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Abstract

We give a full list of the orthogonal determinants of the even degree indi-
cator ’+’ ordinary irreducible characters of SL3(q) and SU3(q).
Keywords: Orthogonal representations, invariant quadratic forms, generic
orthogonal character table, finite groups of Lie type. MSC: 20C15, 11E12.

1 Introduction
Let G be a finite group and ρ : G → GLn(C) be a representation. We call ρ an
orthogonal representation, if there is a symmetric, non-degenerate, ρ(G)-invariant
bilinear form β on Cn. It is well-known that an absolutely irreducible representation
is orthogonal if and only if the associated character has Frobenius-Schur indicator
’+’, i.e. ρ is equivalent to a real representation. A character is called orthogonal
if it is the character afforded by an orthogonal representation. The character χ is
orthogonal, if and only if it is of the form

χ =
r∑
i=1

aiχ
(+)
i + 2

s∑
j=1

biχ
(−)
j +

t∑
k=1

ci(χ
(0)
k + χk

(0)), (1)

where χ(+)
i (resp. χ(−)

j , resp. χ(0)
k ) are irreducible characters of G with Frobenius-

Schur indicator ’+’ (resp. ’-’, resp. ’0’), and ai, bj, ck are non-negative integers.
Let χ be an orthogonal character as in equation (1) and let K = Q(χ) be the

character field of χ. The main result of [8] shows that if the degree of all χ(+)
i is

even then there is a unique element det(χ) := d ∈ K×/(K×)2, called the orthogonal
determinant of χ, such that for all representations ρ : G → GLn(L) over a field
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extension L ⊇ K affording χ all non-degenerate, ρ(G)-invariant, symmetric bilinear
forms β on Ln have the same determinant

det(β) = d · (L×)2 ∈ L×/(L×)2.

We call such a character orthogonally stable.
The orthogonal determinant of 2χ

(−)
j is always 1 (see [13]) and for characters of

the form χ
(0)
k +χk

(0) the orthogonal determinant can be obtained from the character
values as given in Lemma 2.4 below. So it remains to deal with the indicator ’+’
characters in the sum (1). Put

Irr+(G) = {χ ∈ Irr(G) | χ is an indicator ’+’ character of even degree}.

In a long term project the second author has developed theoretical and computa-
tional methods to calculate the orthogonal determinants of the small finite simple
groups (see [2] for a survey). The goal of this paper is to determine the orthogonal
determinants of the characters in Irr+(G) for the two infinite series of finite groups
of Lie type, G = SL3(q) and G = SU3(q), for all prime powers q. For SL2(q) the
orthogonal character table is already computed in [1]. An important subgroup to
analyse the structure and the representations of a finite group G of Lie type is its
standard Borel subgroup B. A character χ ∈ Irr+(G) is called Borel stable, if the
restriction of χ to B is orthogonally stable. The structure of B as a semidirect
product of a p-group and an abelian group allows us to determine the orthogonal
determinants of all Borel stable characters of G (see Remark 4.2). For the groups
G = SL3(q) and G = SU3(q) it turns out that those χ ∈ Irr+(G) that are not
Borel stable occur nicely in a permutation character. For such characters Lemma
2.5 below can be used to determine their orthogonal determinants.

This paper is a contribution to Project-ID 286237555 – TRR 195 – by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

2 Methods
This section collects some basic results about orthogonal determinants.

Definition 2.1. Let G be a finite group, H ⊆ G a subgroup, and let χ be an
orthogonal character of G. Then χ is called H-stable if the restriction ResGH(χ) of
χ to H is an orthogonally stable character of H.

Lemma 2.2. (see [9, Proposition 5.17 and Remark 5.21] for a more general state-
ment of (ii))

(i) If χ is H-stable, then χ is orthogonally stable and

det(χ) = det(ResGH(χ)) · (Q(χ)×)2.
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(ii) If χ =
∑k

i=1 χi is the sum of orthogonally stable characters χi then χ is or-
thogonally stable. Moreover if Q(χi) ⊆ Q(χ) for all i then

det(χ) =
k∏
i=1

det(χi) · (Q(χ)×)2.

The paper [7] gives an easy formula for the orthogonal determinant of orthogo-
nally stable characters of p-groups. We only need the following special case:

Lemma 2.3. (see [7, Corollary 4.4]) Let p be an odd prime and let χ be an or-
thogonally stable rational character of a finite p-group. Then p− 1 divides χ(1) and
det(χ) = pχ(1)/(p−1) · (Q×)2.

Lemma 2.4. (see [9, Proposition 3.12]) Let ψ = χ + χ for some indicator ’0’
irreducible character χ. Let K = Q(ψ), L = Q(χ), i.e. K is the maximal real
subfield of the complex field L. Choose a totally positive δ ∈ K such that L =
K[
√
−δ]. Then

det(ψ) = δχ(1) · (K×)2.

We introduce the following notation: For m ∈ N, m > 2 let µm := exp
(
2πi
m

)
∈ C

be the first primitive m-th root of unity. For arbitrary j ∈ N, we put

ϑ(j)
m := µjm + µ−jm ∈ R.

For the special case that L = Q(µjm) in Lemma 2.4 we obtain K = Q(ϑ
(j)
m ) and we

can choose δ = 2− ϑ(2j)
m = −(µjm − µ−jm )2.

Lemma 2.5. Let G be a finite group acting on a finite set M and denote by V
the associated rational permutation module. Define the G-invariant bilinear form
β : V × V → Q by choosing M to be an orthonormal basis. Then V1 = 〈

∑
m∈M m〉

and V ⊥1 are G-invariant subspaces and

det(β|V ⊥
1

) = |M | · (Q×)2.

Proof. It is clear that det(β) = det(β|V1) · det(β|V ⊥
1

) = 1 · (Q×)2 and

β

(∑
m∈M

m,
∑
m∈M

m

)
= |M |,

from which the result follows.
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3 The orthogonal characters of SL3(q) and SU3(q)

Let p be a prime and let q be a power of p and put Fn×nq to denote the ring of n×n
matrices over the finite field Fq. The group SL3(q) is

SL3(q) = {A ∈ F3×3
q | det(A) = 1}.

The unitary group SU3(q) is the stabiliser in SL3(q
2) of a non-degenerate Hermitian

form H on F3
q2 . Up to isometry there is a unique such form. We put

Ω =

0 0 1
0 1 0
1 0 0


and denote by F the Fq-linear map on F3×3

q2 that raises each matrix entry to the q-th
power. We choose H to be the Hermitian form associated to the matrix Ω. Then

SU3(q) := {A ∈ SL3(q
2)|F (A)tr · Ω · A = Ω}.

The letter G will always denote one of SL3(q) or SU3(q). The full character table of
G was first calculated in [11] in 1973 by Simpson and Frame. By ’Ennola duality’
(see [4] for the statement and [6] for a proof),

”SU3(q) = SL3(−q)”,

the irreducible characters of SU3(q) can be obtained from the ones of SL3(q) by
formally replacing every instance of q by−q, so that there is a single generic character
table giving the character table for both groups introducing an additional parameter
ε = +1 for G = SL3(q) and ε = −1 for G = SU3(q).

In this notation the center of G is the group of scalar matrices in G and hence of
order gcd(q− ε, 3). In particular the set Irr+(G) is the set of irreducible orthogonal
characters of even degree of the group

PSL3(q) = SL3(q)/Z(SL3(q)) and PSU3(q) = SU3(q)/Z(SU3(q)).

It is well-known that the groups PSL3(q) and PSU3(q) are simple groups for all prime
powers q, apart from q = 2, where PSU3(2) is solvable. The irreducible characters
of PSU3(q) and PSL3(q) are the irreducible characters of G that are constant on the
center.

Gow [5] showed that almost all characters of PSL3(q) and PSU3(q) have Schur
index 1; the exception is the character of degree q2− q of PSU3(q), which has Schur
index 2 and Frobenius-Schur indicator ’-’. Additionally, the results in [10] allow us
to obtain the character fields from some combinatorial description. For cyclotomic
numbers we use the notation from Lemma 2.4 and for the naming convention of
the irreducible characters we follow [11, Table 2]. Then the set Irr+(G) is given as
follows:

4



Theorem 3.1. The following table includes all χ ∈ Irr+(G), their degrees χ(1) and
character fields Q(χ):

χ u χ(1) Q(χ)

χqs — q(q + ε) Q
χq3 — q3 Q
χ
(u)
st′ 0 ≤ u ≤ 2 1/3(q + ε)(q2 + εq + 1) Q

χ
(u,−u,0)
st

1 ≤ u < q − ε,
u /∈ {(q − ε)/3, (q − ε)/2, 2(q − ε)/3} (q + ε)(q2 + εq + 1) Q(ϑ

(u)
q−ε)

χ
((q−ε)u)
rt 1 ≤ u < q + ε (q − ε)(q2 + εq + 1) Q(ϑ

(u)
q+ε)

• For q odd and G = SL3(q), Irr+(G) = {χqs, χ(u)
st′ , χ

(u,−u,0)
st , χ

((q−ε)u)
rt }.

• For q odd and G = SU3(q), Irr+(G) = {χ(u)
st′ , χ

(u,−u,0)
st , χ

((q−ε)u)
rt }.

• For q even and G = SL3(q), Irr+(G) = {χqs, χq3}.

• For q even and G = SU3(q), Irr+(G) = {χq3}.

Note that the characters χ(u)
st′ only exist for 3|q − ε.

4 Results
Let G = SL3(q) or G = SU3(q). Let

B :=


d a b

0 e c
0 0 f

 ∈ G
 and U :=


1 a b

0 1 c
0 0 1

 ∈ G
 .

Then U is the unipotent radical of B and a Sylow p-subgroup of G, and B =
NG(U) = U o T is a (standard) Borel subgroup, where T := {diag(d, e, f) ∈ G} is
a maximal torus. Denote by W = NG(T )/T the Weyl group of G.

We need an explicit notation for Irr(T ):
For G = SL3(q) we fix a generator t of F×q . Then the torus

T = {ta,b := diag(ta, t−a−b, tb) | a, b ∈ {0, . . . , q − 2}}

is isomorphic to F×q × F×q and

Irr(T ) = {αu11 αu22 : ta,b 7→ µau1+bu2q−1 | u1, u2 ∈ {0, . . . , q − 2}}. (2)
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For G = SU3(q) the torus is isomorphic to F×q2 =: 〈τ〉. So

T = {τa := diag(τa, τ (q−1)a, τ−qa) | a ∈ {0, . . . , q2 − 2}}

and

Irr(T ) = {αu : τa 7→ µauq2−1 | u ∈ {0, . . . , q2 − 2}}. (3)

To unify notation we put

θ(u) :=

{
αu1α

−u
2 G = SL3(q)

αu G = SU3(q).
(4)

Recall that a B-stable character as in Definition 2.1 is also called a Borel stable
character of G.

Remark 4.1. By Lemma 2.2 (i) the orthogonal determinant of a Borel stable char-
acter χ of G is determined by the restriction of χ to B. Decompose this restriction
as

ResGB(χ) = χT + χU (5)

where χT is the character of T on the U-fixed space, also known as the Harish-
Chandra restriction of χ. In particular its degree is χT (1) = 〈ResGU (χ),1U〉.

Note that for odd primes p the character χU of B is U -stable. As p does not
divide the discriminant of Q(χ) for all χ ∈ Irr+(G) we have Q(χU) = Q so Lemma
2.3 gives the determinant of χU :

Remark 4.2. Let q be odd. If χT is orthogonally stable then

det(χ) = det(χT )pχU (1)/(p−1)

Note that T is abelian and so χT is a sum of linear characters. If these characters
are complex (i.e. of indicator ’0’) then χT is orthogonally stable and its determinant
can be computed from Lemma 2.4. In fact the irreducible constituents of χT can be
obtained from the action of the Weyl group W on Irr(T ). It is well-known that

W ∼=
{
S3 for G = SL3(q)
C2 for G = SU3(q)

Let θ ∈ Irr(T ). Then θ can also be considered as a character of B. A character
χ ∈ Irr(G) is said to be in the principal series if χ appears in IndGB(θ) for some
θ ∈ Irr(T ).

We will need a special case of the well-known Mackey formula for Harish-Chandra
induction and restriction:
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Lemma 4.3. (see [3, Theorem 5.2.1])

(IndGB(θ))T =
∑
w∈W

w · θ.

Corollary 4.4. Let χ ∈ Irr(G). Then 0 ≤ χT (1) ≤ |W |, with χT (1) = 0 if and only
if χ is not in the principal series, and χT (1) = |W | if and only if χ = IndGB(θ) for
some θ ∈ Irr(T ).

Explicit calculations with the character table [11, Table 2] now give rise to the
following propositions:

Proposition 4.5. Let G = SL3(q). The only characters in Irr+(G) which are not
in the principal series are χ((q−1)u)

rt for q odd.

(a) θ(0) = 1T is the trivial character and

IndGB(θ(0)) = 1G + 2χqs + χq3 .

(b) For 1 ≤ u < q − 1, u /∈ {(q − 1)/3, (q − 1)/2, 2(q − 1)/3}, we have that

IndGB(θ(u)) = χ
(u,−u,0)
st

and (χ
(u,−u,0)
st )T (1) = 6, i.e. the U-fixed space in χ(u,−u,0)

st has dimension 6.

(c) For j ∈ {(q − 1)/3, 2(q − 1)/3}, we have that

IndGB(θ(j)) =
2∑

u=0

χ
(u)
st′

where (χ
(u)
st′ )T (1) = 2 for u = 0, 1, 2.

Proposition 4.6. Let G = SU3(q). The only characters in Irr+(G) which are not
in the principal series are χ(u,−u,0)

st and χ(u)
st′ for q odd.

(a) θ(0) = 1T is the trivial character and

IndGB(θ(0)) = 1G + χq3 .

(b) For 1 ≤ u < q + 1, we have that

IndGB(θ((q+1)u)) = χ
((q+1)u)
rt

and (χ
((q+1)u)
rt )T (1) = 2.
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Proof. We will handle both G = SL3(q) and G = SU3(q) simultaneously. Let
d = gcd(q − ε, 3). There are 2 + d conjugacy classes of G which have a non-empty
intersection with U : C1, C2 and C(l)

3 , 0 ≤ l ≤ d− 1, which can be characterised by
rank(gi − I3) = i− 1 for gi ∈ Ci, 1 ≤ i ≤ 3. We further calculate that |C1 ∩ U | = 1,
and

|C2 ∩ U | =
{

2q2 − q − 1 for G = SL3(q)
q − 1 for G = SU3(q)

|C(l)
3 ∩ U | =

{
1/d(q3 − 2q2 + q) for G = SL3(q)
1/d(q3 − q) for G = SU3(q).

We will, as an example, calculate (χ
(u,−u,0)
st )T (1) = 〈ResGU (χ

(u,−u,0)
st ),1U〉. For

SL3(q), we see that

(χ
(u,−u,0)
st )T (1) =

1

q3
(
(q + 1)(q2 + q + 1) + (2q2 − q − 1)(2q + 1) + (q3 − 2q2 + q)

)
= 6,

whereas for SU3(q), the calculation becomes

(χ
(u,−u,0)
st )T (1) =

1

q3
(
(q − 1)(q2 − q + 1) + (q − 1)(2q − 1)− (q3 − q)

)
= 0.

The rest of the propositions is handled analogously.

We are now ready to give the main result.

Theorem 4.7. (i) Let q be odd.

det(χ) for G = SL3(q) χ det(χ) for G = SU3(q)

3q · (Q×)2 χ
(u)
st′ q · (Q×)2

q(2− ϑ(2u)
q−1) · (Q(ϑ

(u)
q−1)

×)2 χ
(u,−u,0)
st q · (Q(ϑ

(u)
q+1)

×)2

q · (Q(ϑ
(u)
q+1)

×)2 χ
((q−ε)u)
rt q(2− ϑ(2u)

q−1) · (Q(ϑ
(u)
q−1)

×)2

Additionally, for G = SL3(q), det(χ(qs)) = (q2 + q + 1) · (Q×)2.

(ii) Let q be even.

det(χ) for G = SL3(q) χ det(χ) for G = SU3(q)

(q + 1)(q2 + q + 1) · (Q×)2 χq3 (q3 + 1) · (Q×)2

Additionally, for G = SL3(q), det(χ(qs)) = (q2 + q + 1) · (Q×)2.
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Proof. We first deal with the case that q is odd: Then, for all χ ∈ Irr+(G)\{χqs},
the value χU(1)/(p− 1) is even if and only if q is an even power of p. So Lemma 2.3
gives us that det(χU) = q · (Q×)2.

For the characters χ(u,−u,0)
st of SL3(q) Lemma 4.3 and Proposition 4.5 give that

(χ
(u,−u,0)
st )T = θ1 + θ1 + θ2 + θ2 + θ3 + θ3

is the sum of 6 one-dimensional characters of T , where θ1 = θ(u), θ2 = α2u
1 α

u
2 , and

θ3 = αu1α
2u
2 . By Lemma 2.2 and Lemma 2.4

det((χ
(u,−u,0)
st )T ) = (2− ϑ(2u)

q−1) · (Q(ϑ
(u)
q−1)

×)2

and

det(χ
(u,−u,0)
st ) = det((χ

(u,−u,0)
st )T ) det((χ

(u,−u,0)
st )U) · (Q(ϑ

(u)
q−1)

×)2 =

q(2− ϑ(2u)
q−1) · (Q(ϑ

(u)
q−1)

×)2.

The results for χ((q−ε)u)
rt for SU3(q) and χ(u)

st′ follow similarly. Note here that

2− ϑ(2(q−1)/3)
q−1 = 2− (−1) = 3.

The character χqs for G = SL3(q) (q even or odd) occurs in the permutation
character ψ := 1GP induced from the parabolic subgroup

P :=


a b c
d e f
0 0 g

 ∈ G
 .

It is not hard to see that |G/P | = q2 + q + 1 and that ψ = 1G + χqs (see also [12]).
Lemma 2.5 hence yields

det(χqs) = (q2 + q + 1) · (Q×)2.

To finish the proof let q be even and regard the characters χq3 . In both cases
these appear in the permutation character φ := 1GB.

For G = SU3(q) we get |G/B| = q3 + 1 and φ = 1G + χq3 so det(χq3) = q3 + 1
by Lemma 2.5.

For G = SL3(q) we get |G/B| = (q+ 1)(q2 + q+ 1) and φ = 1G + 2χqs + χq3 . As
χqs is orthogonally stable we get

(q + 1)(q2 + q + 1) · (Q×)2 = det(χqs)
2 det(χq3) · (Q×)2 = det(χq3) · (Q×)2,

which finishes the proof.
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