A generalisation of Turyn's construction of self-dual codes.

Gabriele Nebe
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany
nebe@math.rwth-aachen.de

Abstract

In [17] Turyn constructed the famous binary Golay code of length 24 from the extended Hamming code of length 8 (see also [10, Theorem 18.7.12]). The present note interprets this construction as a sum of tensor products of codes and uses it to construct certain new extremal (or at least very good) self-dual codes (for example an extremal doubly-even binary code of length 80). The lattice counterpart of this construction has been described by Quebbemann [13]. It was used recently to construct an extremal even unimodular lattice in dimension 72 ([12]).

1 Introduction.

A linear code is a subspace C of \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} denotes the field with q elements. The vector space \mathbb{F}_{q}^{n} is equipped with the standard inner product $(x, y):=\sum_{i=1}^{n} x_{i} y_{i}$. We call this the standard Euclidean inner product to distinguish it from the Hermitian inner product $h(x, y):=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$ where $x \mapsto \bar{x}=x^{r}$ is the field automorphism of \mathbb{F}_{q} of order 2 and $q=r^{2}$. For $C \leq \mathbb{F}_{q}^{n}$ the dual code is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{q}^{n} \mid(x, c)=0 \text { for all } c \in C\right\}
$$

Analogously the hermitian dual code $C^{\perp, h}$ is the orthogonal space with respect to h. The code C is called (hermitian) self-orthogonal if $C \subseteq C^{\perp(, h)}$ and (hermitian) self-dual if $C=$ $C^{\perp(, h)}$.

For $x \in \mathbb{F}_{q}^{n}$ the weight of x is $w t(x):=\left|\left\{i \mid x_{i} \neq 0\right\}\right|$ the number of non-zero entries in x. The error correcting properties of a code C are measured by the minimum weight $d(C):=\min \{w t(c) \mid 0 \neq c \in C\}$. A code C is called m-divisible, if the weight of any codeword is a multiple of m. For $q=2,3$ the square of any non-zero element in \mathbb{F}_{q} is 1 and hence any self-orthogonal code in \mathbb{F}_{q}^{n} is q-divisible. Similarly $x \bar{x}=1$ for any $0 \neq x \in \mathbb{F}_{4}$ so any hermitian self-orthogonal code in \mathbb{F}_{4}^{n} is 2 -divisible. The Gleason-Pierce theorem shows that there are essentially four interesting families of self-dual m-divisible linear codes over finite fields: The self-dual binary codes (Type I codes) with $m=2$, the self-dual ternary codes (Type III codes) with $m=3$, the hermitian self-dual quaternary codes (Type IV codes) with $m=2$ and the doubly-even self-dual binary codes (Type II codes) with $m=4$.

Invariant theory of finite complex matrix groups gives the following bounds on the minimum weight of Type T codes of length n :

$$
d(C) \leq \begin{cases}2+2\left\lfloor\frac{n}{8}\right\rfloor & \text { if } \mathrm{T}=\mathrm{I} \\ 4+4\left\lfloor\frac{n}{24}\right\rfloor & \text { if } \mathrm{T}=\mathrm{II} \\ 3+3\left\lfloor\frac{n}{12}\right\rfloor & \text { if } \mathrm{T}=\mathrm{III} \\ 2+2\left\lfloor\frac{n}{6}\right\rfloor & \text { if } \mathrm{T}=\mathrm{IV}\end{cases}
$$

Using the notion of the shadow of a code, Rains [14] improved the bound for Type I codes

$$
d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor+a
$$

where $a=2$ if $n(\bmod 24)=22$ and 0 otherwise. Self-dual codes that achieve these bounds are called extremal. The monograph [11] gives a framework to define the notion of a Type of a self-dual code in much more generality and shows how to apply invariant theory to find upper bounds on the minimum weight of codes of a given Type.

Motivated by the article [13] and the construction of extremal 80-dimensional even unimodular lattices in [2] a generalisation of a construction used by Turyn to construct the Golay code of length 24 from the Hamming code of length 8 is given in this paper. The new codes discovered in this paper are an extremal Type II code of length 80 (at least 15 such codes have been known before) and 5 Euclidean self-dual codes in \mathbb{F}_{4}^{36} with minimum weight 11. All computations are done with MAGMA [4].

2 A construction for self-dual codes.

Theorem 2.1. Let $C=C^{\perp}, D=D^{\perp} \leq \mathbb{F}_{q}^{n}$ and $X \leq \mathbb{F}_{q}^{m}$ such that $X \cap X^{\perp}=\{0\}$. Then

$$
\mathcal{T}:=\mathcal{T}(C, D, X):=C \otimes X+D \otimes X^{\perp} \leq \mathbb{F}_{q}^{n m}=\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}
$$

is a self-dual code.
If $q=2$ and C and D are doubly-even, then \mathcal{T} is also doubly-even.
Proof. Let $c, c^{\prime} \in C, d, d^{\prime} \in D, x, x^{\prime} \in X$ and $y, y^{\prime} \in X^{\perp}$. Then

$$
\begin{array}{ll}
\left(c \otimes x, c^{\prime} \otimes x^{\prime}\right)=0 & \text { since } C \subseteq C^{\perp} \\
\left(d \otimes y, d^{\prime} \otimes y^{\prime}\right)=0 & \text { since } D \subseteq D^{\perp} \\
(c \otimes x, d \otimes y)=0 & \text { since } x \in X, y \in X^{\perp}
\end{array}
$$

so $\mathcal{T} \subset \mathcal{T}^{\perp}$. Moreover

$$
\operatorname{dim}(\mathcal{T})=\operatorname{dim}(C \otimes X)+\operatorname{dim}\left(D \otimes X^{\perp}\right)-\operatorname{dim}\left(C \otimes X \cap D \otimes X^{\perp}\right)=n m / 2-0
$$

since $X \cap X^{\perp}=\{0\}$. This implies that \mathcal{T} is self-dual.
If C and D are doubly-even, then the weights of all generators of \mathcal{T} are multiples of 4 and so also \mathcal{T} is doubly-even.

Remark 2.2. A similar result holds for hermitian self-dual codes: Let $C=C^{\perp, h}, D=$ $D^{\perp, h} \leq \mathbb{F}_{q}^{n}$ and $X \leq \mathbb{F}_{q}^{m}$ such that $X \cap X^{\perp, h}=\{0\}$. Then

$$
\mathcal{T}_{h}:=\mathcal{T}_{h}(C, D, X):=C \otimes X+D \otimes X^{\perp, h} \leq \mathbb{F}_{q}^{n m}=\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}
$$

is a hermitian self-dual code.
Remark 2.3. Clearly $X+X^{\perp}=\mathbb{F}_{q}^{m}$ has minimum weight 1 and therefore $d(\mathcal{T}(C, D, X)) \leq$ $d(C \cap D)$. For $q=2$, any self-dual code contains the all-one vector $\mathbf{1}$, so the maximum possible minimum weight for binary codes is $d(\mathcal{T}(C, D, X)) \leq d(C \cap D) \leq d(\langle\mathbf{1}\rangle)=n$.

Example 2.4. (binary codes)

1) Turyn's construction of the Golay-code ([17], see [10, Theorem 18.7.12]).

Let $C \cong D \cong h_{8}=h_{8}^{\perp} \leq \mathbb{F}_{2}^{8}$ both to be equivalent to the extended Hamming code h_{8} of length 8 , the unique doubly-even binary self-dual code of length 8 . Up to the action of S_{8} there is a unique such pair satisfying $C \cap D=\langle\mathbf{1}\rangle$. Let $X:=\langle(1,1,1)\rangle$. Then $\mathcal{T}(C, D, X)$ is a doubly-even self-dual code of length 24 . From the explicit description
$\mathcal{T}(C, D, X)=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in C \cap D=\langle\mathbf{1}\rangle\right\}$
one easily sees that the minimum weight of $\mathcal{T}(C, D, X)$ is ≥ 8, so $\mathcal{T}(C, D, X)$ is equivalent to the Golay code: Any non-zero word $w \in \mathcal{T}(C, D, X)$ has either

1) 1 non-zero component: Then up to permutation w is of the form $(d, 0,0)$ with $d=\mathbf{1} \in \mathbb{F}_{2}^{8}$ and has weight 8.
2) 2 non-zero components: Then w is equivalent to ($d_{1}, d_{2}, 0$) with non-zero $d_{1}, d_{2} \in D \cong h_{8}$ and has weight $\geq d\left(h_{8}\right)+d\left(h_{8}\right)=4+4=8$.
3) 3 non-zero components: Since all components of w lie in $C+D=\langle\mathbf{1}\rangle^{\perp}$ they all have even weight, so $w t(w) \geq 2+2+2=6$. The code \mathcal{T} is doubly-even, so the weight of w is a multiple of 4 , therefore $w t(w) \geq 8$.
4) Let $X \leq \mathbb{F}_{2}^{10}$ be the code with generator matrix

$$
\left(\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

(see [1]). Then X is equivalent to its dual code, $X \cap X^{\perp}=\langle\mathbf{1}\rangle$ and the minimum weight of X (and of X^{\perp}) is 4 . Let C and D be as in 1) and put

$$
\mathcal{T}:=X \otimes C+X^{\perp} \otimes D \leq \mathbb{F}_{2}^{80}
$$

Then \mathcal{T} is self-orthogonal of dimension

$$
\operatorname{dim}(X \otimes C)+\operatorname{dim}\left(X^{\perp} \otimes D\right)-\operatorname{dim}\left((X \otimes C) \cap\left(X^{\perp} \otimes D\right)\right)=20+20-1=39
$$

The three codes T_{1}, T_{2}, T_{3} with $\mathcal{T} \subsetneq T_{i} \subsetneq \mathcal{T}^{\perp}$ are all self-dual, two of them are doubly-even and one of these doubly-even self-dual codes has minimum weight 16 , hence is an extremal doubly-even code of length 80. Its automorphism group is isomorphic to $P S L_{2}(7) \times S_{6}: 2$, which can be seen as follows:
Let S be stabiliser of D in $\operatorname{Aut}(C)$. Then $S \cong P S L_{2}(7)$. The two codes C and D are the only self-dual S-invariant submodules of \mathbb{F}_{2}^{8}, they are interchanged by the normalizer of S in S_{8} which is isomorphic to $P G L_{2}(7)$. Hence there is $\tau \in S_{8}$ interchanging C and D.
The automorphism group A of X is isomorphic to S_{6}, it also fixes the dual code X^{\perp}. The two codes X and X^{\perp} are the only A-invariant subspaces of \mathbb{F}_{2}^{10} which have dimension 5 , therefore they are interchanged by the normalizer of A in S_{10}, which contains A of index 2. So there is $\sigma \in S_{10}$ with $\sigma(X)=X^{\perp}$ and $\sigma\left(X^{\perp}\right)=X$. One therefore gets an obvious action of

$$
H:=\langle A \otimes S, \sigma \otimes \tau\rangle \cong P S L_{2}(7) \times S_{6}: 2
$$

on \mathcal{T}. Since the three self-dual codes T_{1}, T_{2}, T_{3} are not equivalent, the automorphism group of \mathcal{T} also stabilizes all codes T_{i}. With MAGMA one checks that $\operatorname{Aut}\left(T_{1}\right)=H$. To the author's knowledge this code is not described before in the literature.
Example 2.5. Ternary codes:
Let $C \leq \mathbb{F}_{3}^{12}$ be the linear ternary self-dual code with generator matrix

$$
\left(\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Then C is equivalent to the ternary Golay code of length 12 . Let $h \in S_{12}$ be the permutation $(1,4,6,12,3,9,8)(2,11,7,10)$ and let $D=h(C)$. Then $C \cap D$ is of dimension 1 and minimum weight 12 .
Choose $X=\langle(1,1)\rangle \leq \mathbb{F}_{3}^{2}$. Then $\mathcal{T}(C, D, X)$ is a self-dual code of minimum weight 9 . The extremal ternary codes of length 24 are classified in [8]. There are two such codes, one of them is the extended quadratic residue code, the other one is equivalent to $\mathcal{T}(C, D, X)$.
Example 2.6. Euclidean self-dual quaternary codes:
Let $C \leq \mathbb{F}_{4}^{12}$ be the code with generator matrix

$$
\left(\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & \omega^{2} & 1 & 1 & \omega & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & \omega & 0 & 1 & \omega^{2} & \omega & \omega^{2} \\
0 & 0 & 1 & 0 & 0 & 0 & \omega & \omega^{2} & \omega & \omega^{2} & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega & \omega^{2} & \omega & \omega^{2} & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & \omega^{2} & \omega & 1 & 0 & \omega^{2} & \omega \\
0 & 0 & 0 & 0 & 0 & 1 & \omega^{2} & 1 & 1 & \omega & 1 & 1
\end{array}\right) .
$$

Then C is a euclidean self-dual code equivalent to the extended quadratic residue code of length 12 over \mathbb{F}_{4}. Putting $D=\pi(C)$ for permutations $\pi \in S_{12}$ running through a right transversal of $\operatorname{Aut}(C)$ in $S_{12}, X=\langle(1, \omega)\rangle \leq \mathbb{F}_{4}^{2}$ and $X^{\perp}=\langle(1, \omega+1)\rangle$ one constructs 20 monomially inequivalent euclidean self-dual codes in \mathbb{F}_{4}^{24} with minimum weight 8.
Taking $X=\langle(1,1,1)\rangle$ one obtains five monomially inequivalent euclidean self-dual codes in \mathbb{F}_{4}^{36} with minimum weight 11: $T_{1}, T_{2}\left(108\right.$ minimum words) and T_{3}, T_{4} and $T_{5}(1188$ minimum words each). These codes are not equivalent to the ones given in [3]. Permutations π_{i} yielding these codes T_{i} are

$$
\begin{aligned}
& \pi_{1}=(1,10,7,2,11,8,5)(3,4,12,9) \\
& \pi_{2}=(1,10,6,4,12,9,5)(2,11,8,7) \\
& \pi_{3}=(1,3,4,5,7,8,9,11)(2,10,12) \\
& \pi_{4}=(1,6,11)(2,5,8,12,4,7,10)(3,9) \\
& \pi_{5}=(1,10,2,8)(3,11,12,6)(4,7,5,9)
\end{aligned}
$$

The permutation groups are $S_{3} \times A_{5}$ for $T_{i}(\mathrm{i}=1,2,3,4)$ and $S_{3} \times P S L_{2}(11)$ for T_{5}.

3 An application to lattices.

In [13] Quebbemann describes a construction of integral lattices that is the lattice counterpart of the construction described in the last section. Here a lattice (L, Q) is an even positive definite lattice, i.e. a free \mathbb{Z}-module L equipped with a quadratic form $Q: L \rightarrow \mathbb{Z}$ such that the bilinear form

$$
(\cdot, \cdot): L \times L \rightarrow \mathbb{Z},(x, y):=Q(x+y)-Q(x)-Q(y)
$$

is positive definite on the real space $\mathbb{R} \otimes L$. The dual lattice

$$
L^{\#}:=\{x \in \mathbb{R} \otimes L \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\}
$$

contains L and the finite abelian group $L^{\#} / L=: D(L, Q)$ is called the discriminant group.
L is called unimodular, if $L=L^{\#}$. Note that unimodular quadratic lattices are usually called even unimodular lattices. They correspond to regular positive definite integral quadratic forms.

The minimum of a lattice (L, Q) is

$$
\min (L, Q):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}
$$

which is half of the usual minimum of the lattice.
The theory of modular forms allows to show that the minimum of a unimodular quadratic lattice of dimension n is always

$$
\min (L, Q) \leq\left\lfloor\frac{n}{24}\right\rfloor+1
$$

Lattices achieving this bound are called extremal.

For any prime p not dividing the order of $D(L, Q)$ the quadratic form Q induces a non-degenerate quadratic form

$$
\bar{Q}: L / p L \rightarrow \mathbb{Z} / p \mathbb{Z}, \bar{Q}(\ell+p L):=Q(\ell)+p \mathbb{Z}
$$

From the theory of integral quadratic forms (see for instance [15]) it is well known that this quadratic space $(L / p L, \bar{Q})$ is hyperbolic, so there are maximal isotropic subspaces $A=A^{\perp}$ and $A^{\prime}=\left(A^{\prime}\right)^{\perp}$ such that

$$
L / p L=A \oplus A^{\prime}, \bar{Q}(A)=\bar{Q}\left(A^{\prime}\right)=\{0\} .
$$

If M and N are the full preimages of A and A^{\prime}, then $L=M+N, p L=N \cap M$ and $\left(M, \frac{1}{p} Q\right)$ and $\left(N, \frac{1}{p} Q\right)$ are again integral lattices with the same discriminant group as L. The pair (M, N) is called a polarisation of L (for the prime p).
Theorem 3.1. ([13, Proposition]) Let $(L, Q), p, A, A^{\prime}$ be as above and let $B \leq A^{n}$ be a subgroup of A^{n}. Put

$$
B^{\prime}:=\left(A^{\prime}\right)^{n} \cap B^{\perp}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in\left(A^{\prime}\right)^{n} \mid \sum_{i=1}^{n} \overline{\left(b_{i}, z_{i}\right)}=0 \text { for all }\left(b_{1}, \ldots, b_{n}\right) \in B\right\}
$$

Then $C:=B \oplus B^{\prime} \leq(L / p L)^{n}$ satisfies $\bar{Q}^{n}(C)=\{0\}$ and $C=C^{\perp}$. The lattice

$$
\Lambda:=\Lambda\left(L, A, A^{\prime}, B\right):=\left\{\ell \in L^{n} \mid \bar{\ell} \in C\right\}
$$

is integral with respect to $\tilde{Q}:=\frac{1}{p} Q^{n}$ and satisfies $D(\Lambda, \tilde{Q}) \cong D(L, Q)^{n}$.
Of particular interest is the case where

$$
B=\{(x, \ldots, x) \mid x \in A\}
$$

is the diagonal subgroup of A^{n}. Then

$$
B^{\prime}=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i} \in A^{\prime} \text { and } \sum z_{i}=0\right\}
$$

and $\Lambda\left(L, A, A^{\prime}, B\right)$ will be denoted by $\Lambda\left(L, A, A^{\prime}, n\right)$ or equivalently $\Lambda(L, M, N, n)$, where M, N are the full preimages of A, A^{\prime} respectively.

Lemma 3.2. Let (N, M) be a polarisation of L modulo 2 and assume that $d=\min (L, Q)=$ $\min \left(N, \frac{1}{2} Q\right)=\min \left(M, \frac{1}{2} Q\right)$. Then

$$
\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\Lambda(L, M, N, 3), \tilde{Q}) \leq 2 d
$$

Proof. The lattice $\Lambda:=\Lambda(L, M, N, 3)$ has the following description

$$
\Lambda=\left\{\left(m+n_{1}, m+n_{2}, m+n_{3}\right) \mid m \in M, n_{1}, n_{2}, n_{3} \in N, n_{1}+n_{2}+n_{3} \in 2 L\right\} .
$$

We write any element of λ of Λ as $\lambda=(a, b, c)$ and distinguish according to the number of non-zero components:

1) One non-zero component: Then $\lambda=(a, 0,0)$ with $a=2 \ell \in 2 L$ so $\tilde{Q}(\lambda)=\frac{1}{2} Q(2 \ell)=$ $2 \mathbb{Q}(\ell) \geq 2 d$.
2) Two non-zero components: Then $\lambda=(a, b, 0)$ with $a, b \in N$ so $\tilde{Q}(\lambda)=\frac{1}{2} Q(a)+$ $\frac{1}{2} Q(b) \geq 2 d$.
3) Three non-zero components: Then $\tilde{Q}(\lambda)=\frac{1}{2}(Q(a)+Q(b)+Q(c)) \geq \frac{3}{2} d$.

Examples for $p=2$ and $n=3$

1) Take $(L, Q)=E_{8}$ the unique (even) unimodular lattice of dimension 8 . Then for $p=2$, the quadratic space $L / 2 L$ has a unique polarisation $L / 2 L=A \oplus A^{\prime}$ up to the action of the orthogonal group of L. By Lemma 3.2 the lattice $\Lambda\left(E_{8}, A, A^{\prime}, 3\right)$ is an even unimodular lattice of minimum 2, therefore isomorphic to the Leech lattice, the unique unimodular lattice of dimension 24 with minimum 2. This has been remarked independently in [16], [9], [13].
2) Take $L=\Lambda_{24}$ to be the Leech lattice and take a polarization $L=M+N, M \cap N=2 L$ such that $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$. Bob Griess [7] remarked that $\Lambda(L, M, N, 3)$ is a 72-dimensional unimodular lattice of minimum 3 or 4 (this also follows from Lemma 3.2). In [6] the number of sublattices $M \leq \Lambda_{24}$ such that $\left(M, \frac{1}{2} Q\right) \cong \Lambda_{24}$ is computed. There are $5,163,643,468,800,000$ such sublattices, about $1 / 68107$ of all maximal isotropic subspaces. Each maximal isotropic subspace A has 2^{66} complements (the number of alternating 12×12 matrices over \mathbb{F}_{2}). Assuming that approximately $1 / 68107$ of these complements correspond to lattices that are similar to the Leech lattice, the number of pairs (M, N) such that $M+N=\Lambda_{24}, M \cap N=2 \Lambda_{24}$ and $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$ is about $5.6 \cdot 10^{30}$. Dividing by the order of the Conway group, $\operatorname{Aut}\left(\Lambda_{24}\right) /\{ \pm 1\}$, one gets a rough estimate of 10^{12} orbits of such polarisations of the Leech lattice. Presumably most of these orbits will give rise to lattices of minimum 3. In [12] I found one lattice $\Gamma:=\Lambda\left(\Lambda_{24}, M, N, 3\right)$ to be an extremal unimodular lattice of dimension 72 . Here the sublattices $M=\alpha \Lambda_{24}$ and $N=(\alpha+1) \Lambda_{24}$ are obtained using a hermitian structure of the Leech lattice over the ring of integers $\mathbb{Z}[\alpha]$ in the imaginary quadratic number field of discriminant -7 , where $\alpha^{2}+\alpha+2=0$. The Leech lattice has nine such Hermitian structures and one of them defines a polarisation giving rise to an extremal unimodular lattice. Γ can also be constructed as the tensor product of the Leech lattice with the unique unimodular $\mathbb{Z}[\alpha]$-lattice P_{b} or dimension $3, \Gamma=\Lambda_{24} \otimes_{\mathbb{Z}[\alpha]} P_{b}$. This construction allows to find the subgroup $\mathrm{SL}_{2}(25) \times P S L_{2}(7): 2$ of the automorphism group of Γ. For more details on this lattice see my preprint [12].

The extremal 72-dimensional lattice Γ described above is constructed using a polarization (M, N) of Λ_{24} that is invariant under $\mathrm{SL}_{2}(25)$. This group contains an element g of order 13 , acting as a primitive 13 th root of unity on $L / 2 L$ and it is interesting to investigate all g-invariant polarisations:

Remark 3.3. Take $L:=\Lambda_{24}$ to be the Leech lattice and let $g \in \operatorname{Aut}(L)$ be an element of order 13 (there is a unique conjugacy class of such elements). Then g acts fixed point free on $L / 2 L$ and hence there are $2^{12}+1$ subspaces of dimension 12 that are invariant under $\langle g\rangle$. The preimage M in L of 41 of these invariant subspaces is similar to the Leech lattice. The normalizer G in $\operatorname{Aut}(L)$ of $\langle g\rangle$ acts on these lattices with orbits of length 36,4 , and 1. In total we obtain 31 representatives (M, N) of G-orbits on the ordered polarizations (M, N) of L modulo 2 such that

$$
g N=N, g M=M,\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong(L, Q) \cong \Lambda_{24} .
$$

Only one such pair yields a lattice $L(M, N, 3)$ that has minimum 4. This lattice is necessarily isometric to Γ.
I did a similar computation for an element $g \in \operatorname{Aut}\left(\Lambda_{24}\right)$ acting as a primitive 21st root of 1 . All 71 orbits of the normalizer on the ordered "good" polarisations (M, N) yield lattices $L(M, N, 3)$ that contain vectors of norm 3 .

Example.

In [2] we used the code $X \leq \mathbb{F}_{2}^{10}$ from example 2.4 2) to construct two 80-dimensional extremal unimodular lattices from the E_{8}-lattice.

References

[1] Christine Bachoc, Applications of coding theory to the construction of modular lattices. J. Comb. Th. (A) 78 (1997) 92-119
[2] Christine Bachoc, Gabriele Nebe, Extremal lattices of minimum 8 related to the Mathieu group M_{22}. J. reine angew. Math. 494 (1998) 155-171.
[3] D. Boucher, F. Ulmer, Coding with skew polynomial rings. J. Symbolic Comput. 44 (2009), no. 12, 16441656.
[4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997
[5] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290, 1993.
[6] C. Dong, H. Li, G. Mason, S. P. Norton, Associative subalgebras of the Griess algebra and related topics in: Ferrar, J. (ed.) et al., The Monster and Lie algebras. Proceedings of a special research quarter at the Ohio State University, Columbus, OH, USA, May 1996. Berlin: de Gruyter. Ohio State Univ. Math. Res. Inst. Publ. 7, 27-42
[7] Robert L. Griess Jr., Rank 72 high minimum norm lattices. J. Number Theory 130 (2010) 1512-1519.
[8] J. S. Leon, V. Pless and N. J. A. Sloane, On Ternary Self-Dual Codes of Length 24, IEEE Trans. Information Theory, IT-27 (1981) 176-180.
[9] J. Lepowsky, A. Meurman, An E_{8}-approach to the Leech lattice and the Conway group. J. Algebra 77 (1982) 484-504.
[10] J. MacWilliams, N.J.A. Sloane, The theory of error correcting codes. North Holland (1977)
[11] G. Nebe, E.M. Rains, N.J.A. Sloane, Self-dual codes and invariant theory. Springer (2006)
[12] G. Nebe, An even unimodular 72-dimensional lattice of minimum 8. (preprint 2010)
[13] H.-G. Quebbemann, A construction of integral lattices. Mathematika, 31 (1984) 137140.
[14] E. Rains, Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory 44 (1998) 134-139.
[15] W. Scharlau, Quadratic and Hermitian Forms. Springer Grundlehren 270 (1985)
[16] J. Tits, Four presentations of Leech's lattice. in M.J.Collins (Ed.) Finite simple groups, II, Proc. LMS Researsch Symp. Durham, 1978, Academic Press (1980) 306307.
[17] R.J. Turyn, section in article E.F. Assmus Jr., H.F. Mattson Jr., R.J. Turyn, Research to Develop the Algebraic Theory of Codes, Report AFCRL-6700365, Air Force Cambridge Res. Labs., Bedford, Mass. June 1967.

