 minQ(L# − M). Since L is dual-extremal µ and
σ are both ≥ 1 + 2ℓ. By the bound in [9] we obtain µ + σ

2
≤ 3

2
+ 3ℓ hence µ = σ =

1+2ℓ. The design property follows from the fact that dim(M12ℓ+2(2)∗) = dim(M12ℓ+4(2)∗) =
dim(M12ℓ+6(2)∗) = 2ℓ + 1. ¤

Similarly we obtain

Proposition 6.2. Let L be a dual-extremal maximal lattice of level 2 and dimension m =
24ℓ − 4 and let M be one of the three odd unimodular lattices with even sublattice L. Then
M is s-extremal of minimum ℓ. The minimum of Q on L# −M is ℓ + 1/2 and the minimal
vectors of L# (which are also those of L and those of M) form a spherical 3-design, which
means that L#, L and M are all strongly eutactic. The lattice M is s-extremal.

Proof. Let µ := 2 minQ(M) and σ := 2 minQ(L# − M). Since L is dual-extremal µ and σ
are both ≥ 2ℓ. Since σ ≡ m

4
(mod 2) it is odd σ ≥ 2ℓ + 1. By the bound (⋆) above we

obtain µ + σ
2
≤ 1

2
+ 3ℓ hence µ = 2ℓ, σ = 1 + 2ℓ and M is s-extremal. ¤

Proposition 6.3. Let L be a dual-extremal maximal lattice of level 2 and dimension m =
24ℓ + 12. Then minQ(L#) = ℓ + 1/2.
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Proof. Let M be one of the three odd unimodular lattices with even sublattice L. Let
µ := 2 minQ(M) and σ := 2 minQ(L# − M). Since L is dual-extremal, min(µ, σ) ≥ 2ℓ + 1.
By Gaborit’s bound µ + σ

2
≤ 3ℓ + 2 + 1

2
. If min(µ, σ) ≥ 2ℓ + 2, then µ + σ

2
≥ 3ℓ + 3

contradicting the bound above. ¤

Corollary 6.4. A dual-extremal lattice L of level 2 and dimension 2k ≡ 4 (mod 8) satisfies
minQ(

√
2L#) = ⌊k+4

6
⌋.

6.1.1 m = 4

Here the root lattice D4 is the unique maximal 2-elementary lattice and dual-extremal.

6.1.2 m = 12

The two root lattices D4 ⊥ E8 and D12 are all maximal 2-elementary lattices and both are
dual-extremal.

6.1.3 m = 20

Let L be a maximal 2-elementary lattice of dimension 20. Then L ⊥ D4 is contained in
some even unimodular lattice U of dimension 24. Since L is maximal it is the orthogonal
complement Comp(D4) of D4 in U and L# is the projection of U to D⊥

4 . Since minQ(
√

2L#) ≥
2, all roots u ∈ U with Q(u) = 1 are either in D4 or perpendicular to this sublattice. Hence
D4 is an orthogonal summand of the root system of U , which is therefore either D6

4 or
D4 ⊥ A4

5. Both lattices U contain a unique Aut(U)-orbit of such sublattices D4 yielding the
two dual-extremal 2-elementary lattices of dimension 20.

6.1.4 m = 28

Let L be a maximal 2-elementary lattice of dimension 28 and M be an odd unimodular
lattice containing L. If L is dual-extremal, then minQ(L#) ≥ 3/2 and hence M has Q-
minimum 3/2. The 28-dimensional unimodular lattices of Q-minimum 3/2 are all classified
in [2]. There are 38 isometry classes of such lattices, two of which have a characteristic
vector of norm 4. The other 36 lattices give rise to 31 even sublattices L which are all dual-
extremal. By Proposition 6.1 the 6720 minimal vectors of L# as well as all layers of L and
L# form spherical 5-designs and hence L# is a strongly perfect lattice (see [28]). The next
dimension where such a phenomenon occurs is m = 52, where minQ(L#) = 5/2. Then any
unimodular sublattice M (with even sublattice L) is an s-extremal lattice of Q-minimum
5/2 in the sense of [9]. Up to now, no such lattice is known.

6.2 N = 3.

A dual-extremal lattice L of dimension m = 2k ≡ 4 (mod 8) satisfies minQ(
√

3L#) ≥ k+2
4

6.2.1 m = 4.

Here A2 ⊥ A2 is the unique maximal 3-elementary lattice and this is dual-extremal.
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6.2.2 m = 12.

The 3-elementary maximal lattices are A2 ⊥ A2 ⊥ E8 and E6 ⊥ E6, the latter is dual-
extremal.

6.2.3 m = 20.

Let L be a dual-extremal 3-elementary lattice of dimension 20. Then L ⊥ A2 ⊥ A2 is
contained in an even unimodular lattice of dimension 24. As for N = 2 the dual-extremality
of L implies that the root system of U is A12

2 and there is a unique such lattice L.

6.2.4 m = 28.

Let L be a dual-extremal 3-elementary lattice of dimension 28 and let U be an even uni-
modular lattice of dimension 32 containing L ⊥ A2 ⊥ A2. Then 2 minQ(L#) ≥ 8/3 > 2
implies that L has no roots and that the root system of U is A2 ⊥ A2. By [11] the mass
of such lattices U is > 41610 so there are more than 72 · 41610 such lattices. Every lattice
L ⊥ A2 ⊥ A2 is contained in 8 unimodular lattices, so it follows from the discussion below
that there are at least 9 · 41610 dual-extremal lattices. The lattice L# is the projection of
U to (A2 ⊥ A2)

⊥, so

L# = {x ∈ (A2 ⊥ A2)
⊥ | there is some z ∈ (A2 ⊥ A2)

# such that y := x + z ∈ U}.

Here we may assume that z is minimal in its class modulo A2 ⊥ A2. Then (z, z) ∈ {0, 2
3
, 4

3
}.

If x 6= 0 then (y, y) ≥ 4 and (x, x) = (y, y) − (z, z) ≥ 4 − 4
3

= 8
3
. This shows that for all

these lattices U the orthogonal L of the root sublattice of U is dual-extremal.
We list these results and the ones found for level N = 5, 7, 11 resp. N = 6, 10 in the

following tables, with lines labeled by the level N and columns labeled by the dimension
m. Each entry is the triple (h, hext,min) giving the class number h of the genus of maximal
lattices, the number hext of isometry classes of dual-extremal maximal lattices as well as
the minimum minQ(

√
NL#). A “·” instead of h indicates that we did not compute the full

genus. Note that for dimension m = 4, the classification follows from Example 5.5.

m 4 12 20 28
N = 2 (1, 1, 1) (2, 2, 1) (18, 2, 2) (·, 31, 3)
N = 3 (1, 1, 1) (2, 1, 2) (·, 1, 3) (·,≥ 9 · 41610, 4)
N = 5 (1, 1, 1) (5, 2, 2) (329, 2, 4)
N = 7 (1, 1, 1) (12, 0, 4)
N = 11 (3, 1, 2) (36, 2, 5) (·,≥ 1, 10)

Remark 6.5. It is interesting to note that for level N = 11 and dimension m = 20, the
extremal theta series is 1+132q10+660q12+1320q13+2640q14+. . . so any dual-extremal lattice
L satisfies minQ(

√
11L#) = 10 > dim(M10(11)∗) = 9. So Corollary 6.4 does not hold in

general for arbitrary levels. Note that here the 132 minimal vectors of L form a spherical 2-
design. We constructed such a lattice L as the orthogonal complement L = Comp(D) ≤ Λ24

in the Leech lattice, where D is the dual-extremal lattice of level 11 and dimension 4.
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m 8 16
N = 6 (3, 1, 2) (45, 2, 4)
N = 10 (6, 1, 3) (228, 7, 6)
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