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1. INTRODUCTION

Let A be some simple Q-algebra and let A and I" be two maximal orders
in A. If A is not a division algebra, then the order A is generated by its unit
group A* as a Z-lattice (see Lemma 2.1). So A* and I'* are conjugate
in A* if and only if the two orders A and T' are conjugate, which can be
decided with the arithmetic theory of orders exposed in the next section. By
the theorem of Skolem and Noether we hence have that the unit groups are
conjugate if and only if A and I' are isomorphic as orders over the center of
A. The motivation of this paper is to develop tools for deciding whether the
two unit groups are isomorphic, which is in general much more difficult than
the conjugacy problem. In fact this innocent question was raised by Oliver
Braun during his work on the paper [5] that grew out of his Bachelor thesis
in Aachen supervised by the second author.

One invariant of the isomorphism class of A* is the number of conjugacy
classes of maximal finite subgroups. Our main result is that these maximal
finite subgroups arise as automorphism groups of well rounded minimal
classes, which will be defined in Section 5. The basic idea underlying this
approach is already apparent in RySkov’s paper [16] on the computation
of the finite subgroups of GL,(Z). Nevertheless, whereas Ryskov’s classify
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all finite subgroups and then develop ad hoc arguments to determine the
maximal ones, our method permits in principle to solve the problem directly.
Precisely, a refinement of the classical Voronoi algorithm, involving Bergé-
Martinet-Sigrist’s equivariant version of Voronoi’s theory [4], is applied to
compute the cellular decomposition of a suitable retract of a cone of positive
definite Hermitian forms, and therewith also the (finitely many) conjugacy
classes of maximal finite subgroups of A*. As will be illustrated in Section
8, this turns out to be enough, in some cases, to distinguish between non-
isomorphic unit groups. The argument can of course not be reversed: non-
isomorphic unit groups might have the same conjugacy classes of maximal
finite subgroups. Note also that, as in the classical case of GL,(Z), the obtained
cellular decomposition can be used to compute the integral homology of A*.
The relevance of Voronoi theory in such homology computations was first
highlighted in the works of Soulé [17, 18] and Ash [1, 2], and it has given
rise since then to numerous developments (we refer the interested reader to P.
Gunnels’ appendix of [19] which provides an excellent survey on this topic,
and to [13, 14] for recent related works on Bianchi groups).

The methods apply to arbitrary (semi)-simple Q-algebras, though we are
mainly interested in the case where A is a matrix ring over either a imaginary
quadratic number field or a definite rational quaternion algebra. For these
algebras we may ease these computations by adopting a projective notion of
minimal vectors as exposed in Section 7.

2. CONJUGACY CLASSES OF MAXIMAL ORDERS

The theory in this section is well known and can be extracted from the
two books [15] and [6]. However, we did not find a self-contained short
exposition of the proof of Theorem 2.4, so we repeat the details here for the
reader’s convenience. Let A be a simple Q-algebra. Then A = M,(K) for
some rational division algebra K with center Z(K). Let R be the maximal
order in Z(K) and choose some maximal R-order @ in K. An O-lattice
L of rank n is a finitely generated O-submodule of the right K-module
V := K" that contains a K-basis. By Steinitz-theorem (see for instance [15,
Theorem 4.13, Corollary 35.11]) there are right ideals c¢y,...c, of O and a
basis (eq,...,e,) of V such that

L= e ... D €,Cy.
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The family (c;,e;),<;<, is called a pseudo-basis of L. The Steinitz-invariant
of L, denoted St(L), is the class

St(L) := [e1] + - -+ [c,]

in the group CI(O) of stable isomorphism classes of right O-ideals and does
not depend of the choice of a pseudo-basis. By Eichler’s theorem (see [15,
Theorem (35.14)]) the reduced norm

nr : CI(O) — Clg(R)

induces a group isomorphism between CI(O) and the ray class group Clg(R),
the quotient of the ideal group of R modulo those principal ideals aR for
which ¢(a) > 0 for all real places ¢ of Z(K) that ramify in K.

If » > 2 (which we assume in the following) then, as a consequence
of Corollary 35.13 of [15], two lattices Li,L, < V are isomorphic as O-
modules, if and only if they have the same Steinitz-invariant. In particular, L
is isomorphic to L(c) where

L) =e10d...Be,_10 B eyc
for any ideal ¢ with [¢] = St(L). The endomorphism ring
Endp(L) = {X € M,(K) | XL C L}

is a maximal order in Endg(V) = A. In fact any maximal order in A is
obtained this way (see [15, Corollary 27.6]). If [c] = St(L) then Endn(L) is
conjugate in GL,(K) to

O ... 0O !

Endop(L(¢c)) = A(c) := : :
. 0 !
c ... ¢ O

where O = Oy(¢c) = {x € K | xc C c}.

LEMMA 2.1. For n > 2 any maximal order A in A = M, (K) is generated
as a Z-order by its unit group.
Proof. Without loss of generality let A = A(c) and let

(xlj"‘7‘xd)7 (yl""’yd)’ (Z17"'7Zd)

be Z-bases of O, c, respectively ¢~'. We denote by e;j the matrix units in
M,(K) having an entry 1 at i,j and O elsewhere, and I, = e;; +. ..+ e, the
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unit matrix. Let X be the Z-order spanned by A(c)*. Since I, and I, 4 xie;;
€ A(c)* we obtain that xie; € X forall k=1,...,d, 1 <i#j<n—1.
Similarly yie,; and zje;,, as well as yizje,, and zjyie; are in X for all
i=1,...n—1, k,j=1,...,d. As the y;z; generate O’ and the z;y; generate
O the order X contains A(c). O

COROLLARY 2.2. Let A and T be two maximal orders in the simple
algebra A and assume that A is not a division algebra. Then A* and T'*
are conjugate in A* if and only if A and T are conjugate.

A separating invariant of the conjugacy classes of maximal orders in A
can be constructed in a suitable class group of the center of A.

DEFINITION 2.3. Let Clg(n) := Clg(R)/{nr(a)" | a<JO) denote the quotient
of the ray class group Clg(R) defined above modulo the n-th powers of the
reduced norms of the two-sided O-ideals.

Note that the subgroup (nr(a)’ | a < O) can be obtained from the
discriminant of K. In particular it does not depend on the choice of the
maximal order O. Also if K is commutative then Clg(n) = CI(K)/ CI(K)" is
just the class group of K modulo the n-th powers.

THEOREM 2.4. Let A = M,(K) be a simple Q- algebra and O a
maximal order in K. For any two right O-ideals ¢ and ¢, the corresponding
maximal orders A(¢c) and A(c") are conjugate in A* = GL,(K) if and only
if nr([c]) = nr([¢']) in Clg(n).

Proof. We use the approach in [6, Section VL8]. Let T" := M,(0O) = A(O).
Then any other maximal order in A arises as the left order of some I'-right
ideal, in particular

o ... O
A)=0,U(c)) ={a € A|al(c) CI(c)} where I(c) = (9
c ... ¢

Two left orders O;(I) and O;(I') are conjugate, if and only if I’ = alJ for
some a € A* and some two-sided fractional I'-ideal J. By Morita theory any
two-sided I'-ideal J is of the form J = M,(a) for some two-sided O -ideal
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a in K. By [15, Lemma (35.8)], the reduced norm of J = Homp(O", a")
equals nr(a)" € Clg(R) and the reduced norm of I(c) = Homep(L(O), L(¢)) is
nr(c). By [15, Theorem 35.14] the reduced norm is injective, so

I(¢) = al(¢)M,,(a) for some a € A* if and only if nr(c) = nr(c¢’) nr(a)".
[l

3. POSITIVE CONES

Let K be some rational division algebra and A = M,(K). Then Ar :=
A®qgR is a semi-simple real algebra, hence a direct sum of matrix rings over
one of H, R or C. It carries a canonical involution that we use to define
symmetric elements. Let d denote the degree of K, so d* = dimzx(K), and
let

Llyeneyls be the real places of Z(K) that ramify in K,
o1,...,0, the real places of Z(K) that do not ramify in K
Tlyeoos Tt the complex places of Z(K).

Then . ‘
Ki := K ®q R = @D My /() & @D MyR) & D) My(C).

i=1 i=1 i=1

The “canonical” involution * (depending on the choice of this isomorphism)
is defined on any simple summand of Kr to be transposition for My(R),
transposition and complex (respectively quaternionic) conjugation for M,(C)
and M;,,(H). The resulting involution on Kg is again denoted by *. As
usual it defines a mapping T : M, ,(Kr) — M, ,(Kg) by applying * to the
entries and then transposing the m X n-matrices. In particular this defines an

involution T on Ag = M,(Kg). In general this involution will not fix the set
A.

DEFINITION 3.1. ¥ := Sym(Ag) := {F € Ag | F{ = F} is the R-linear
subspace of symmetric elements of Ar. It supports the positive definite inner
product

(Fy, Fy) := trace(F 1 F»)
where trace is the reduced trace of the semi simple R-algebra Ag. The real
vector space X contains the open real cone of positive elements

P:: {(qla"'aCISvfla"'aﬁahlv"'aht)GZ|qi7fj"7hk pos. def}



6 R. COULANGEON AND G. NEBE

Let V be the simple left A-module K". Then Vg :=V ®q R = Ky and
for any x € Vg the matrix xx! lies in . The following lemma is easily
checked:

LEMMA 3.2. Any F € X defines a quadratic form on VR by:
Flx] := <F,xxT> € R for all x € V.

This quadratic form is positive definite if and only if F € P.

As a consequence, with a slight abuse of language, we will sometimes
refer to elements of X as forms.

4. MINIMAL VECTORS

Let A = M,(K) for some division algebra K. As before we fix some
maximal order O in K and choose some right O-lattice L in the simple left
A-module V = K". Then A := Endp(L) is a maximal order in A with unit
group A :=GL(L)={a€A|aL=L}.

Following [2], we will define the L-minimum of a form F € P with
respect to a weight.

DEFINITION 4.1. A weight ¢ on L is a GL(L)-invariant map from the
projective space P(K") to the positive reals, such that max,ecpk») @(x) = 1.

A natural choice for the weight is @o(x) = 1 for all x € K" — {0}.
However, another rather standard choice for ¢ is possible, which allows for
definitions having a natural geometric interpretation and somehow simplify
the computations, at least in the case of imaginary quadratic fields or definite
quaternion algebras (see Section 7). Roughly speaking, this alternative weight
is given by the inverse of the gcd of the coefficients of a vector in K" with
respect to a given pseudo-basis of the lattice L. To be more precise, we need
the following definition

DEFINITION 4.2. Let L = ej¢;®...0e,c,. Toany £ ="  el; € L—{0}
we associate the integral left O-ideal

n
ag = E e
i=
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as well as its norm
N(Clg) = |0/Clg| = NZ(K)/Q (nr (Clg)d) .

LEMMA 4.3.
(a) N(ag) > 1 for all £ € L—{0}.
(b) For any A € K* and { =Y, e/l; € L— {0}, one has ag\ = as\.
(c) If g € GL(L) and € =37, eil; € L— {0}, then ag = a,.

Proof. (a) is clear, because all ¢ '¢; are integral left O-ideals, and (b) is

straightforward.
To see (c) write ge; = Z;'zl ejgii- Since gL C L we get g;; € cjci’l. Then

gé = er-l:] ej(Z?:l gjigi) and

n n
—1 1. —1
age = E ¢ E giili C E ¢ e 4 C ay.
=1 i=1 Jii

One obtains equality by applying ¢~! € GL(L). (]

Now for any x € K", we can find A € K — {0} such that xA € L. It
follows from the previous lemma that the class of nr(a,y) in Clg(R) does
not depend on the choice of an element A\ with this property. Consequently,
if we define the norm of a class in Clg(R) as the smallest possible norm of

an integral ideal in that class, we can associate to x a well-defined quantity
N, by the formula

Ne=N(nr (a)]) = min Nz (nr (D)%),
[nr(D)]=[nr(a,x)]

where as before A is any element in K — {0} such that xA € L. This in turn
can be used to define a weight ¢; on K" setting

@.1) pi(x) = NI
(that this is indeed a weight follows immediately from Lemma 4.3).
REMARK 4.4. As explained in [2], the space of weights is isomorphic to

R~ where hx stands for the class number of K. In particular, the trivial
weight g is the only possible choice if hx =1 (and ¢; = @ in that case).

Having fixed a weight ¢ on L, we can define the minimum of a form an
its set of minimal vectors as follows:
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DEFINITION 4.5. The L-minimum of F € P with respect to the weight
@ is
in, (F) := i OF[L].
ming (F) (nin P(OF(]

The set of minimal vectors of F in L is defined as

SL(F) := {¢ € L — {0} | o(¢)F[¢] = min,(F)} .

REMARK 4.6. The set S.(F) is finite. Indeed, let m := min {p(¢) | £ € L\ {0}} ]}
Then m > 0 as ¢ takes only finitely many positive real values, so
S (F) C {6 EL|F[{] < m~! minL(F)} which is a finite set and can be com-
puted as the set of vectors of small length in a Z-lattice.

5. MINIMAL CLASSES

We keep the general assumptions of the previous section: K is a division
algebra, O a maximal order in K and L a right O-lattice in K", on which
a weight ¢ is fixed.

DEFINITION 5.1. Two elements F; and F, € P are called minimally
equivalent with respect to L and ¢, if Sp(F1) = SL(F>). We denote by

Clp(Fy) ;= {F € P | Su(F) = SL.(F1)}

the minimal class of Fy. If C = CI (F,) is a minimal class then we define
S1.(C) = S, (Fy) the associated set of minimal vectors. A minimal class C is
called well rounded, if S;(C) contains a K-basis of V. The form F € P is
called perfect with respect to L, if Clp(F) = {aF |a € R,a > 0}.

REMARK 5.2. Note that minimal classes and all subsequent definitions in
this section actually depend on the weight ¢, although we do not indicate it
systematically in our notations. No inconstancy can arise from this, since we
work with fixed weight ¢ (and fixed lattice L).

The group GL,(K), and hence also its subgroup GL(L), acts on X by
(F,g) — g'Fg (where we embed A into Ar to define the multiplication).
Two forms in X are called L-isometric, if they are in the same GL(L)-orbit.
For F € P we denote by

Aut (F):= {g € GL(L) | g'Fg = F}
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the automorphism group of F. Then Aut,(F) is always a finite subgroup of
GL(L). The group GL(L) acts on the set of minimal classes. Two minimal
classes are called equivalent, if they are in the same orbit under this action.
The stabiliser of a minimal class is called the automorphism group of the
class,

Aut,(C) = {g € GL(L) | gSL(C) = SL(C)} .

LEMMA 5.3. (see [3, Proposition 2.9]) Let C be a well rounded minimal
class. Then the canonical form T¢ := erSL(C) xxt € P is positive definite
and Auty(C) = Aut (T, Y. Two well rounded minimal classes C and C' are
equivalent, if and only if T, U and TC_,] are L-isometric.

Proof. The proof is similar to the one in [3]. The well roundedness of C implies
that the rank of T¢ is maximal: The mapping (,): V x V — Kg, (x,y) := xTy
is Hermitian and non-degenerate. Let {xi,...,x,} C S.(C) be a K-basis of
V, then for any v € V

S xixfo =3 xi,v) = 0 if and only if v € V4 = {0}
i=1 i=1

so the kernel of the positive semidefinite matrix 37, xx/ is {0}, therefore
Tc is invertible and hence in P. Clearly Aut (C) C Aut (T, 1). To see
the converse put s := |S.(C)| and let S € M, (K) be a matrix whose
columns are the elements of S;(C), in particular Tc = SST. Take some
g € Aut(TC_l) = {gEGL(L)|gTCgT:TC} and put S’ := g¢S. Then
S'(S") = Te = SST and for any F € P
*) Z Fly] = trace((S") FS") = (S'(S", F) = (S5, F) = Z Flx].
y€Ecols(S’) xeSL(C)

If x is some column of § and y := g¢gx, then ¢(y) = @(x), be-
cause of the GL(L)-invariance of . Moreover p(V)F[y] > @x)F[x] =
minge; oy (O)F[(], whence F[y] > F[x], with equality if and only if
y € S(C). So we can only have equality in (x) if S.(C) = {cols(S")}
and hence g € Aut;(C). U

6. MAXIMAL FINITE SUBGROUPS OF GL(L)

In this section we will use variants of the Voronoi algorithm to compute a
set of representatives of the conjugacy classes of maximal finite subgroups of
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GL(L). The known methods (see e.g. [12]) start with the list of all conjugacy
classes of finite subgroups of GL,(K). For each group G they compute the
invariant lattices to find the GL(L)-conjugacy classes of subgroups in the
class of G. In particular for reducible groups G this set of invariant lattices
is infinite and one needs to use the action of Ngr,(x)(G). Also it seems to be
difficult to restrict to one isomorphism class of O-lattices L.

Here we will start with some lattice L and use the tessellation of the cone
of positive definite hermitian forms into L-minimal classes to obtain a list
of subgroups of GL(L) that contains representatives of all conjugacy classes
of maximal finite subgroups of GL(L). To check maximal finiteness and also
conjugacy of the groups in the list, we use a relative version of Voronoi’s
theory.

DEFINITION 6.1. Let G < GL(L) be some finite subgroup. Let F(G) :=
{F €Y |g'Fg=F forall g€ G} denote the space of G-invariant Hermitian
forms. It contains the cone Fso(G) := F(G) NP of positive definite G-
invariant forms. For F € F~((G) the G-minimal class of F is Cl.(F)NF(G).
A form F € F~o(G) is called G-perfect with respect to L, if Clo(F)NF(G) =
{aF | a € R5¢}.

LEMMA 6.2. Let

1
76 % — F(G),F — @ZQTFQ
geG

be the usual averaging operator and C be a G-invariant minimal class. Then

CNF(G) = ms(0).

Proof. Since ng(F) = F for all G-invariant forms, it is clear that CNJF(G) C
76(C). So let F € C. Then S, (F) = S;(C). Since S;(C) is G-invariant,
S.(C) = SL(gTFg) for any g € G. As 7mg(F) is a sum of positive definite
forms, also S;(wg(F)) = S.(C) and so wg(F) € C. O

As in the classical case, Voronoi’s algorithm, as described e.g.in [11] can
be adapted to the case of G-invariant forms to compute the G-perfect forms
and the cellular decomposition of F~o(G) into G-minimal classes up to the
action of the normaliser (see for instance [3, Theorem 2.4] for details on this
procedure in the classical case).

PROPOSITION 6.3. Let G < GL(L) be finite. Then there exists at least one
G -perfect form with respect to L.
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Proof. We will show that L — {0} is discrete and admissible in the sense of
[11, Definition 1.4]. Then by [11, Proposition 1.8] there exists a G-perfect
form. Moreover, [11, Theorem 1.9] tells us that the Voronoi domains of the
G -perfect forms form an exact tessellation of F (GHso.

Clearly L— {0} is discrete in Vg := V®qR. For the admissibility we need to
show that for any F € 9P, the boundary of P, and any ¢ > 0O there is some
¢ € L — {0}, such that o({)F[{] < €. If F € JP, it is positive semidefinite,
SO

{xeWVRI|Flx]=0}={xe Vg | Fx=0} < Vg

is a subspace. In particular the volume of the convex set
Ke:={xeVr|Flx]<e}=-K,

is infinite and by Minkowski’s convex body theorem /. contains some
0=# /¢ € L. Then F[{] < € and hence also @({)F[{] < € since ¢¥) < 1.
O

LEMMA 6.4. Let G < GL(L) be finite. Then any G-perfect form F with
respect to L is well rounded.

Proof. The proof is similar to the classical case. Assume that (SL(F))gx # V.
Then there is some linear foom H € V* = K" so that Hx = 0 for all
x € S(F). Let

1

Foi= o > g'H'Hyg.

Gl 7=
Since S.(F) is G-invariant, xTFox = 0 for all x € S .(F), so Si(F + €Fp) D
Sy (F) for all € > 0 with equality, if € is small enough. So F + eFy €
Cl.(F)NFso(G) contradicting the assumption that F' is G-perfect with respect
to L. .

THEOREM 6.5. Let G < GL(L) be some maximal finite subgroup of GL(L).
Then G = Aut;(C) for some well rounded minimal class C with respect to
L, such that C N F(G) spans a subspace of F(G) of dimension 1.

Proof. The group G always fixes some G-perfect form F with respect to L.
Let C := Cl (F). Then S;(C) = S (F) is G-invariant, so G < Aut;(C). By
Lemma 6.4 C is well rounded, so Aut;(C) is finite and the maximality of G
implies that G = Aut;(C). O
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With Theorem 6.5 we obtain a finite list of finite subgroups of GL(L) that
contains a system of representatives of conjugacy classes of maximal finite
subgroups. We need to be able to test maximal finiteness and conjugacy in
GL(L) of such groups Aut,(C).

PROPOSITION 6.6. Let G < GL(L) be some finite subgroup. Then the
maximal finite subgroups H of GL(L) that contain G are of the form
H = Aut; (Cg) for some G-minimal class Cg.

Proof. Let H be some maximal finite subgroup of GL(L) that contains G.
By Theorem 6.5 there is some G-invariant L-minimal class C such that
H = Aut;(C). By Lemma 6.2 S;.(C) = S.(Cs) for the G-minimal class
CG = ’/TG(C) and H = Al]tL(CG). ([l

REMARK 6.7. To test whether two maximal finite subgroups G;, G, of
GL(L) are conjugate, one computes a system of representatives R; of the
NgrLu)(G;)-orbits of G;-perfect forms and then checks whether a given form
in Ry is L-isometric to some form in R,. Since G; = Aut,(F;) for all F; € R;,
any isometry yields a conjugating element.

7. IMAGINARY QUADRATIC FIELDS AND DEFINITE QUATERNION ALGEBRAS

In this section we will assume that K is either the field of rational numbers,
an imaginary quadratic number field or a definite quaternion algebra over the
rationals. These are exactly the cases, where Kgr is a division algebra and
Sym(Kgr) = R. We thus have in those cases (and in those cases only) the
noteworthy property that

(7.1) VA € Kg,Vx € Vg FlxA]l = AMTFx].

As a consequence, it is more natural and more efficient to compute minima
with respect to the weight ¢; defined in the previous subsection, because of
the following lemma

LEMMA 7.1. For any F € P one has
. F[{]
0 T
where the minimum on the left hand side is computed with respect with the
weight o(£) = N[z/[K:Q].

ming (F) :=
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Proof. The inequality minz(F) > minge; 1oy #ﬂm] is clear, since N, <
N(ay) for every ¢ € L—{0}. In the opposite direction, every £ € L—{0}, there

exists A € K — {0} such that asy, = apA C O and N(az\) = N([a/]) = Ny

. : : FLt FLEA
(in particular, ¢\ € L) . Using (7.1), we see that N(a[)[z/][K:Q] = N(a[i)z/][K:Q] =

@p1(UN)F[£A] > min,(F), whence the conclusion taking the minimum of the
left-hand side over L — {0}. O

REMARK 7.2. The reformulation given in Lemma 7.1 of the minimum of

a form with respect to ¢; has two noteworthy applications

1. It can be interpreted in terms of minimal distance to cusps as explained
in [10] (see also [8, chapter 7]).

2. One can easily deduce from this that the Voronoi complex will depend
only on the Steinitz class of L modulo nth powers (see [5, Theorem 3.8]).

8. EXAMPLES

We will use the method from the previous section to compute the conjugacy
classes of maximal finite subgroups of GL(L) for imaginary quadratic number
fields K. This is an invariant of the isomorphism class of GL(L) and will
show that for small examples these groups are not isomorphic.

Example 1

Let K == Q[V—15], O = Ox = Z['**=55], n = 2. Then CI(K) =
{[Ok],[©2]} where ¢, is some prime ideal dividing 2, so there are two
isomorphism classes of Og-lattices in K?: one corresponding to the lattice
Ly with Steinitz-invariant [O;] and the other one to the lattice L; with
Steinitz-invariant [,]. For both lattices the perfect forms are given in [5].
For both lattices L, Table 1 lists the GL(L)-orbits of well rounded minimal
classes C according to their perfection corank together with their stabilizers
G = Aut (C). The two classes of perfection corank O contain the perfect
forms. The third column gives the dimension of 7g(C). If this dimension is
one, then 7g(C) C (F) for some G-perfect form F, the next column gives
the automorphism group Aut;(F) and the last one indicates whether G is
maximal finite.

L= L() .

The two groups G = Dg and G = Dj; are absolutely irreducible maximal
finite subgroups of GLy(K). Since dim(F(G)) = 1 for both groups and
C; and D; are inequivalent (i = 1,2) one gets 2 conjugacy classes of
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TABLE 1

Well rounded minimal classes for K = Q[+v/—15]

L=1L

C | G=Aut(0) | dim(r(C) \ Aut;(F) \ maximal

perf. corank = 0

Py Ce 1 Ce no

P, Cy 1 Cy no
perf. corank = 1

Ci Dy 1 Dy, yes

C, D> 1 D> yes

G G 2 no

Cy Cy 2 no
perf. corank = 2

D, Dy 1 Dy yes

D, Dg 1 Dg yes

Ds Vy 1 Vy yes

Dy Vs 1 V4 yes

L=1,
C | 6 =Auy(0) | dim(mG(C) | Auty(F) | maximal

perf. corank = 0

Pl i | 1 | Gy | yes
perf. corank = 1

G Dg 1 Dy yes

G Dg 1 Dg yes

C; Dy, 1 Dy, yes
perf. corank = 2

D V4 1 ‘ ‘A yes
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maximal finite subgroups of both isomorphism types Dg and Dj,. To prove
that G := Autz(D3) is maximal finite, we compute the well rounded G-
minimal classes, using Voronoi’s algorithm and starting with the G-perfect
form F € ng(D3). Si(F) = {fvy, tv,} with a,, = Ok, a,, = p,. Therefore
both minimal vectors are G-eigenvectors and the G-Voronoi domain has 2
faces, both of which are dead ends (see [9, Definition 13.1.7]). So F is the
unique G-perfect form and there are no other well rounded G-minimal classes.
The situation is the same for Aut;(D4). The two G-perfect forms in D3 and
Dy (rescaled to have minimum 1) are Galois conjugate but not L-isometric,
with shows that Aut;(D;) and Aut,(D,) are not conjugate in GL(L).

The proof that G := Aut,(P;) is not maximal finite is similar for both cases
i = 1,2. The space of invariant forms has dimension 2, there are two G-orbits
on S.(P;), so the G-Voronoi domain of P; has two faces, corresponding to 1-
dimensional G-minimal classes with automorphism group D, (for P;) resp.
Dg (for P;). One checks for i = 1,2 that Aut;(P;) is properly contained in
these groups.
L=L;: As in the free case the uniform groups Aut (P) and Aut;(C;),
i =1,2,3 are maximal finite and represent distinct conjugacy classes. For the
group G = Auty (D) = V, we again have a unique G-perfect form F and the
two L-minimal vectors of F are eigenvectors for G. So both faces of the
G-Voronoi domain of F are dead ends and G = Aut;(F) is maximal finite.

As GL,(Og) and GL(L;) have different conjugacy classes of maximal
finite subgroups one finds the following corollary.

COROLLARY 8.1. GL,(0k) = GL(Ly) and GL(L;) are not isomorphic.

Example 2
Table 2 lists the results of similar computations which we did for certain small
imaginary quadratic fields. In particular we find

COROLLARY 8.2. Let K be one of the six fields in Table 2. Then non-
conjugate maximal orders in My(K) have non-isomorphic unit groups.
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