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1 Introduction

The group G = SLy(p’) of all 2x 2-matrices over the field k¥ with p/ elements is one
of the simplest examples of a nonabelian finite group of Lie type. Its representation
theory in characteristic 0 was already investigated by I. Schur [13] and its modular
representation theory is also well understood ([1], [2]). The next step is to describe
the integral group ring RG of G when R is the ring of integers in a finite extension
of the field @ of l-adic numbers, to bring together the characteristic 0 and the
characteristic [ information. If | # p and [ # 2 then the defect groups of the
ring direct summands of RG are cyclic, so RG is described by the general theory
of blocks with cyclic defect groups ([10], [12], [7]). For odd primes p the Sylow
2-subgroups of G are dihedral groups and [10], Chapter VII investigates RG for
[ = 2. So the only remaining case is [ = p, where the Sylow p-subgroups of G are
elementary abelian of rank f. If f = 1 one again has the cyclic defect case and
for f = 2 the group ring Z,G is described up to Morita equivalence in [8]. In the
present paper the remaining cases f > 3 are treated for p = 2.

To find kG, one uses methods from the representation theory for groups of Lie
type in defining characteristic. However these methods are not directly applicable
for calculating RG, when R = Zs[(ps_1] is the ring of integers in the unramified
extension K of degree f of Q. The new idea used in this paper is to start from the
explicit presentation of kG given in [6] and lift the generators of kG to generators
of RG. The explicit knowledge of kG together with the decomposition numbers
calculated in [4] and [5] do not seem to be sufficient to determine RG up to Morita
equivalence. But they give enough information to describe the inclusion patterns
of the irreducible RG-lattices (Theorem 3.15) as well as the endomorphism rings of
the projective indecomposable RG-lattices (Theorem 3.12). In particular it turns
out that the endomorphism ring of the projective cover of the trivial RG-module
is isomorphic to the group ring of the Sylow 2-subgroup of G. From Theorem
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3.15 one gets the following explicit description of the projections of RG onto the
simple summands of KG. The simple kG-modules M; are naturally indexed with
the subsets I of {1,..., f} such that dim;(M;) = 2.

Theorem. Let V' be a simple KG-module of dimension n and let My, ..., M, be
the 2-modular constituents of V' of dimension n; := ol = dimy,(Mp;), 1 < j <.
Then there is a basis of V' such that the corresponding matrix representation Ay

satisfies
Ay (RG) = {(Xij)i<ij<r € RV | X;5 € Q‘Ii_lj‘Rnanj}-

This is the first time that such a detailed description of an infinite series of
p-adic group rings has been found, where not only the order but also the number
of generators of the Sylow p-subgroups grows. It is astonishing that, though
the situation gets more and more complicated, the group rings RSLy(2/) can be
described in a uniform way for all f > 3. Similar methods can be applied for
G = SLy(p’) where p is odd, to get analogous information about the group ring
as is given here for p = 2. There are additional technical difficulties for odd primes
p that make the basic ideas less transparent, so the case p > 2 will be treated in
a separate paper.

This paper is intended to make one part of my habilitation thesis [9] available
to a wider audience. I thank Dr. Alexander Zimmermann for pointing out to me
reference [6].

2 Generalities.

Throughout the paper let K be K
a finite extension of Q,, R Q@
R its ring of integers with p
maximal ideal 7R and Ly
residue class field k := R/7R. i
P2y
Let A be a finite-dimensional semisimple K-algebra
A== e
t=1 t=1
where €1, ..., €, are the central primitive idempotents of A and K; are K-division

algebras.

This section develops a language for describing the ring theoretic structure of
group rings RG of finite groups G up to Morita equivalence. Group rings are
certain R-orders A in a semisimple K-algebra K @z A =: A.



It turns out that it is easier to describe the overorder

I':= é A6t
t=1

of A, the direct sum of the projections of A into the simple components of A. If
the decomposition numbers of RG are < 1 (and R is big enough), then the order
[ is a so called graduated order (see Definition 2.1). Then one may describe T
by purely combinatorical data, which also allows one to read off the A-lattices in
the irreducible A-modules. A language for describing such graduated orders is
developed in [10] and will be repeated briefly in section 2.1.

The main tool for computing A and I" is the observation that group rings and
their ring direct summands are symmetric orders (see Definition 2.4). This means
that A = A# is a self dual lattice with respect to some associative symmetric
bilinear form on A. The knowledge of this form allows one in particular to calculate
the index of A in a maximal overorder in A.

Let J(A) denote the Jacobson radical of A, the smallest A-ideal I in A such
that A/I is semisimple. Then A/J(A) is a semisimple k-algebra and one can lift
the central primitive idempotents of A/J(A) to a system ey, ..., ey of orthogonal
idempotents in A with 1 = Y_" ¢; (see e.g. [11], Theorem 6.19). Then one
obtains a direct sum decomposition

h
A= @ 6Z'A6j.

ij=1

Under certain conditions one can embed the summands e;Ae; simultaneously into
a commutative K-algebra E (isomorphic to the center of A) such that the mul-
tiplication e;Ae; x ejAe; — e;Ae; can be performed in E. This is described in
Section 2.3.

2.1 Graduated orders.

Definition 2.1 An R-order I' C A is called graduated if there are orthogonal
idempotents eq, ..., e, € I satisfying e;e; = d;5e; and 1 = 2?21 e; such that e;l'e;
18 a mazimal order in e;Ae;.

Let " be a graduated order in A. Then I' contains the central primitive
idempotents €;,...,¢; € [' and each order I'¢; is a graduated order in the simple
algebra Ae;.

Definition 2.2 Let I' be a graduated order in the simple K-algebra A = D"*"
and ) the mazimal R-order in the division algebra D with mazimal ideal P. Then



there are h,ny,...,np € N (n=ny + ...+ np) and M = (m;;) € Z%h such that
[' is conjugated to
A ny, ..., ng, M) =

{X = (xij)i,j:ly___,h € ann ‘ iEij € (erij)anj for all 1 S Z,_] S h}

IfT/J(T) = @t (Q/P)"*™ then my = 0, mij+mj; > 0 and my; +mj; > my for
all 1 < 1,1 # 7 < h. In this case M 1is called an exponent matrix of T'.

The I'-lattices in the simple A-module can be easily described by means of its
exponent matrix M, see [10], Remark (I.4). One can always conjugate [' such
that my; =0forall 1 <j <h.

From [10], Proposition (IV.1) one finds

Lemma 2.3 Let M € Z"" be an exponent matriz of a graduated R-order T in
the simple K-algebra A. Assume that there is an involution °:T — T (i.e. an

R-order antiautomorphism of order < 2) fizing the central primitive idempotents
of U'/J(I'). Then

Myj + My + My = Myj; + My + My forall1 <4,5,1 < h.
If M is normalized such that the first row of M consists of 0 only then
msj +mj = mj; +my for all 1 <i,j <h.

This lemma will be applied to epimorphic images of group rings RG. The natu-
ral involution °: RG — RG is the R-linear map defined by g — ¢~! for all g € G.
If € is a central primitive idempotent of KG with € = € such that I' := RGe is
a graduated order and all p-modular constituents of the character belonging to e
are self dual, then I' satisfies the conditions of Lemma 2.3.

2.2 Symmetric orders.

Definition 2.4 An R-order A in A s called symmetric if there is a nondegenerate
symmetric associative K-bilinear form ® : A X A — K such that A is self dual
with respect to ®, i.e. A =A% ={a € A|®(A,a) C R}.

One easily shows that the nondegenerate symmetric associative K-bilinear
form on A are precisely the forms

Try: Ax A= K, (a,b) = Y trreq(aueb)

t=1

where u € Z(A)* and tr,¢q denotes the reduced trace of Ae; to K.



Example. Let GG be a finite group. Then RG is a symmetric order in A = KG
with respect to |G| ™! times the regular trace bilinear form. If x;(1) denotes the di-
mension of an absolutely irreducible constituent of the simple K Ge¢;-module, then
this associative symmetric bilinear form equals T'r,, where u = |G| ' >°7_, xu(1)e;.

Lemma 2.5 ([14], Proposition (1.6.2)) If A is a symmetric R-order with respect
to ® ande, f are idempotents in A then ®ear)x(rae) 15 a nondegenerate R-bilinear
pairing. In particular eAe is a symmetric order.

2.3 A language for describing certain basic orders.

Let A be an R-order in A. In this section it is assumed that k¥ = R/7R is a
splitting field for k ® g A and that the division algebras K; are commutative. Let
Py, ..., P, represent the isomorphism classes of projective indecomposable A right
modules.

Then A is Morita equivalent to

h
A:=Enda(Pi®...® P,) = @ Homa(P, P))

=1

and A is a basic order in the sense that the simple A-modules are one dimensional
vector spaces over k.

Since there is an idempotent e € A such that A = eAe, Lemma 2.5 shows that
A is symmetric if A is symmetric. Note that the module categories of A and A are
equivalent. In particular the decomposition numbers of A and A are equal. We
assume that for 1 < i < h the endomorphism rings Enda(P;) are commutative
which is equivalent to say that the decomposition numbers of A are < 1.

The main new idea for describing the order A is to embed the R-lattices
Homa (P;, P;) simultaneously for all 1 < 4,5 < h into a commutative finite-
dimensional K-algebra E such that the multiplication Homa (7;, P;) xHoma (P}, ) —
Homa (P;, P,) can be performed in E.

To this purpose let
V=D
t=1

be the sum over a system of representatives of the isomorphism classes of simple
A-modules and

E:=Ends(V) 2P K, = Z(A).
t=1

Let 1 < j < h. Since Enda (P;) is commutative, the A-module V' has a unique
A-submodule isomorphic to K ® g P; and up to isomorphism a unique A-sublattice



isomorphic to P;. For all 1 < j < h choose an embedding
pj: Pj—=V.
Let @; be the unique A-invariant complement of K ®g ¢;(F;) in V,
V = (K &g ¢;j(F)) & Q.

Then the A-homomorphisms ¢ € Homa (Pj, P;) for 1 <4, j < h are considered
as elements of E by letting

Q0|Qj = 0

Definition 2.6 Fori=1,...,hlet p;':V — K ®g P; be the right inverse of ¢,
with ©;1(Q;) = 0. Then for 1 <1i,j < h there are embeddings

Homa (P, Py) = E, ¢ = ¢7 ¢y,
Via these embeddings Homa (P;, P;) is viewed as a subset
Aij := (p; ) Homa (B;, Py); C E.

Remark 2.7 For 1 <i# j < h the endomorphism ring Enda(P;) is canonically
(i.e. independent of the choice of ;) embedded into E, whereas the embedding
Homa (P, P;) = E depends on the choice of ¢; and ;.

For simplicity we now assume that K is a splitting field for A. Then K; = K
for all 1 <t < s and the central primitive idempotents €4, ..., ¢, form a canonical
K-basis of E.

Definition 2.8 Let ¢ = 2;1 ae; € E with ay € K. The fractional R-ideal
Y i_i @R is called the norm of o,

n(p) = ZatR CK.
i=t

The norm has a certain multiplicative property.
Remark 2.9 If ¢,y € E — {0} then

n(e)n(y) divides n(ey)
and fori € N

One may characterize the unit groups of the local rings A;; (cf. Definition 2.6)
with help of the norm.



Lemma 2.10 For 1 < ¢ < h the unit group A}; of the local ring Ay is
A ={p € Aii | n(p) = R}

Proof. Let z € Ay with n(z) = R. Then n(2’) = R and hence 2’ ¢ TA;; for all
j € N. Therefore x does not lie in the unique maximal ideal of A;; and is a unit.
The other inclusion is trivial since n(idp,) = R. O

Since for ¢ # j the modules P; and P; are not isomorphic one gets the following
remark from Lemma 2.10.

Remark 2.11 Let 1 <i1#1<h,0#9p€ Ny CFE, and0#Y € Ay CE. Then
oY =Y € N N Ay with
TR 2 n(py).

Assume now that A (and hence A) is a symmetric order with respect to the
associative bilinear form 7T'r,, u = Z‘Z:l ue € B, up € K.
Some additional notation is needed: If L C M are two R-lattices with M/L =
@®!_,R/m* R the index of L in M is the ideal [M : L] := g%+ +ot R
For1 < < h let
¢ ={1<t<s|eP #0}

denote the constituents of the KG-module K ®g P;.
Lemma 2.12 If (¢1,...,%) is an R-basis of Aj;, then
!

(H n(;))? divides H u; ' R.
=1 tECj

Proof. Let M := ®ie., Re; be the maximal R-order in K ®g Aj;. Then the dual of
M with respect to T'r, is M# = EBtECjut_lRet. Since M# C Aj; = Aﬁ- C M with
[A” : M#] = [M : A”] one has

(M : Ay =[M: M#] = Hut_lR.

t€c;

The Lemma follows, because [['_, n(t;) divides [M : Ajj]. O

3 The group ring Z,[(,r_,]SL2(27).

Let G be a finite group and R and k be as in Section 2. This section presents a
method for obtaining the ring theoretic structure of the integral group ring RG
from the group algebra kG. Assume that k£ is a splitting field for £G. Then



one usually describes the finite-dimensional k-algebra kG by giving a presenta-
tion of the Morita equivalent basic algebra A := Endyq(P @ ... ® B,), where
Py, ..., P, are the projective indecomposable kG-modules. A is generated by
idp- € Endgg(P;) (1 < i < h) and preimages in Homyg(P;, P;) of a k-basis of
Homyg(P;, J(kG)P;) /Homye(P;, J(kG)?P;) (1 < 4,5 < h) (see [3], Proposition
4.1.7) usually encoded as vertices and arrows in the Ext-quiver. This generating
set can be lifted to obtain a generating set of A := Endgg(P1 & ... ® P,), where
P; is the projective RG-module with P;/7P; = P; (i = 1,...,h) and the lifts of
the generators in Homyg (P, P;) lie in Hompg(P;, P;) (1 < 4,5 < h). Now Remark
2.11 gives upper bounds on the norm of the basis elements of End g (P;) obtained
as product of the generators. The fact that Endge(P;) is a symmetric order yields
lower bounds on these norms.

In the particular situation of this section upper and lower bounds coincide.

So let 3 < f € N, R be the ring of integers in the unramified extension K of
degree f of Q, and k := R/2R = F,s the residue class field. Let G := SLy(2/)
denote the group of 2 x 2-matrices over k of determinant 1. Then (K, R, k) is a
2-modular splitting system for G. Since the decomposition numbers of RG are
<1 (cf. [5], Corollary 2.8), the order @_,¢;RG, where ¢, ..., €, are the central
primitive idempotents of K G, is a graduated order in KG, the graduated hull of
RG. Therefore the methods of the previous section can be applied to describe
RG. In particular the graduated hull of RG has a very nice description given in
Theorem 3.15.

Since an explicit presentation of £G is used to obtain information on the group
ring RG, the description of kG given in [6] is repeated in the first paragraph.

3.1 The group algebra in characteristic 2

Steinberg’s tensor product theorem establishes a bijection between the simple kG-
modules and the subsets of N := {1,..., f}: let M; be the natural kG-module
k? and let F be the Frobenius automorphism F : k — k;z +— z2 of k. For
1 = 0,...,f —1 one defines M;,; to be the set M; with scalar multiplication
am := F'(a)m for a € k. Then the simple kG-modules are the tensor products

M = QierM;

where I runs through the subsets of N. Note that dimy(M;) = 217l In particular
My is the trivial kG-module and My is the projective simple kG-module, and
hence lies in a block of defect zero.

The projective kG-modules are described in [1]. The projective cover of the
simple kG-module M; is denoted by P; (I C N). Then by Theorem 1 in [1]

Pr= My ® My_y, ifAICN
and

Py® My = My ® My.
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Alperin also calculates the Ext-groups between the simple kG-modules. Koshita
[6] extends this result to give a presentation of the basic algebra that belongs to kG
by describing the homomorphism spaces between the projective indecomposable
kG-modules explicitly.

If I,I' C N then I+1I':= TUI'— INI denotes the symmetric difference and
for elements 4,j € N let i +j € N (resp. i — j € N) be the element of N, that is
congruent to i + j € Z (bzw. ¢ — j € Z) modulo f. Then one has the following
theorem.

Theorem 3.1 ([6]/) Let f > 3 and
A := Endye(®nrrcn Pr)

be the basic algebra belonging to the principal block of kG. Let () be the quiver
with vertices corresponding to the proper subsets of N and arrows

ajr:I+{i} =1 forallICN,ieN,i—-1¢1I.

Let kQ be the path algebra of Q. Then the paths from I to J = I+ {i1}+...+{i.}
are written as

(I‘il, e ,’l:a‘J) = Ckil,I+{i1}ai2’[+{il}+{i2} ‘e O{ia’J.

(I||I) is the idempotent in kQ corresponding to the vertex I. With this notation
let X be the ideal of kQ) generated by

(L +{et+ {GHi 1) — T+ L+ {5Ha i) (—1,7-1¢1, j#i—1,4,i+1)
(Ili,il) G—1¢1,i€l)
(I+{i+1}e+1,4,4) — (L +{i+1}i, 0,0+ 1) i —1,s ¢ 1)
(I+{i+1}ii+1,6I) (i—1¢&1,5€l).
Then there is an epimorphism
U:kQ = A
with kernel X i.e. A = kQ/X.
Proposition 3 in [6] determines a k-basis for Endg(P;).
Definition 3.2 Fori g I C N let
wrg =Y((I§,j+1,...i—1,0,4,0—1,...,5 4+ 1,5[I))

where j = j(I,i) is the unique element of N such that j —1 ¢ I and J :=
J(I,i):={4,j+1,...,i—1} CI. Ifi—1¢1, thenj:=14, J =10 and

wri = Y ((L]i,1]1)).
The length of wy; is the length of the corresponding path in @Q,
I(1,43) :=2(]J| +1).



The elements wy; are endomorphisms of P;. Since the decomposition numbers
of RG are 0 or 1 ([5], Corollary 2.8), the endomorphism rings of the projective
indecomposable kG-modules are commutative. Therefore

Wi T = H Wr,i
i€T

for subsets T' C N — I is well defined.

Proposition 3.3 (/6], Proposition 3) Let I C N be a proper subset of N. The ele-
ments wyr where T runs through the subsets of N—1I form a k-basis of Endya(Pr).

To describe the vector spaces Homyq(Py, Pr) for I, H C N one needs further
elements of k().

Definition 3.4 Let H C I C N, such that there is a path in QQ from H to I of
length |I — H|. Then let wgcr be the image of such a path under ¥ and wi~g be
the image of the corresponding path from I to H of the same length.

The next lemma follows from [6], Proposition 3.
Lemma 3.5 Let H, I C N with Homyg(Py, Pr) # 0. Then

Homye(Py, Pr) = wi-nnrEndre (Puar)wanicr-

3.2 The integral group ring RG.

Now this characteristic 2 information is lifted to the characteristic 0 situation to
obtain the R-order RG nearly up to Morita equivalence. So let

A = Endge(®n2renPr),

where P; is the projective indecomposable RG-module with head M; (I C N),
be the basic order that is Morita equivalent to the principal block of RG.

As in Section 2.3 let V' be the sum of all irreducible K G-modules in the princi-
pal block and E := Endkg(V). Let €1, .. ., €; be the central primitive idempotents
of K@ that belong to the principal block of RG. These idempotents are identified
with the primitive idempotents of E. If I C N then

c ={1<t<s|ePr#0}

denotes the indices of the irreducibles K G-modules that occur in K ®g P;. The
sets ¢y are explicitly described in [5]. In particular ¢y = {1,...,s} and hence
V=2KQ@grbFp.

Using the fact that A is a symmetric order, one gets:
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Lemma 3.6 Let [ C N with |[N — I| =: n. Then |c;| = 2" = dimg(Endgg(Pr))
and Endgre(Pr) is a sublattice of @i, Rey of index 22" 'R,

Proof. Let M := @, Re; be the maximal R-order in K ®pg Endgg(Pr). Now
Endgg(Pr) is a symmetric order with respect to the form 7, where

u = |G| th(l)et,

t€cr

and x;(1) is the degree of the irreducible character of G belonging to €;. Since
x:(1) € R* is odd, the dual of M with respect to Tr, is of index (2/)?")R in M.
Hence [M : Endgg(P;)] = V2/2'R = 22" '/R. O

Now suitable lifts 87 € A of the elements wrr from Definition 3.2 are con-
structed.

Definition 3.7 (i) Fori—1¢ I C N let p;; € Hompa(Prigy, Pr) be a preim-
age of ¥(a,r).

(i) Fori ¢ I C N let 8, € Endpa(Pr) be defined similarly as wy; using the
wr; instead of Y(aug): If i —1 € I, then let j := j(I,i) and J := J(I,1).
Then

59#‘ =PI+ PI-{j g1}, g41 - - PT-T+{i}iPI-TiPTI—T+{i-1},i—1 - - - PT-{j},j+1PLj-

If i — 1 & I then
/8},2' = Or4+44},iP1,i
For any subset T C N — I define

ﬂ},T = H/B},z € Endgq(Pr).

€T

Since Endgg(Pr) is commutative, the definition does not depend on the or-
dering of the factors.

(i) If H C I C N, such that there is a path w = oy 1, ..., € Q from H to
I and a path W' = «j, 4, ...,y € Q from I to H of length | := |I — H|.

Then let By = [Lney ©min 91 Bisg = [lney P
From Proposition 3.3 one now gets immediately
Corollary 3.8 (8}, (T € N — 1)) is an R-basis of the R-lattice Endgg(Pr).

The following lemma is the crucial point in the investigation of A.
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Lemma 3.9 For I C N andT C N -1
n(frg) = 200

where I(1,T) :=Y ", .p1(1,4)/2.

Proof. Let i € N — I and [ :=[(1,4)/2. Then

Bri=fi-- fig--

is a product of f; € Homgg(Pr;, Pr,,,) and g; € Hompgg(Pr,,,, Pr;) for certain

pairwise distinct subsets I, ..., ;11 of N. In the commutative ring E this product
can be evaluated as

,3},1' = (f191)(f292) - - - (frg)-

According to Remark 2.11 the norm n(f;g;) is divisible by 2. Then Remark 2.9
says that 2! divides n(0},) and therefore 2/T) divides n (3] ).
On the other hand let n := |N — I|. Then

YTy = > D idi)/2=1/2 ) IIi2m =
TCN—-I TCN—I €T iEN—I

Hence n(3] ;) divides 2{7) by Lemma 3.6 and Lemma 2.12. O
In particular if 7 = {i} and 4,5 — 1 ¢ I C N this crucial lemma yields

n(B;;) = 2. But
Bri = Pri{iyiPri = €1i01+(},i € 2Endra(Priqay),

by Theorem 3.1 since (I + {i}|7,i|I + {i}) € X. So Lemma 2.10 implies that
Br:/2 € Endpe(Pryqy)* is a unit. Hence one gets the following lemma.

Lemma 3.10 Ifi—1,i & I, then ¢, is injective and ﬂ},{i} € 2(Endre(Prygiy)")-
Therefore there is a unit uy; € Endpg(Prigy)*, such that
U,[’i,B}’{i} = Qidppr{i} - EIlng(P[).

Definition 3.11 For I C N let pr; :== ) ... €¢; € E be the identity on Pr. Let
11 CN. Ifi—1¢ 1, define

JEer

Bri = 2P iy-
Otherwise let j = j(1,i) and J := J(I,i). Then

Bri=2""pr, ., pry.
ForT' C N —1 let
Brr = H Bri
i€T
where the empty product
Brp = pr;
is the unit element in Endgg(Pr).
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Theorem 3.12 Let H,I C N.
(a) The Brr with T C N — I form an R-basis of the lattice End e (Pr).
(b) If Hompgg(Py, Pr) # {0} then
Hompg(Pp, Pr) & (pry(Endre(Prnr))pr;)
as Endre(Py) — Endgg(Pr)-bimodule.
Proof. (a) Let I C Nandi€ N—1I. Ifi—1¢ I, then 81; = 87 ,ur; € Endga(Pr)
by Lemma 3.10. If i —1 € I, then let j := j(I,i) and J := J(I,4i) be as in

Definition 3.2. For [ = j,...,i— 1 define [, := T — {j,...,1} and let u; := uy, ;41
be the unit of Lemma 3.10. It easily follows from [5] that

cr C Cr—{;} Cc...Cc¢r—y-

Therefore

1—1
Bri [T v = (0r—33.501.05) (01— 41354191 (g 1Uj41) - - -
l=j

e (<P1—J,i—1<,01—J+{z'—1},i—1ui—1)(<PI—J+{z'},iS01—J,iU1—J,z') =

(2PTI)(2pT17{j}) - (QPFFJ)(QPTFH{i}) = 2‘J|+1PTIPT17J+{i}-
Hence the elements §;r with T C N — I lie in the ring Endgg(P;).

For T C N—1let a(I,T);,a(l,T); € R (j = 1,...,5) be such that 5}, =
dj—1a(l,T)iej and Brr = > a(I,T);e;. Since Brr is obtained from 87, by
multiplication with units in local rings, there is k;r € R* with

krra(I,T); = a(I,T); (mod 2n(B; 1))

for all 1 < j <'s. Replacing frr by krrBr,r we assume that k; 7 = 1. Lemma 3.9
yields that n(8.r) = n(8] ) = 2/"") and the product of the norms is

H n(Brr) = 27"
TCN—I
the index of Endgrg(Pr) in @jec, Re;. Here n := |N — I|. Let B' := (a(I,T))1,;,
B = (a(I,T);)r; and D := diag(n(B;5) | T € N —I). Then B' = DU for some
U € GLy»(R) and B= DV with V =U (mod 2R). Therefore the determinant
of V is also a unit in R and (Brr | T C N — I) is an R-basis of Endgg(Fr).
(b) By Lemma 3.5

Hompge(Pu, Pr) = By~garEndra (Panr) Bynrcr-

Multiplication with By~ pyniBunicr € E induces the desired bimodule isomor-
phism. O
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Remark 3.13 This theorem shows that the endomorphism rings of the projective
indecomposable RSLQ(Qf)—modules have a rational structure: Let I C N and ¢y =
{t1,...,tn}. Then there is a (symmetric) Zy-order

Or = @ Lofrr C @iy Lok,

TCN-1I

with R ®Z2 0[ = Enng(P]).

In particular the order Oy is isomorphic to the group ring Zy(CY) of the Sylow
2-subgroup of G":

Proposition 3.14 Let Oy = ©rcnZofy,r be as in the remark above. Then
Oy = Zy(CY).
In particular the endomorphism ring of Py
Endpa(Py) = R(C)
s 1somorphic to the group ring over R of the Sylow 2-subgroup of G.

Proof. The R-order Endgg(Fy) C E is generated by Bpy = idp, = 1 € E and
T = Bp; = QZtEc{i} €, ¢ = 1,..., f. The Frobenius automorphism F acts on
Endgg(FPy) mapping z; to x;41 (i =1,..., f) where as usual the indices are taken
modulo f. With the notation of [5], the ordinary irreducible characters in the
principal block of RG are 1,7;,0; where j = 1,...,2/ "1 —1landi=1,...,2/" L
The Frobenius automorphism F' acts on the irreducible characters n; and d; by
multiplying the indices with 2, where the indices of 1 are taken modulo 2/ — 1
and the ones of § modulo 2/ + 1 and in both cases identified with the negative
index. In the rest of the proof these characters are used to index the primitive
idempotents of E. Then by [5]

2f-1_1

zy=2( Z €n; T €5;)-

j=1,j odd

Choose a generating set (by,...,b; 1) of CJ and let 0 < i = Zf;é 22 <
2/ with z; € {0,1}. Then define the linear character x; of C§ via x;(b;) =
(—1)%. Let h(i) := Zf;g ;27 and define a bijection between the set of characters
{Xo,---,X2r—1} and the set of characters in the principal block of G via
1 ifi =0
Xi+§ Mh@ ifi>0and zp 1 =0
5h(z) if Zf—1 = 1.
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This bijection induces a bijection of the primitive idempotents of £ and K C’g and
hence an isomorphism ¢ : E — KCJ. Clearly x;(bo) = 1 if and only if z, = 0.
Therefore one finds @(z;) =1 — by € ZyCY.

The action of F' on KC;c induced via ¢ is given by b; — b;11 if 1 =0,..., f—3,
bf_g — Z{:_OQ bz and bf_l — bf_l. One has @(%1) =1- bl,...,gp(xf_g) =1-
brg,p(xr0) =1 =120 o(zp_1) =1 —bs_y € ZyCJ. Together with 1 = (1)
these elements span ZQC{ , therefore ¢ o, : Op — ZQC{ is an isomorphism. O

Note that this proposition also shows that Endgg(Fp) is also symmetric with
respect to T'r, where v := 27737 €.

Since the decomposition numbers of RG are < 1, the projections Ae¢; of A onto
the simple components of K @z A are graduated orders. From Theorem 3.12 one
gets a simple description of the graduated hull &;_; ¢, A of A, which also yields the
theorem stated in the introduction.

Theorem 3.15 For 1 <t < s there is an exponent matriz M® = (mg)l) where

H, I CN, tecynecr for Ae; such that

mg),l = |H —1I| ( for all H,I such thatt € cg Necy).

Proof. Let M® be an exponent matrix of Ae; such that the row corresponding to
My consists of 0 only

mét)H =0forall HC N,t€cy.

From Lemma 3.9 it follows that

H-I
”(IBIHDHmﬂ}mICH) =2l |

and
n(ﬂ}g}{mﬁ}m]g) = 2l

Then Theorem 3.12 (b) implies that for I, H C N such that t € cg N ¢y
mg),l+m§f)H =|H—-I|+|]—-H|

In particular
mg)@ = |H| for all H C N,t € cy.

Since the simple £kG-modules are all self dual, one gets from Lemma 2.3
t
iy = i =iy + iy = il = |1 + |H].

Therefore the Theorem follows. O

Theorem 3.15 and Theorem 3.12 do not describe A up to Morita equivalence,
because they do not give a system of simultaneous embeddings ¢; : P; — Py
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(I C N) that determines the multiplication in A. If the isomorphism type of A
is uniquely determined by that of A/2A, then one can show that A is as given in
the following conjecture.

Conjecture: There are embeddings ¢; : Pr — Py, I C N, such that for all
I, HCN

Homge (¢r(Pr), or(Pr)) = 2"~ (pry, (End ge (0rnr (Panr)))pr;) € E.

One easily shows using the combinatorical description of the sets ¢y in [5] that
the R-order A = Endgg(®rcnPr) in the conjecture satisfies A/2A = kQ/X as in
Theorem 3.1.

Proposition 3.16 The conjecture is true for f < 6.

Proof. For all proper subsets ) # I C N choose i € I withi—1¢& I. Let T
be the set of such pairs (I,7). Via the monomorphism ¢;_g;y,; : Pr = Pr_gy in
Lemma 3.10 one embeds P; into P;_g; for all (I,7) € T, such that recursively
all projective indecomposable RG-modules are embedded into Py. For I C N let
@1+ Pr — Py denote this embedding. Then for all (7,7) € T it holds that

Hompge (¢1(Pr), o1-1iy(Pr—gs3)) = pry(Endre(0r— g3 (Pr—{iy)))-

One possibility for 7" in the case f = 5 is given in figure 1, which shows the
Ext-quiver @ for the principal block of Fys SLy(2°%). The vertices of the quiver are
indexed by the projective indecomposable modules P;, where only the elements
of I are given and 0 stands for the empty set. The arrows P; — P,y and
Pryiy — Prin @ are represented by one straight line. The mappings ¢; are
constructed along the bold edges.

So to show the Proposition for the case f = 5, it remains to show that
the homomorphism pr; lies in Hompgg(¢r(Pr), ¢r—1iy(Pr—giy)) for all thin edges
(Pr,Pr_y) withi e ICN,i—1¢ T and (I,i) €T.

We prove this for the example I = {2,4,5} and i = 4. Let

h € HOHIRG(SO{2,4,5}(P{2,4,5})a P{2,5} (P{2,5}))

be a lift of W(ay, 12,51). Theorem 3.1 says that there is an = € Endga (@51 (Psy))
with
h = hpry, 5 = PT{2,4,5}Pr{4,5}(1 +2z) = pr{2,4,5}(1 + 2z).
Now
2End g (9151 (Psy)) C Endga (912,51 (Prasy)),

so 1 4 2z is a unit in End (@25 (Py251)). Therefore

Prioa5) € HomRG(SO{2,4,5} (P{2,4,5})a 90{2,5}(P{2,5}))-

The other cases are completely analogous. If f = 6, one additionally needs the
action of the Galois group Gal(K/Q,) = C; on the quiver Q. d
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1235
Figure 1: The Ext-quiver for the principal block of Fys S Ly(2°)

Remark 3.17 If the conjecture is true, then one does not need irrationalities to
describe RG. More precisely if KG = @;_, K™*™ then there is a Q-algebra
A= @, , Q™ and a (symmetric) Ly-order Ay C A such that R ®z, Ao = RG.
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