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1 Introduction

This paper investigates the group ring over p-adic integers of the special linear
groups G := SLy(p’) of degree 2 for odd primes p and f > 2. For f = 2 the group
ring Z,S Ly (p*) has been described up to Morita equivalence in [Neb 98]. The case
p = 2 is slightly easier and has been treated in [Neb 00]. The main strategy is the
same as for p = 2. There are additional technical difficulties due to the fact that
for odd primes p, there are two pairs of ordinary characters of degree ’% that
have the same p-modular constituents.

In the first part of the paper the general method, already used to describe RG
for p = 2 in [Neb 00] is repeated and adopted to the slightly more complicated sit-
uation here, that we do not work with a splitting field. The second part is devoted
to the special situation G = SLy(p/), K = Q, (Gi—1], R = Zy[Cyr—1], k = R/pPR.
Since details are needed, the technical description of kG given in [Kos 98] is re-
peated briefly in the first section. To describe RG it is useful to know some
facts about the direct summands of K ®g P for the projective indecomposable
RG-lattices P. The necessary information is derived in section 3.2 from the de-
scription of the decomposition numbers in [HSW 82]. After all these preparations
the section 3.3 gives a description of RG. The endomorphism rings of the projec-
tive indecomposable RG-lattices are calculated and the homomorphism lattices
between two such modules are determined up to bimodule isomorphisms. Finally
the projections of RG into the simple components of K G are described explicitly.
This allows to read off the inclusion patterns for the irreducible RG-lattices as it
is illustrated for the example G = SLy(3%).

This paper is intended to make one part of my habilitation thesis [Neb 99]
available to a wider audience. I thank Dr. Alexander Zimmermann for giving me
a copy of the preprint of [Kos 98|.



2 General definitions.

Throughout the paper let p be a prime, K a finite extension of Q,, R its ring of
integers with maximal ideal 7R and residue class field & := R/mR. Let A be a
finite dimensional semisimple K-algebra

S

A= éAGt o~ @KZ“X”‘
t=1

t=1

where €1, ..., €, are the central primitive idempotents of A and K; are K-division
algebras.

Let A be an R-order in A. This section develops a language to describe A
up to Morita equivalence, if it fulfills additional conditions. It does not weaken
the tools to calculate A, if one makes unramified extensions of K. Therefore it is
convenient to assume that K is big enough for A (cf. [Jac, Definition 9.10]) in the
sense that
e [ is a splitting field for £ ® g A and
e the division algebras K; are totally ramified field extensions of K.

So let K be big enough for A and let P, ..., P, represent the isomorphism classes
of projective indecomposable A right modules.

Then A is Morita equivalent to

h
A:=Enda(Pi@...® P,) = @ Homa (P, P))

ij=1

and A is a basic order in the sense that the simple A-modules are one dimensional
vector spaces over k.
Let V; be the simple A¢;-module and define the A-module

V.= é V.
t=1

The main assumption of this paper is that for 1 < ¢ < h the endomorphism rings
Enda(FP;) are commutative. This is equivalent to say that the multiplicities of
the simple A-modules in K ®z P; are < 1. Then V has a unique A-submodule
isomorphic to K ®z P;. For all 1 <1 < h choose an embedding

i P —= V.
Let @; be the unique A-invariant complement of K ®p ¢;(FP;) in V,
V = (K ®rpi(F)) @ Q.
Then the A-homomorphisms ¢ € Homa (P;, P;) for 1 < ,j < h are considered as

A-endomorphisms of V' by letting ¢, = 0. So let

E:=EndA(V) 2 P K, = Z(A).
t=1



Definition 2.1 Fori=1,...,hlet p;':V — K Qg P; be the right inverse of ¢;
with ;' (Q;) = 0. Then for 1 <i,j < h there are embeddings

Homa (P, Pj) = E, ¢ = ¢} pp;.
Via these embeddings Homa (P;, P;) is viewed as a subset
Aij = gD;lHOInA(Pi,Pj)QDj C E.

Note that A;; in general depends on the choice of ¢; and ¢; but A;; does not.
The primitive idempotents of F form a canonical “basis” of F in the sense

that the elements of E' can be written uniquely as 2:21 a;€; € E with a; € K;.
If pi; =, ae, € Ajj and @j; = > bey € Aj; then

P = Yijp == Z“ttht = wjivij € Ai N Agj.
t=1

Since ¢ corresponds to an endomorphism of P; that factors through P, it is not
a unit in A;;. Therefore one concludes that a;b; € mR; lies in the maximal ideal
m Ry of the ring of integers R; in K; forallt=1,...,s.

To measure the difference of ¢ being a unit in A;; we introduce a norm on FE.
To this purpose let L be the compositum of the fields K; (1 <t < s) with ring of
integers O and maximal ideal p.

Definition 2.2 Let 0 # ¢ =Y, , aie; € E with a, € K. The fractional O-ideal
Y i1 @O is called the norm of o,

n(yp) = ZatO CL.
i=t

It follows directly from the definition that

n(p)n(y) divides n(p)
for all p,¢ € E— {0} and for i € N

n(¢') = n(e)".

The unit groups A}; of the local rings A;; consist precisely of the norm O
elements:
A, ={p €N |n(p) =0} foralll1 <i<h.

As seen above this implies that
’I’L(QD,](,O]Z) - o for all 1 <73 #] < h, 0 7é Pij € Aij; 0 75 Pji € A]z

In the applications A will always be a ring direct summand of a group ring
RG for some finite group G. roup rings have the distinguished property that they
are symmetric orders: For the regular trace tr,., of A = KG one has tr,.,(g) =0
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forall 1 # g € G and tr,¢,(1) = |G|. Hence {g' | g € G} is the reciprocal basis of
G with respect to the bilinear form Tr,e, : A X A — K, Trpe4(a,b) := fatneg(ab)
and RG = RG¥ := {a € KG | Tryey(a, RG) C R}. This observation allows for
instance to calculate the index of RG in any maximal overorder. One easily sees
that also the blocks of RG' are symmetric with respect to the restriction of T'r,,
(cf. [Thé 95, Proposition (1.6.2)]). For calculations it is easier to work with the
reduced trace of KG: Let x;(1) denote the dimension of an absolutely irreducible
constituent of the simple KGe-module and let u; := ﬁxt(l)et € Z(KGe)*,
t=1,...,s Then ﬁtrreg(a) =Y trreq(wa) for all a € KG.

Assume now that A is a symmetric order with respect to the associative bilin-
ear form Try : (a,b) —= >, trreq(aued) with u =377  we and u, € K. Since
there is an idempotent e € A, such that A = eAe [Thé 95, Proposition (1.6.2)]
shows that A is also symmetric.

Some additional notation is needed:

If L C M are two R-lattices with M/L = ®!_, R/7"* R the index of L in M is
the ideal [M : L] := n®1t %R,

For 1 <i¢ < hlet

i ={1<t<s|egP #0}

denote the constituents of the KG-module K ®g P;.

Let v, be the extension of the m-adic valuation of K to L (v;(m) = 1) and for
fractional O-ideals I in L let v, (I) := min{v,(z) | x € I}. Fort =1,...,s let
D(R;) be the inverse different of Ry, i.e. the dual of R, with respect to the trace
bilinear form over R.

Lemma 2.3 Let 1 < j < h. Let

D; := H[Rt cu; 'D(Ry)]0.

tec;
If (Y1, ...,41) is an R-basis of Ajj, then

1
2 we(n(W))] < va(Dy).
i=1
Proof. Let M := @ie.; Ri€; be the maximal R-order in KA ;. Then the dual of M
with respect to T'r, is M# = EBtecjut_lD(Rt)et. Since M# C Aj; = Aj’;- C M with
[A]‘j : M#] = [M : A]'j] one has

[M : Ajj]? =[M : M#] = D;.

The Lemma follows, because rZim e @) divides [M : Ajjl. O

To describe the action of A on the irreducible A-modules we need some ad-
ditional notation as it is developed in [Ple 83]. The main idea is not to consider
norms of individual elements of Homa (P;, P;) but to consider the ideal generated
by the coefficients a; at € (¢t € ¢;N¢;) for all these homomorphisms. If the center



(t)
of Ae; is the ring of integers R; in K, then this ideal is a certain power 7T:n” R,

of the maximal ideal in R,. Then the order ®;_,Ag¢, is called a graduated order
(see Definition 2.4) and determined by the matrices M) := (mg))i,j‘tecmcj up to
Morita equivalence.

Definition 2.4 An R-order I' in the simple K-algebra D™*™ is called graduated,
if there are h,my,...,ny €N (n=ny+...+ny) and M = (m;;) € Z5" such that
I' is conjugated to -

AQyny, ... np, M) =

{X = (xij)i,jzl,___,h € ann ‘ xz’j € (,Pmij)nixnj fOT’ all 1 S Z,] S h}

where Q) the mazximal R-order in the division algebra D with mazimal ideal P. If
L/J() = el (Q/P)"*" then my = 0, mi; + mj; > 0 and m;; + mj > my for
all1 < 1,7 # j < h. In this case M s called an exponent matrix of I".

An R-order T" in a semisimple K -algebra is called graduated, if [' is the direct sum
of graduated orders in the simple components.

The I'-lattices in the simple K ® g '-modules can be easily described by means
of its exponent matrix M, see [Ple 83, Remark (II.4)]. One can always conjugate
I' such that m;; =0 forall 1 < j <h.

From [Ple 83, Proposition (IV.1)] one finds

Lemma 2.5 Let M € Z"" be an exponent matriz of a graduated R-order I' in
the simple K-algebra A. Assume that there is an involution °:T — T (i.e. an

R-order antiautomorphism of order < 2) fizing the central primitive idempotents
of U'/J(T'). Then

mij + mj; + My = my; + my + my; for all 1 <4, 5,0 < h.
If M is normalized such that the first row of M consists of 0 only then
mij +mj = mj; +my for all 1 <1i,j < h.

This lemma will be applied to epimorphic images of group rings RG. The natu-
ral involution °: RG — RG is the R-linear map defined by g — ¢! for all ¢ € G.
If € is a central primitive idempotent of KG with €® = € such that I' := RGe is
a graduated order and all p-modular constituents of the character belonging to €
are self dual, then I' satisfies the conditions of Lemma 2.5.

Remark 2.6 Let M = (my;)1<ij<n be an exponent matriz of a graduated order
as in Lemma 2.5 such that mi; =0 for all1 < j < h. Let

m(i,j) = my; +mj; for all 1 <i,5 < h.

Then M is already determined by the m(i,j) since 2m;; = m(i,j) — m(j,1) +
m(i, 1). The m(i,j) only depend on I' and are called structure constants of T'.



3 The group ring Z,[(s_,]SLy(p).

Throughout this chapter let p be an odd prime, f € N, and R := Z,[(,s_;] the ring
of integers in the unramified extension K of QQ, of degree f with residue class field
ki:= R/pR = F,;. We want to describe the group ring RG where G = SLy(k) is
the group of 2 x 2 matrices over k with determinant 1. RG has three blocks, one
of which is of defect 0 and the other two have the Sylow p-subgroups = Cz{ of G
as their defect groups.

The simple kG-modules can be obtained from Steinberg’s tensor product the-
orem: Let F' be the Frobenius automorphism z +— z? of k := F,s. For a vector
space V let V® be the vector space obtained by twisting V' i-times with F', hence
V) =V with scalar multiplication z-v := 2P v (z € k,v € V). The group SLy(k)

acts as group of automorphisms on the algebra k[X, Y| where Z b sends X

d
and Y to dX — bY, —cX + aY’, respectively. For 0 < A < p let M, C k[X,Y] be
the subspace of homogenous polynomials of degree A and for A = (Ag,..., Af_1)

with 0 < \; < p let

M)\ = M)\O ®k M/%) ®k e ®k Miijll)

The modules kM), form a system of representatives of the isomorphism classes of
simple SLy(p/)-modules over the algebraic closure k of k.

3.1 The group algebra kG.

In this section the description in [Kos 98] of the basic algebra belonging to the
group algebra of GG in characteristic p is repeated.

Let P :={0,...,p— 1} —{(p—1,...,p — 1)}. The elements of P are in
bijection to the simple kG-modules in one of the two blocks of positive defect.
To be consistent with the notation in [HSW 82] for the simple kG-modules the
elements A € P are indexed with the elements of N := {0,...,f — 1}. Then
A= (Xo,---,As_1) € P corresponds to the simple kG-module M.

The elements of N are considered modulo f.

[AJL 83] calculates the Ext-groups between the simple kG-modules: Fori € N
and h = +£1 let

PG,h):={AeP|0< N 1<p—-2und0< N, +h<p-—1}

and f(i,h) : P(i,h) = P; A+ y, where y; = Ajforall i,i—1#j € N, v = \i+h
and Yi—1 =P — 2 — )\i—l-

Theorem 3.1 ([AJL 83, Corollary 4.5]) Let A,y € P. Then Exty(My, M,) # 0
if and only if v = f(i, h)(A\) for somei € N, h € £1.
If f > 3, then the non-trivial Ext-groups are one dimensional.

For A € P let P, be the projective kG-module with head M, and

A := Endye(®rcpPr)
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the basic algebra Morita equivalent to the sum of the two blocks of defect f of
kG. [Kos 98] calculates defining relations between the generators of A given by
the Ext-quiver of kG:
For A € P let
SA)={ie N|\=p-—1}.

Theorem 3.2 ([Kos 98, Theorem 2.2]) Let f > 3 and @ be the quiver whose
vertices are indexed by the elements of P with arrows

ainx: f(G,R)(A) = A for alli € N,h==£1,\ € P(i, h).

Let kQ be the path algebra of Q. Then for N,y € P the paths in Q from X to y
can be written as

()‘|(7;1’ hl): RN (ila hl)h) = Oy, by, f(i1,—h1)(N) Yig,ho I - - - Cip by -

(A|A) is the idempotent in kQ, corresponding to the vertex X\. Then let X be the
wdeal of kQ, generated by

(fFG,m)(f @ R)Y NI, ), (@A) [A) = (F () (f (@ R) ()] (G 1) (4, ) [A)
(i,j € N;j#i—1,4,i+1;h,r =£1; A€ P(i,h) N P(j, 7))

(Al(@, h), (¢, B) | (3, ) (f (5, h)(A))) (i € Nsh =LA, f(i, h)(A) € P(i, h))
(M@, 1), (i, ~1)|A) (i € N; A€ P(i,—1),i € S(\))
(Al(2,1), (5, =1)[A) = (A[(5, —1), (4, 1)[A) (i € N; A € P(i,—1) N P(3, 1))

U@+LHU@WX)N@+1ﬂil@M%—Uumﬂﬂ%MON@—@@+LﬂM)
(i € N;h,r==x1; A € P(i,h); A\, f(i,h)(A) € P(i+1,7))

Then A 2 kQ/X.

Example. The Ext-quiver of the principal block of kSLy(3%). The arrows a;
and o, _p r(i,n)(n) are indicated by a single edge labeled with i.




Definition 3.3 For i € N, h = £1 and A € P(i,h) the number i is called the
direction of a; .\ € Q.

Let B
U:kQ > A

be the epimorphism of [Kos 98] with Ker(¥) = X. The images under ¥ of

the paths in () from the vertex A to the vertex  generate the vector space
Homyg(Py, Py) over k. [Kos 98, Proposition 9.2] constructs a k-basis for Homyg (P, P,).
To describe this basis we need to resume the notation of [Kos 98|:

Definition 3.4 (a) Let A,y € P with S(\) = S(v) and 0 #T = {i1,..., 4} C
N such that there is a path (X|(i1, h1),..., (@, h)]y) € Q from X to vy for
sugtable hy, ..., hy € {£1}. Then

A~ [T) = T((Al(1, ha)s - (5, ) 7))
denotes the image of such a path. (A ~ A@) :== T((A||N)).

(b) If A,y € P such that there is a path w = (A|...|y) € Q of length l(w) =
|S(A) = S(7)| then (A D7) denotes the image of such a path under V.

c 7V € such that there 1s a path w = . |y) € of length [(w) =
If A P such that there i h A Q of length [
|S(7) — S(A)| then (A C 7y) denotes the image of such a path under V.

(d) Assume that for X,y € P there exists some x € P with S(z) = S(A\) N S(7y)
such that (A D x) exists. Then x is unique and denoted by

AOy:i=uz.

(¢) Let \€ P,ie N—S()\). Ifi—1 € S()\), then let j —1 & S()\) be such that

A ] = (NG, 1),.-., (6 —1,1),(2,—1),(2,1), (e = 1, =1), ..., (4, =1)|\)).
Ifi—1¢ S(A), then put
(A 4] == T((A(E —1), (5, 1)[N))-

For T C N — S(A), the product [[;cp[A, 1] does not depend on the ordering
of the factors and is denoted by [\, T).

Definition 3.5 Let A,y € P, T} C N — (S(A\) U S(v)) be such that
(1) A& and v© X ezist.
(2) (Ao )~ (yoA),Th) exists.

Then we define for Ty C N — (S(A\) US(vy) UTy)

(AT T, 7)) = (A D (Ae)){(Aey) ~ (vo ), Ti)lyeo ATi(ye A) C ).



With this notation one has

Proposition 3.6 ([Kos 98, Proposition 9.2]) Let A,y € P. The elements ((\, T1,Ts, 7)),
for which X\, ~, Ty satisfy conditions (1) and (2) of Definition 3.5 and Ty C N —
(SN US(y)UTh), form a basis of Homgg(Py, Py).

Remark 3.7 Let \,v be as in Definition 3.5. The directions of the arrows in the
path corresponding to (A D (A © 7)) respectively ((y © A) C ) are precisely the
elements of S(\) — S(v) respectively S(v) — S(X). Therefore the path belonging to
(N, T1,T5,7)) is of the shape (A ~ v, T) for some subset T C N.

Lemma 3.8 Let A\ € P and ) # T C N such that (A ~ \,T) exists. ThenT = N
and there are signs vy, ..., v5_1 € {1}, such that \; = 1# fori=0,...,f—1.

Proof. The operators f(i,h) and f(i',h’) (i,7 € N,h,h' = £1) commute if one
considers the entries of A modulo 2. f(i, h) changes precisely the parity of \; and
Ai—1. Hence 7 € T implies 1 — 1 € T and therefore 7" = N. Moreover for all
i=0,...,f—1 there is v; € {1} such that

p—2—-y
5 .

p—2—-—XN+vrvi=NEN= Ol
Definition 3.9 Let P:={\ € P | \; = 22 for vy; = %1 for all i € N}.
For \ € P, the element (A ~ A\, N) € A is called a circle through X.

Corollary 3.10 (a) For A\ € P — P the 2|N_’S(“)| endomorphisms [\, T| with
T C N —S(A) form a k-basis of Endgg(Ph)-

(b) If X € P then there is a further basis element (A ~ X, N).

Definition 3.11 Let A,y € P be such that Homyg(Py, P,) # 0. If X or «y does
not lie in P then there is a unique Ty C N — (S(A\) U S(7)), such that (A& 7) ~
(v M), Th) € Q. Then let

dX,7) =1(AD Aey)(Aey)~(ye A, Ti(ve A C)

denote the length of a shortest path from A to v in @) without repeated directions.

3.2 Decomposition numbers

To lift this description of kG to characteristic zero, we need some properties of
the decomposition numbers of RG. In this section no central primitive idempo-
tents are needed and the letter ¢ usually stands for #1. A useful description of
the decomposition numbers and the Cartan invariants of the group SL,(p’) in
characteristic p can be found in [HSW 82] (cf. also [Bur 76)).
In the notation of [HSW 82], the characters of the absolutely irreducible CS L, (p/)-

modules are 1, 4, &', n, o', n;, §; and St, where 1 < i < (p/ — 3)/2 and
1 < j < (p/f —1)/2. The character degrees are n(1) = n'(1) = (' + 1)/2,
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6(1) = o'(1) = (' = 1)/2, 6:(1) = p/ =1, (1) = p/ + 1 and St(1) = p/. The
action of F' on the ordinary characters n; and 9; is given by multiplying the indices
with p. 8] = &,; and 5 = 1,; where the 1ndlces are considered modulo p’ + 1
respectlvely modulo p/ —1 and are identified with their negatives. d; and n; belong
to the principal block of RG, if and only if j and ¢ are even.

To describe the decomposition numbers define for A = (g, ..., A;_1) the set

f-1
WA ={0<v<p/ —1|v= Zei)\ipi for some e, ..., 6,1 = 1}
i=0

where ~ is the bijection of the set {0,...,p—1} defined by & = p—1—2x. Moreover
let VE(A) = W(A) U (pf —e—W(N)) for e = =1.

Forj=1,...,(p/ =3)/2let df\lg := djy, be the multiplicity of the Brauer char-
acter belonging to M) in the restriction of 7; to the p—regular classes of SLy(p®).
Analogously let dg\;.l) =dys, (J=1,.. L =1)/2), d /\( Fayje = = dy, = day,

and d( 1f+1 =dys = dy . Then one gets

Theorem 3.12 ([HSW 82, Theorem 2.7] )
a) df\e)j =114fj € V¢(A) and 0 otherwise.

b) drysi=11if A =p' —1 and 0 otherwise.
dxa =14 A =0 and 0 otherwise.

The elements of V¢(\) are treated like the indices of 7 (if € = 1) respectively §
(if e = —1), they are considered modulo p/ — € and identified with their negatives.

The main reason why the case p > 2 is much more complicated than the case
p = 2 is the existence of the exceptional characters i, ', § and ¢'. If L is a projec-
tive indecomposable RG-lattice such that one of these four characters occurs as a
constituent of the character of K®pxL, then there is an additional generator, called
a circle (cf. Definition 3.9) of the endomorphism ring Endys(L/pL). By Brauer
reciprocity, the set of such L is in bijection to the set of modular constituents
of one of the exceptional characters. [HSW 82, Corollary 2.4] determines these
modular characters:

Lemma 3.13 7 andn' respectively 6 and ' have the same p-modular constituents.
The set of all these constituents is

1
M = {( Aoy, A1) | i = i(p— 2+¢) fore € {£1}}.
[HSW 82] even says that if A € M, then pf;e lies in W(A) for e = =1 with A =
(p! —€)/2 (mod 2). Therefore p eV ¢\ forall A\ € M with A = (p/ —¢€)/2

(mod 2). Since the Frobenius automorphlsm I preserves the set of those modular
characters A one gets the following

10



Lemma 3.14 Let A € M be a p-modular constituent of 6 and ¢ := —1 or a
p-modular constituent of n and e := 1. Then

1
X =50 +€) = p" €VTN) for all0<m < f — 1.

2
Proof. The argumentation above shows that 1(p/ — €)p™ € V~¢()) for m =
0,...,f — 1. One has E5H(pf +¢) — I”‘”"%P'" = (pf+€)+6p and (p/ +
€) — (3(p” +¢) +ep™) = 5(p’ + €) — ep™. Therefore X e V(). 0

Now the definition of a circle (Definition 3.9) is repeated in the language of
Brauer characters.

Definition 3.15 Let Kr := (\Y, ... A)) be a sequence of p-Brauer characters
of G such that

. o1 L .
A =\ )\(721) with A = §(p — 24+ éMNp for some €9 = +1

0<i< f=1)j=1,...,f. Kr is called a circle, if there is a bijection o :
{1,...,f} —={0,..., f — 1} such that

(j):{ egjfli z:;éa(j),a(j)—.l forj=2,...,f

where the indices i € {0, ..., f — 1} are considered modulo f.

Lemma 3.16 Let Kr := (A\M ... A\D) be a circle and e = +1. Assume that
there is some a € X = ﬂf VEAD) with 0 < a < (pf — €)/2. Then there eists

0<m< f—1 such that a = 5.

Proof. By definition there are 1/(’) . Z/f . € {£1} such that )\ = %(p—?-l—yi(j))

@4)
G=1,....f,i=0,...,f—1). Then A = 24" Now let a € X with

0 < a < 2= Then there are ¢/ € {+1} (1 < j < f,0 < i < f —1) with
653)1 =1forall 1 <j < f,such that for all 1 < j < f either

/-1 j NG -1 (G N (G
a = 6(J)p - Vi(])pi _ pl — 6(()1)1/5]) 4 61@1 - Gz('])Vz'(])pi
¢ 2 2 - 2
1=0 =1
or
f-1 () f QNN S ) (), )

—(nf _ ) _ WP—V i _ P -2ty G — &GV
a=(p/ - 2:036 D : 2:; ;7

Let Ky denote the set of 1 < j < f such that the first equation holds and K; the
set of the other 1 < j < f.
e We now show that if K; = (), then a = pfif
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Assume that K; = (). Then there is some v E {il} With 2a = —v (mod p) and
eV =y for all 1 < j < f. Therefore a — =S/ a;p’ where
G _ 6 0)
a; = % e{-1,0,1}forall1<j < f
and it remains to show that a; = 0 for all 1 <7 < f—1. Seeking a contradiction we
let m € {1,..., f—1} be maximal such that a,, # 0. Then forn = m+1,...,f—1

andall 1< j < f
f-1
CRCNN |

and for n = m one has

f-1
0# am = e = -l = — Vi(]) forall1 <5< f.

m—1 —

1=

If j := o71(m) then a(]) — 1 =m-—1 E {0 .., f — 1} and the condition that
Kr is a circle yields Hz m z HZ i Z B contradlctlng the equality for a,,
above. Therefore all a; are zero and a is as stated.

e Analogously one proves: If Ky =, then a = = ”f% (pf —e€)— ’%.
e Assume now that both sets Ko, K1 # (). Then a = (pf — ”)/2 (mod p)
and a = (pf — 2e + ) /2 (mod p). Since p > 2 this 1mphes that /)8 = ¢
forall 1 < j < f. Let j € Ky and a; be as above (1 <i < f —1). The uniqueness
of the p-adic expansion of a gives

G) _ ), 09)
1Y = q; for all j € K|

and
= —q,; for all j € K.

Again let m be maximal such that a,, # 0. Assume that there is another 1 <[ <m
such that a; # 0 and choose [ maximal with this condition. Then forall1 < j < f
one has

f-1
ff)l—e(”) H (”)foralln—m+1 Lf=1
and
m—1 ) f—1 .

= HZ/Z-(]) :—Hl/i(]) foralln=101+1,...,m—1.

For m and [ one gets for all j € K, h=0,1
. fil
0# () 'am = ey = =) = — [ v



and
f-1

0% (=1)ta; = 6l(J)l — 6(J) l(J) — Hyi(j)'

1=l

In particular the quotient
m—1
ay/am = — H 1/1-(3)
i=l

is constant on KoU K; = {1,..., f}. But the condition that Kr is a circle implies

that [, I/Z]) S I/i(j*l) for j := o~!(m). This is a contradiction, hence
there is no such m with 1 <1 < m and q; # 0. Since pf—e—(’%—i-pm) E—p ,
a= Xs,? as claimed in the Lemma. O

The next lemma determines the p-modular constituents of the ordinary char-
acter associated with ngl).

Lemma 3.17 Lete =+1 and 0 < m < f —1. Let A = (X,...,A;_1) denote a
p-Brauer character of G with Z{;OI X=X (mod 2). Then x\& € VE()) if and
only if there are signs ¢; € {+1} such that

p—2+¢

)\i:#forallogi;émgf—l
and \ E{10—5 p—3 p—1 p-l-l}
" 2 727 27 2 7
Proof. Let A be as in the Lemma. If A, ——orA 21,then 1%—}-1)1'6‘/6(/\)

forall 0 < ¢ < f —1 by Lemma 3.14. Otherw1se there is v = +£1, such that
Am V= ’%3 or 1%1. For X' = (Mo, -5 Am—1, Am + 7, )\m+1,.. , As—1) one has by
[HSW 82, Corollary 2.4] that 25-¢ € W (X'). Therefore 2= 4+ p™ € V¢()) and all
sets V¢()\) in the Lemma contaln 9.

The sum of the degrees of these Brauer characters if p/ +¢, which is the degree

of the character belonging to Xﬁ,?. O

The other important structure of the Ext-quiver of kG is given by the m-
strings. Let m € N be fixed and \ := A=Y € P(m, —1) be such that \,, = p—1.
For j = p—2,...,0define \U) := f(m, —1)(AUtD). Then there is a sequence of re-
lations (X|(m, 1), (m, =1)|), (AD|(m, 1), (m, =1)|]AD) = (AD|(m, =1), (m, 1)[AD)
forj=p—2,...,1in X.

Definition 3.18 Let A € P, m € N with A\, =0, Ap_1 < p— 1. Define A = )\
and \UtD = f(m, 1)(AD) for j =0,...,p — 2. The sequence

ST(A,m): = AONO  Ae-D)

is called the m-string with origin X\ or simply an m-string.
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Lemma 3.19 Let (MO, XD A=) be an m-string. Then W(AP~D) c W(AP=2)
and for 1 < j < p—2 one has W(AW) ¢ W(AU=D) U W(AU+Y). Moreover
W(AUD) — W (AD)) # 0.

Proof. This follows from the equality

-1 f-1
Z:ei)‘ipZ = Z ei)‘ip €j— 1(]0 Aj l)p] +€j()‘ €5€5— l)p]
i=0 i=0,ij,j—1
If \; =p—1, then ;\j = 0 and one may choose ¢; = —e] 1. O

We now consider the intersection V¢(A4)) N V¢(AU=2) for m-strings.

Lemma 3.20 Let | := 21 and (A9, ..., AP=Y) be an m-string such that there
is0<i<p—3andv ==+l with V" X)) N VY \FD) £ Q. Theni=1—2 or
1=1—1 and

{6 = v ) nvr D) n v a®) nvr ()
where one has to omit \4~2) if p = 3.

Proof. The lemma is only proved for m = 0. The other cases follow by apply-
ing the Frobenius automorphism F. Let A®) = (X\g,...,A; ;). Then \+2 =
(Ags -3 Ap_y) with Xy = Ajfori =1,..., f — 1T and A\j := Ay +2 < p— 1. Since
cax > 0, there is € = £1 such that

(W) NWAN)U W) N —e- W) #0.

Assume that there 1s some o € W(A) N W(X). Then there are signs €;, ¢ (0 <
i < f—1) with 37 I ehipt = Zf o €:\p’. Hence

(3

f-1
60/\0 — 66()\0 - 2) = p(Z(eZ)\Z — 6;)\1')]31_1).
i=1
The left hand side of the equation is an even number between —2(p — 1) and
2(p — 1). The right hand side is divisible by p. Therefore esAg — €5(Xo — 2) = 0.
This has no solution \g > 2. Therefore there is some ¢ = =1 and o € W(A) N
(pf —€) — W()\) with 0 < a < p/ — e. Then « can be written as

f=

Z \p' = p —G—Zl/z)\l :
=0

for suitable v;, v; € {1} with v;_; = v} ;| = 1. Hence
f-1
1/0)\0 + l/(,)()\() —_ 2) + €= pf — p(Z(Z/Z)\Z -+ l/Z{)\i)pZ_l).

=1
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The left hand side is an odd number between —2p and 2p and the right had side
is divisible by p. Therefore both sides equal vyp and

1
Ao = §(p+2—€7/0)

andi=1—2ori=1[0-1.
For the other )\; the equality

f-1 f-1
S udp T =p T — =) v
i=1 i1

follows. Now considering A := (Ay,...,A; ;) as a Brauer character of SL,(p/™?)
one obtains an element in W(X) N p/~! — 5 — W()). By [HSW 82, Lemma 2.3]
this intersection contains at most one element namely (p/~' — ). Lemma 3.13
therefore implies that Aj_; = Xy ; < p— 1. Moreover 5(p/ ' — 1p) is even if and
only if sz:_ll )\; is even. Therefore the numbers \; with i > 1 determine the sign

Vo and the parity of Ay determines evy.
The element in VE(A)NVE(N) is %p(pffl—uo)—i-l/o:\o = 1(p/ —v)+w. Therefore
¥\ € VE(A) N Ve(N). With Lemma 3.16 and Lemma 3.17 the Lemma follows.
U

We call an m-string as in the Lemma tangent, since the m-string satisfies the
condition of the Lemma if and only if )/ and A%~V lie on a circle. The arrows
AO|(m, =D |AED) and (A D|(m,1)[AD) in Q are called exceptional arrows in
direction m.

Example. The tangent strings in the quiver of the principal 5-block of SLy(53).
The circles (which are triangles here) and therefore also the exceptional arrows
are the ones in the triangle (indicated by thick lines).
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3.3 The group ring RG.

In this section we want to describe the basic order that is Morita equivalent to
RG. The group ring RG has three blocks, one of which is of defect 0. The two
other blocks are of defect f and will be treated separately. So let B denote either
the principal block of G or the block containing the faithful irreducible characters
and y := 0 or y := 1 in the respective cases. Let

f—1
P={AeP[) N=y (mod2)}
=0

be the set of indices of the simple B-modules.
For A € P’ let Py be the projective indecomposable RG-module with head M,
and let
A= Enng(@)\eplp)\).

Fori e N, h=+1and X € P(i,h) N P’ let

©i,nA € HomRG(Pf(i,h)()\): P,)

be a lift of W(a;p,n). f T C N—S(A) define the endomorphism 3} € Endrg(P)
as the lift of [\, 7] obtained by replacing the ¥(w; ) in all definitions by ¢; p
(y € PPN P(i,h)) and let 35 € Endgg(Py) be such a lift of (A ~ A, N) for all
AXePnP.

Corollary 3.21 The lifts 3) 1, 8 € Endra(Py) of the basis vectors [X,T], (A ~
A, N) of Endyg(Py) form an R-basis of the lattice Endgg(Py).

As in section 2 let V' be the direct sum over a system of representatives of
isomorphism classes of simple K ® g B-modules and E := End g (V). For A,y € P’
the vector space Hompgq (P, Py) is considered as embedded in E. Let €,..., €
be the primitive idempotents of E.

If f is even, then K is a splitting field for KG. Then the ¢; are numbered in
such a way that €; corresponds to § or 1 and € corresponds to ¢’ or 7. In this
case put O := R and A := {1, 2}.

If f is odd, let

= (=1)*=Y72 and O := R[\/up|.
Then the KG-modules with character § 4+ ¢’ and n + 7' are irreducible and O
is isomorphic to the maximal order in the endomorphism ring of these modules.
Then we order the idempotents such that O = Z(e;B) and put A := {1}.

Let p be the maximal ideal of O.

If 0 belongs to B, then let x,, denote the index of UNORS B and if n belongs
to B, then Y,, is the index of 5x(71) € B.

For A € P’ let K

an:={1<t<s|eP\#0}

be the set of the indices of the simple KG-modules isomorphic to a direct sum-
mand of K@R P)\.
From Lemma 3.13 one gets
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Remark 3.22 Let A € P'. Then A\ € P if and only if 1 € c.
Since Endgg(Py) is a symmetric order, one finds:

Remark 3.23 Let A € P’ and put n:= [N — S(A)].

(a) If X & P, then lea] = 2" = dimg(Endgg(Py)) and Endgg(Py) is a sublattice
of ®ice, Re; of index p** I R.

(b) Let \ € P.
If f is even then |cy| = 2" + 1 = dimg(Endgg(Py)) and Endgg(Py) is a
sublattice of ®ic., Re; of index p"+VI/12R.
If f is odd, then |cx| +1 = 2"+ 1 = dimg(Endgg(Py)) and Endgrg(Py) is a
sublattice of Oe; ® Biec, 121 Re; of index p(2"TI-V/2R,

The next lemma is the crucial observation in the determination of A. In the
moment, we can only prove it for endomorphisms of projective modules Py with

A¢P.

Lemma 3.24 Let \€ P'— P and T C N — S()\) and Byr be as above. Then

1
n(B\r) = P"MO  where I\, T) = Z él()" i).

ieT
Proof. Let i € N — S()) and [ := 3I(), 7). Then

Bi=f--fig---q

is a product of f; € Homgg(Py;, Py,;,,) and g; € Hompg(Py,,,, Py,) for certain

pairwise distinct Ay,..., \jy1 € P. In the commutative ring E this product can
be evaluated as

53,1' = (f191)(fo92) - - - (fig1)-

Since the €;-coefficient of 3 ; is 0, the properties of the norm (see section 2) imply
that p' divides n(3} ;) and therefore p‘**) divides n(6} 7).
On the other hand

> Z(A,T):% > ZZ(M):% >t = farh

TCN-S()\) TCN—S()) i€T i€eN—S(a)

The Lemma now follows from Remark 3.23 and Lemma 2.3. O

In particular one finds

Corollary 3.25 Let A€ P', i€ S(A),i—1¢& S(A) and v := f(i,—1)(\). Then
i1y Pi,—1,x € PEndge(Py)*.
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Proof. Since i—1,4 ¢ S(v) one has [, 1] = ¥((v|(i, —1), (i, 1)]7)). Therefore 3. ; =
©i—1,Pi1, 1s an element of norm p according to Lemma 3.24. By Theorem 3.2
©i1yPi—1x € pEndge(Py). So there is a unit u € Endgg(Py) with ¢; 1,015 =
pU. Ol

To calculate the other 3) ,, we need to consider m-strings. In the moment we
only know the f, ,, corresponding to the ends of the m-strings.

Lemma 3.26 Let (MO, ... AP~V be an m-string with origin X? € P'. For
j=1,...,p—1 define

[i = Oxirm—1> 9j = PrG-1m1 € E.
(i) gp—1fp—1 € pEndga(Pye-n)*.
(i) If 1 < j<p—1 then 8
9ifi = Zajzfz’
i=1

with aj; € pO (1 <1< s) and aj; & pp for all i € cyi) — cyi+) .
(i11) If 1 < j <p—1 then g;f; — fj+19;+1 € PEndre(Pyx)*-

Proof. (i) is the statement of Corollary 3.25.
(ii) and (iii) is shown by induction.
Let j = p — 2. Theorem 3.2 says that

9ifi — fi+19i+1 € pPEndge(Pyo))-

Because of (i) the norm of this endomorphism is pO. Hence %(gj i — fi+195+1) €
Endge(Py¢))* which implies (iii) and (ii) for j = p — 2.

Now assume that 0 < j < p— 2 and (ii) holds for j + 1. By Theorem 3.2 one has
9ifi — fi+19j+1 € PEndge(Py). Since (ii) holds for j + 1 and ¢yg+1) — c\g+2) # 0
the norm of this endomorphism is pO. Therefore (iii) and hence also (ii) holds for
j. 0

Now we want to show an analogous statement to Lemma 3.24 also for \ € P.
To this purpose we recall what is already shown in section 3.2.

Remark 3.27 Let (AW, ..., X)) be a circle in Q with \¥) € P'. Then
Cy(1) Nn...N Cr(f) = AU {Xo, ceey Xf—l}-
Lemma 3.28 Let \e PN P, T C N —S(\) and By B be as above. Then

2R even
”(ﬁf\,T) = p'*10O and n(By) = { Zf ; i

18



Proof. As in the proof of Lemma 3.24 one finds that n(8) ;) is divisible by pPANO
if one uses Lemma 3.26 (ii). By Lemma 2.3 the norm of the last basis vector (3}

divides p//2R respectively pf = p™= p depending on whether f is even or odd. So
it suffices to show that p//? respectively p/ divides the coefficients of By. Then
the Lemma follows similarly as Lemma 3.24.

Let (A, ..., A#)) be a circle through A =: (). Let f; € Hompg(Pyw), Pye+n)
denote a lift of the image of W(A®, (my, v;), A0tV (1 < i < f) such that

f s
ﬂ; = Hfz = thft
i=1 t=1
with b; € O. Remark 3.27 says that

(1) bt:(), lftgAU{X(),,Xf_l}

Since A® and A+ are neighbours on an mj-string there is v) € P', such that
(AGHD (my, ) |[y®) € Q or p = 3 and there is ¥ with (v®|(m;, v;)|A?) € Q.
We assume that for all 1 < ¢ < f the condition (2) holds:

(2) There is ¥ € P!, such that (\+Y|(m;, 15)]7?) € Q.

With analogous considerations one can also treat the other case. For 1 <7 < f
let h; be a lift of W(ACHD|(my, 15)|y®) and let g; € Hompg(Pyu+1), Pyw) be a lift
of \Il()\(H—l), (mi, —l/z'), )\(Z))

Theorem 3.2 states that f;h; € pHomRG(P)\(i),P,y(i)). More precisely there are
e; € Endgg(Pyu+n) such that

f
(3) fihi=p H gjeihi (1 <i<f)

J=1,j#i

by Proposition 3.6.

Lemma 3.26 yields that the coefficient of h; at €y, is not zero.

For j =1,..., f let z; and y; be the coefficients of f;, and g; and e the coefficient
of e; at €y, . Because of (3)

f
Ty =P H yje.
J=Lj#i
The coefficient of ) at €,,, is
f f
mei = Ha:j =p H zjyje.
j=1 j=1yj#i
By Lemma 3.26 (ii) z;y;R = pR therefore

() p’ divides by, forall 1 <7 < f.
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Let ) = H;: 1 9; € Endgg(P,) be defined analogously to 3} going the other
way around the circle. Then n(3}3Y) is divisible by p/ by Lemma 3.26 (iii). With
the same Lemma (ii) one finds

(4) Ift € A, then the coefficients 2 and y of f; and g; at ¢ are not 0.

Let b, = [[/_,« and b, := [T/_, y,. Then p/ | bb,. If f is odd, then o/ | b,0

j=1"J =1
or o/ | b’lO.J Since one may takje B instead of 3} as basis vector of Endgg(P)) it
follows that b,0 = b0 = o = n(3,).
Assume now that f is even. Let ® = T'r, be the symmetrizing form of Endgg(P).
Then ®(3},idp,) € R. But p/®(8},idjp,) = b1 + by (mod p/R). Therefore
by = —by (mod pr). As in the case f odd one concludes that both b; and b,
have p-adic valuation % and n(8}) = p//?R. O

The statement (*) of the proof above allows to conclude the following:
Corollary 3.29 There is a unit x € R*, such that 8, =z, (mod p/ jc., Re;),

where
o { p/2(e; —€)  f even
AT VY2 /e f odd .

We now define generators B\ r of Endre(Py) that will replace the old ) ;.

Definition 3.30 (a) Let j € {0,...,p—2}. If the m-string (A, ... AP~V js
not tangent or j # ”%3, then define

PIAG) m i= E & € FE.
teey(HNeG+1)

Otherwise let x., be as in Lemma 3.20 and define

PrAG)m = Z ¢ €F.

tee, (jyNey+1) —{xm}

(b) For A€ P'letpry: =3, € € E be the unit element of Endgre(P) C E.

(c) Let \ € P, me N —S(\). If m—1¢ S(A), then X\ lies on an m-string.
Then let
Bagm =P - PT 1
Ifm—1 € S()\), then let j — 1 ¢ S(\) be the unique element such that
J={j,j+1,...,m—1} C S(N\). Then define v := f(m —1,1)(f(m —
2,1)(. fU+LD(fGDA)--.)) and
BA,m = p|J‘+1pr’y,mpr)\'
(d) ForT C N — S(X) let Bar = [1,ner Brm, where Byg := pry.

In the same spirit as Lemma 3.26 and using the notation there one shows
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Lemma 3.31 Forj=0,...,p—2

P PIyG) m € Endra(Pyo)) N Endra(Pyg+n).-

More precisely there are units uj, v; € Endgg(Py¢))* such that

— _ —1
P PG m = Ui fit19j41 = gj1fj1vip  (mod @zf:o PHIR%)-

With this lemma one now can give a precise description of the endomorphism
rings of the projective indecomposable RG-lattices:

Theorem 3.32 Let \ € P'.
If X\ & P, then
Enng(P)\) = <ﬂ)\,T | TCN - S()\))R

If X € P, then
Endgg(Py) = (61, Br | T C N = S(A))g.

Proof. From Lemma 3.31 and Lemma 3.26 it follows that 3y, € Endge(Py).
If A\ € P, then Corollary 3.29 states that (8, € Endgg(Py). Write Sar =
Y tee, A T)ier and By 7 = Y2, a(A, T)ier. Since the By, are obtained from
., by multiplication with units in local rings, there are kr € R* with kra(A, T); =
a(A,T); (mod pn(Bxrr)) for all t € c,. A relation between the () r (modulo p)
increases the index of the order generated by the (3} ;.. Therefore the 3, r generate
the same R-order as the 3} 7 and the Theorem follows from Corollary 3.21. [

The remainder of the paper is devoted to the description of the homomorphism
spaces between different projective indecomposable RG-lattices and the determi-
nation of the order ' := @;_, A¢;. The order I is a graduated order. Since all
p-modular characters of RG are self dual, one may calculate exponent matrices
for T' from the structure constants m®(),v) (\,7 € P',t € ¢y N ¢,) by Remark
2.6.

Proposition 3.33 Let A,y € P’ such that X or~ does not lie in P and Hompgg(Py, Py) #
{0}. Let pry, :=> e e, € Then

HomRG(P)\: P’y) = (pr)\,'y (EndRG (P’Ye)\))

as Endgg(Py) — Endge(P,)-bimodule. The non trivial structure constants (see
Remark 2.6) are
m®(\,7) = d(A,7),

where d(\, ) is as in Definition 3.11.

Proof. Let T € N — (S(A) U S(7)) be as in Definition 3.11. Proposition 3.6 says
that Hompgg(Py, P,) is generated as Endgg(Pye,)-module of any lift of

Wry = (AD AoNH(Ae7)~ (oA, Ti) {(veA) C)

whence Hompg(Py, Py) = (pr) ,(Endra(Pyen))-
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Let 3, be the product of the lifts of the ¢; 5 » that occur in w) . Analogously

define 3, .

Since one of A and 7, say A, does not lie in P one has AN ¢, = 0.

Let m € {0,...,f — 1} such that x,, € cxNc,. Then by Lemma 3.17 \,, €
{l = 2,1+ 1} where | := 2%

Assume that the path to w, , contains an exceptional arrow (X'|(m, £1)[v’) in
direction m. Then X\, =l —1and 7/, =l or A}, =l and v;, = — 1. Since w,,
is of the shape (A ~ v, T) for some T" C N, the entry A, is changed at most once
againtop—2—\,. Sincep—2—(l—-2)=Il+landp—-2—-(1+1)=1-2
# 1,1 — 1, this is a contradiction.

Therefore By 03, = ZtEC,\ﬁc7 T, with ;R = p*") R by Lemma 3.31. The
proposition follows. O

If both elements A and ~ lie in P, then the description of Hompgg(Py, Py) is
more complicated, since this module is not a cyclic Endgg(P,)-module.

Proposition 3.34 Let A\, € PN P'. Then there are T,, Ty C N with N =T, U
Ty such that (A ~ v|T;) € Q fori=1,2.

Let d; := |T;| denote the length of these paths, where we assume w.l.o.g. that
d1 S d2.

For i = 1,2 let C; be the set of indices of the simple KG-modules that lie in c,,
for all x in the path (A ~ ~v|T;) and R; := {xm | m € T;} C C;.

Lett € cxNec,. Then

d; teC;—Cy
do tECg—Cl
f—dz’ t € R;
md1 te A

mW (), y) =

where m :=1, if f is even and m := 2, if f is odd.
To get the isomorphism type of Hompgeg(Py, Py) define

ﬂl = Z €t and ﬂg = Z € + bg

teC1—Ry teCy—Ra—A
with
p%_dl (€1 —€2), if f is even
by = =1y e
p T . /uper, if fis odd
Then

HOHle(P)\, P,y) = ﬁlEnng(P,y) + ﬂQEnng(P7) + Z pdzRGt + Z pleGt

tER tERy

as Endgg(Py) — Endge(P,)-bimodule.
Proof. By Proposition 3.6 and Lemma 3.27

C,\ﬂ(}y:ClUCQ and01ﬂ02:AUR1UR2:AU{XO,...,Xf,l}.
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For j =1, 2 let §; be the product of the lifts of the ¢; , »» that occur in (A ~ v|T}).
Then £ and (3, generate the Endge(P,)-module Hompge(Py, Py) by Proposition
3.6.
For j = 1,2 write 3; = Z 29e, with 21 € O.
teC;

Analogously define g}, 3 to the paths (v ~ A|T}) and (y ~ A|T5). Let ° be the
involution on A induced by the R-linear mapping on RG defined by g — g~! for
all g € G. Then ° maps Enng(P,\),BiEndRG(PW) onto EndRG(P,y)ﬂZ{Enng(P/\).
Hence there are af\z) € Endge(Py), ag) € Endge(Py) and f; € O (t € C;) with

B =3 filal’ye = o flaf).

teC;

Since (3 also generates the bimodule Endgre(Py)BEndga(Py) the elements ag’)
and ag\i) are units in the local rings End g (P,) and Endgg(Py) C E. In particular
the coefficients of 37 and [/ have the same p-adic valuation.

Now the structure constants are determined. To this purpose let ¢ € ¢\ Nc,.

First assume that ¢t ¢ C; N Cy and let t € C; (i = 1 or 2). Then by Lemma 3.31
GtHOHle(P)\, P,Y)HOIHRg(P,y, P,\) = pdiRGt

whence m® (), v) = d;.
Now let ¢ = x, € R; for some 0 < m < f — 1. As in the proof of Lemma
3.28 (3) one sees that f,(z\”)? € p/ R. Therefore the p-adic valuation u,,(x,ﬁ”) >

L(f = v(f2)). For {i,1} = {1,2} one finds for 2"
(1) fi(z")?R = p“R.

Therefore m®(\, ) = d; = f — d;.
Now assume ¢t € A. Then yp(ft(xii))(xgi))o) = d;. Therefore m®(\,v) = m -
min(dl, d2) =m:- dl.
The coefficients of $; and 3, can be determined as follows: Applying an isomor-
phism one may assume that x§“ =1forallte C;— R; — A and i = 1,2 and that
:L"gl):lforallteA. Let:=1or:=2.
First it is shown: ‘

(2) Ift € R;, then p% divides 2.
By Lemma 3.31 there are units ui,...,u4 in the endomorphism rings of the
projective indecomposable RG-lattices occurring in the path (A ~ «|T;) such that

BiBiu = ZteCFRi plie, + p/ T ZteRi ai€;, where a; € O and u = Hfil u =
> ec, Vi€ with v, € O*. Let {4,1} = {1,2}. Then

. ) f+d; )
7 2)\0 p a t E RZ
ftacﬁ)(acﬁ)) Uy = { pdi t teC,— R,

If t € R; then v,(f;) = d; by (1) because xgl) = 1. Since the p-adic valuations of
z® and (z™)° are the same, v,(z\") > Wf+di—vp(f) =3(f+di—d) = d;
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for all ¢ € R;. Hence (2) is proven.

If t € R; then xgl) is chosen to be 1 and p/~%¢,3, € Hompg(Py, P,). Therefore

one can assume that xgi) =0forallt e R;.

It suffices to determine the coefficients x§2) for t € A. To this purpose consider
3205 = Y en fizl €, € Endg(Py) NEndgg(P,). By Lemma 3.31 there is u € R*,
such that f, = up™ for all t € A. Since the norm of 323, is p//?R (if f is even)
respectively o/ (if f is odd) by Lemma 3.28, one gets with Corollary 3.29, that
(323, is an R*-multiple of p%by. Replacing (3 by an R*-multiple and adjusting the
coefficients of 3, at ¢; with ¢t € Cy — C; one gets the proposition. O

3.4 The principal block of SLy(3%)

Let G := SLy(3*) and R := Z3|(s6]. The decomposition matrix of the principal
block of RG:

000200 020 002]011 101 110]022 202 220211 121 112

13 3 3|4 4 4]9 9 912 12 12
1/1]1l0 0o 0]0 0 0]0 0 0]l]0 0 o0
5|13/ 10 0 o0]1 1 1]0 0 0|0 0 o0
113/ 1o o o1 1 1]0 0 0|0 0 0
4126/ 0 | 1T 0 1]1 1 0]0 0 o0]0 0 1
Spl26/ 01 1 o]0 1 1]0 0 0|1 0 0
ssl26/ 00 1 1]1 0o 1/0 0 00 1 0
126 10 0 0]0 1 0|1 0 0]0 o0 1
6126/ 110 o o|l0 0o 1|0 1 0|1 0 o
ol|26l 110 0o o1 0 0|0 0 1]0 1 0
ml128/1]0 o0 1]1 1 1]0 0 0]o0o o0 1
m2128/ 111 0o 0|1 1 1]0 0 0|1 0 0
mo|28/ 10 1 o1 1 1]0 0 0|0 1 0
m|28/ 0] 1 0 0|0 1 0]1 0 0]0 0 1
(28000 1 0|0 0 1]0 1 01 0 0
w200 0 1|1 0o 0|0 0 1]0 1 0

Corollary 3.35 The action of RG on the simple KG-module with character x
is given by the graduated order A, where, in contrary to Definition 2.4, not the
dimensions but the names of the modular constituents of x are given.

A1 = A(R,000,(0)), Asry = A(R[v—3],000,011,101,110,V),
As, = A(R,200,101,112,011,002, N), As, = A(R,000,101,112,022,U),
A,, = A(R,200,101,112,022,U), A,, = A(R,000,101,110,011,112,002, M),
where

0000 00000 0000
201 1 L0000 1000
V= ), N=|21010]|), U= ,
2 10 1 2 10 0
2110 2 1100 3210
32110



0000000
101000
110010

and M= 5 1 | 019 [
212100
322110

The other projections of RG to the simple components of KG in the principal
block are calculated by applying the Galois automorphism F'.

These exponent matrices allow to read off the inclusion patterns of the irre-
ducible RG-lattices as explained in [Ple 83, Remark (IL.4)], from which we also
use the notation. The inclusions of the lattices corresponding to s, dg, 010, N2, N6,
and 7ng (left picture) respectively to § + 0" (right picture) are given as follows:

0000 =: L

1000 gopp = M

1111 = 3L

2111

Proof. To get a nice exponent matrix for A, one looks at the subgraph of the
Ext-quiver on those vertices that correspond to the modular constituents of the
character x. If x is Galois conjugate to do or 7, then this subgraph is a straight
line. If one orders the constituents along this line, one always finds an exponent
matrix U = U;; with U;; = max (0,7 — j) (cf. [Neb 99, Satz 5.6.1]). We only
show how to get the exponent matrix in the most complicated case 1,. To order
the modular constituents we start at one extremal point A of the subgraph, say
A = 000. Note that the vertex 002 has distance 3 from 000, since only paths
without repeated directions are allowed. We then list the vertices according to
their distance to A. Let M be the exponent matrix of A,, corresponding to the
ordering of the modular constituents as above such that m, ; = 0 for all j. Now 7,
corresponds to the character with number x,. The minimum of the length of the
paths from 000 to 110, 101, or 011 is 1, but the edge (000, 011) has direction 2. So
by Proposition 3.34 the first 4 entries in the first column of M are 0,1,1,2. Since
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112, 002 ¢ P, Proposition 3.33 gives the remaining entries in the first column
of M. The distance between 101 and 110 in @ is 1. But the edge joining the
two vertices has direction 2. So by Proposition 3.34, the sum of the two entries
Moz +mgo is 2. Now Lemma 2.5 yields mo3 = mgs = 1. Analogously one calculates
the remaining entries of M. U
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