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Abstract. In [17] Turyn constructed the famous binary Golay code of length 24 from
the extended Hamming code of length 8 (see also [10, Theorem 18.7.12]). The present note
interprets this construction as a sum of tensor products of codes and uses it to construct
certain new extremal (or at least very good) self-dual codes (for example an extremal
doubly-even binary code of length 80). The lattice counterpart of this construction has
been described by Quebbemann [13]. It was used recently to construct an extremal even
unimodular lattice in dimension 72 ([12]).

1 Introduction.

A linear code is a subspace C of Fnq , where Fq denotes the field with q elements. The
vector space Fnq is equipped with the standard inner product (x, y) :=

∑n
i=1 xiyi. We

call this the standard Euclidean inner product to distinguish it from the Hermitian inner
product h(x, y) :=

∑n
i=1 xiyi where x 7→ x = xr is the field automorphism of Fq of order

2 and q = r2. For C ≤ Fnq the dual code is

C⊥ := {x ∈ Fnq | (x, c) = 0 for all c ∈ C}.

Analogously the hermitian dual code C⊥,h is the orthogonal space with respect to h. The
code C is called (hermitian) self-orthogonal if C ⊆ C⊥(,h) and (hermitian) self-dual if C =
C⊥(,h).

For x ∈ Fnq the weight of x is wt(x) := |{i | xi 6= 0}| the number of non-zero entries
in x. The error correcting properties of a code C are measured by the minimum weight
d(C) := min{wt(c) | 0 6= c ∈ C}. A code C is called m-divisible, if the weight of any
codeword is a multiple of m. For q = 2, 3 the square of any non-zero element in Fq
is 1 and hence any self-orthogonal code in Fnq is q-divisible. Similarly xx = 1 for any
0 6= x ∈ F4 so any hermitian self-orthogonal code in Fn4 is 2-divisible. The Gleason-Pierce
theorem shows that there are essentially four interesting families of self-dual m-divisible
linear codes over finite fields: The self-dual binary codes (Type I codes) with m = 2, the
self-dual ternary codes (Type III codes) with m = 3, the hermitian self-dual quaternary
codes (Type IV codes) with m = 2 and the doubly-even self-dual binary codes (Type II
codes) with m = 4.
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Invariant theory of finite complex matrix groups gives the following bounds on the
minimum weight of Type T codes of length n:

d(C) ≤


2 + 2bn

8
c if T=I

4 + 4b n
24
c if T=II

3 + 3b n
12
c if T=III

2 + 2bn
6
c if T=IV

Using the notion of the shadow of a code, Rains [14] improved the bound for Type I codes

d(C) ≤ 4 + 4b n
24
c+ a

where a = 2 if n (mod 24) = 22 and 0 otherwise. Self-dual codes that achieve these
bounds are called extremal. The monograph [11] gives a framework to define the notion
of a Type of a self-dual code in much more generality and shows how to apply invariant
theory to find upper bounds on the minimum weight of codes of a given Type.

Motivated by the article [13] and the construction of extremal 80-dimensional even
unimodular lattices in [2] a generalisation of a construction used by Turyn to construct
the Golay code of length 24 from the Hamming code of length 8 is given in this paper.
The new codes discovered in this paper are an extremal Type II code of length 80 (at
least 15 such codes have been known before) and 5 Euclidean self-dual codes in F36

4 with
minimum weight 11. All computations are done with MAGMA [4].

2 A construction for self-dual codes.

Theorem 2.1. Let C = C⊥, D = D⊥ ≤ Fnq and X ≤ Fmq such that X ∩X⊥ = {0}. Then

T := T (C,D,X) := C ⊗X +D ⊗X⊥ ≤ Fnmq = Fnq ⊗ Fmq

is a self-dual code.
If q = 2 and C and D are doubly-even, then T is also doubly-even.

Proof. Let c, c′ ∈ C, d, d′ ∈ D, x, x′ ∈ X and y, y′ ∈ X⊥. Then

(c⊗ x, c′ ⊗ x′) = 0 since C ⊆ C⊥

(d⊗ y, d′ ⊗ y′) = 0 since D ⊆ D⊥

(c⊗ x, d⊗ y) = 0 since x ∈ X, y ∈ X⊥

so T ⊂ T ⊥. Moreover

dim(T ) = dim(C ⊗X) + dim(D ⊗X⊥)− dim(C ⊗X ∩D ⊗X⊥) = nm/2− 0

since X ∩X⊥ = {0}. This implies that T is self-dual.
If C and D are doubly-even, then the weights of all generators of T are multiples of 4
and so also T is doubly-even. �
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Remark 2.2. A similar result holds for hermitian self-dual codes: Let C = C⊥,h, D =
D⊥,h ≤ Fnq and X ≤ Fmq such that X ∩X⊥,h = {0}. Then

Th := Th(C,D,X) := C ⊗X +D ⊗X⊥,h ≤ Fnmq = Fnq ⊗ Fmq

is a hermitian self-dual code.

Remark 2.3. ClearlyX+X⊥ = Fmq has minimum weight 1 and therefore d(T (C,D,X)) ≤
d(C ∩ D). For q = 2, any self-dual code contains the all-one vector 1, so the maximum
possible minimum weight for binary codes is d(T (C,D,X)) ≤ d(C ∩D) ≤ d(〈1〉) = n.

Example 2.4. (binary codes)

1) Turyn’s construction of the Golay-code ([17], see [10, Theorem 18.7.12]).
Let C ∼= D ∼= h8 = h⊥8 ≤ F8

2 both to be equivalent to the extended Hamming code
h8 of length 8, the unique doubly-even binary self-dual code of length 8. Up to the
action of S8 there is a unique such pair satisfying C ∩D = 〈1〉. Let X := 〈(1, 1, 1)〉.
Then T (C,D,X) is a doubly-even self-dual code of length 24. From the explicit
description

T (C,D,X) = {(c+ d1, c+ d2, c+ d3) | c ∈ C, di ∈ D, d1 + d2 + d3 ∈ C ∩D = 〈1〉}

one easily sees that the minimum weight of T (C,D,X) is ≥ 8, so T (C,D,X) is
equivalent to the Golay code: Any non-zero word w ∈ T (C,D,X) has either

1) 1 non-zero component: Then up to permutation w is of the form (d, 0, 0) with
d = 1 ∈ F8

2 and has weight 8.

2) 2 non-zero components: Then w is equivalent to (d1, d2, 0) with non-zero
d1, d2 ∈ D ∼= h8 and has weight ≥ d(h8) + d(h8) = 4 + 4 = 8.

3) 3 non-zero components: Since all components of w lie in C + D = 〈1〉⊥ they
all have even weight, so wt(w) ≥ 2 + 2 + 2 = 6. The code T is doubly-even, so
the weight of w is a multiple of 4, therefore wt(w) ≥ 8.

2) Let X ≤ F10
2 be the code with generator matrix

1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 1 1 0 0 1


(see [1]). Then X is equivalent to its dual code, X ∩X⊥ = 〈1〉 and the minimum
weight of X (and of X⊥) is 4. Let C and D be as in 1) and put

T := X ⊗ C +X⊥ ⊗D ≤ F80
2 .
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Then T is self-orthogonal of dimension

dim(X ⊗ C) + dim(X⊥ ⊗D)− dim((X ⊗ C) ∩ (X⊥ ⊗D)) = 20 + 20− 1 = 39.

The three codes T1, T2, T3 with T ( Ti ( T ⊥ are all self-dual, two of them are
doubly-even and one of these doubly-even self-dual codes has minimum weight 16,
hence is an extremal doubly-even code of length 80. Its automorphism group is
isomorphic to PSL2(7)× S6 : 2, which can be seen as follows:
Let S be stabiliser of D in Aut(C). Then S ∼= PSL2(7). The two codes C and
D are the only self-dual S-invariant submodules of F8

2, they are interchanged by
the normalizer of S in S8 which is isomorphic to PGL2(7). Hence there is τ ∈ S8

interchanging C and D.
The automorphism group A of X is isomorphic to S6, it also fixes the dual code
X⊥. The two codes X and X⊥ are the only A-invariant subspaces of F10

2 which have
dimension 5, therefore they are interchanged by the normalizer of A in S10, which
contains A of index 2. So there is σ ∈ S10 with σ(X) = X⊥ and σ(X⊥) = X. One
therefore gets an obvious action of

H := 〈A⊗ S, σ ⊗ τ〉 ∼= PSL2(7)× S6 : 2

on T . Since the three self-dual codes T1, T2, T3 are not equivalent, the automorphism
group of T also stabilizes all codes Ti. With MAGMA one checks that Aut(T1) = H.
To the author’s knowledge this code is not described before in the literature.

Example 2.5. Ternary codes:
Let C ≤ F12

3 be the linear ternary self-dual code with generator matrix
1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 2 2 1
0 0 1 0 0 0 1 1 0 1 2 2
0 0 0 1 0 0 1 2 1 0 1 2
0 0 0 0 1 0 1 2 2 1 0 1
0 0 0 0 0 1 1 1 2 2 1 0


Then C is equivalent to the ternary Golay code of length 12. Let h ∈ S12 be the permu-
tation (1, 4, 6, 12, 3, 9, 8)(2, 11, 7, 10) and let D = h(C). Then C ∩D is of dimension 1 and
minimum weight 12.
Choose X = 〈(1, 1)〉 ≤ F2

3. Then T (C,D,X) is a self-dual code of minimum weight 9.
The extremal ternary codes of length 24 are classified in [8]. There are two such codes, one
of them is the extended quadratic residue code, the other one is equivalent to T (C,D,X).

Example 2.6. Euclidean self-dual quaternary codes:
Let C ≤ F12

4 be the code with generator matrix
1 0 0 0 0 0 1 ω2 1 1 ω 1
0 1 0 0 0 0 ω 0 1 ω2 ω ω2

0 0 1 0 0 0 ω ω2 ω ω2 0 1
0 0 0 1 0 0 0 ω ω2 ω ω2 1
0 0 0 0 1 0 ω2 ω 1 0 ω2 ω
0 0 0 0 0 1 ω2 1 1 ω 1 1

 .

4



Then C is a euclidean self-dual code equivalent to the extended quadratic residue code of
length 12 over F4. Putting D = π(C) for permutations π ∈ S12 running through a right
transversal of Aut(C) in S12, X = 〈(1, ω)〉 ≤ F2

4 and X⊥ = 〈(1, ω + 1)〉 one constructs 20
monomially inequivalent euclidean self-dual codes in F24

4 with minimum weight 8.
Taking X = 〈(1, 1, 1)〉 one obtains five monomially inequivalent euclidean self-dual codes
in F36

4 with minimum weight 11: T1, T2 (108 minimum words) and T3, T4 and T5 (1188 min-
imum words each). These codes are not equivalent to the ones given in [3]. Permutations
πi yielding these codes Ti are

π1 = (1, 10, 7, 2, 11, 8, 5)(3, 4, 12, 9)
π2 = (1, 10, 6, 4, 12, 9, 5)(2, 11, 8, 7)
π3 = (1, 3, 4, 5, 7, 8, 9, 11)(2, 10, 12)
π4 = (1, 6, 11)(2, 5, 8, 12, 4, 7, 10)(3, 9)
π5 = (1, 10, 2, 8)(3, 11, 12, 6)(4, 7, 5, 9)

The permutation groups are S3 × A5 for Ti (i=1,2,3,4) and S3 × PSL2(11) for T5.

3 An application to lattices.

In [13] Quebbemann describes a construction of integral lattices that is the lattice coun-
terpart of the construction described in the last section. Here a lattice (L,Q) is an even
positive definite lattice, i.e. a free Z-module L equipped with a quadratic form Q : L→ Z
such that the bilinear form

(·, ·) : L× L→ Z, (x, y) := Q(x+ y)−Q(x)−Q(y)

is positive definite on the real space R⊗ L. The dual lattice

L# := {x ∈ R⊗ L | (x, `) ∈ Z for all ` ∈ L}

contains L and the finite abelian group L#/L =: D(L,Q) is called the discriminant group.
L is called unimodular, if L = L#. Note that unimodular quadratic lattices are usu-

ally called even unimodular lattices. They correspond to regular positive definite integral
quadratic forms.

The minimum of a lattice (L,Q) is

min(L,Q) := min{Q(`) | 0 6= ` ∈ L}

which is half of the usual minimum of the lattice.
The theory of modular forms allows to show that the minimum of a unimodular

quadratic lattice of dimension n is always

min(L,Q) ≤ b n
24
c+ 1.

Lattices achieving this bound are called extremal.
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For any prime p not dividing the order of D(L,Q) the quadratic form Q induces a
non-degenerate quadratic form

Q : L/pL→ Z/pZ, Q(`+ pL) := Q(`) + pZ.

From the theory of integral quadratic forms (see for instance [15]) it is well known that
this quadratic space (L/pL,Q) is hyperbolic, so there are maximal isotropic subspaces
A = A⊥ and A′ = (A′)⊥ such that

L/pL = A⊕ A′, Q(A) = Q(A′) = {0}.

If M and N are the full preimages of A and A′, then L = M + N, pL = N ∩M and
(M, 1

p
Q) and (N, 1

p
Q) are again integral lattices with the same discriminant group as L.

The pair (M,N) is called a polarisation of L (for the prime p).

Theorem 3.1. ([13, Proposition]) Let (L,Q), p, A,A′ be as above and let B ≤ An be a
subgroup of An. Put

B′ := (A′)n ∩B⊥ = {z = (z1, . . . , zn) ∈ (A′)n |
n∑
i=1

(bi, zi) = 0 for all (b1, . . . , bn) ∈ B}.

Then C := B ⊕B′ ≤ (L/pL)n satisfies Q
n
(C) = {0} and C = C⊥. The lattice

Λ := Λ(L,A,A′, B) := {` ∈ Ln | ` ∈ C}

is integral with respect to Q̃ := 1
p
Qn and satisfies D(Λ, Q̃) ∼= D(L,Q)n.

Of particular interest is the case where

B = {(x, . . . , x) | x ∈ A}

is the diagonal subgroup of An. Then

B′ = {(z1, . . . , zn) | zi ∈ A′ and
∑

zi = 0}

and Λ(L,A,A′, B) will be denoted by Λ(L,A,A′, n) or equivalently Λ(L,M,N, n), where
M,N are the full preimages of A, A′ respectively.

Lemma 3.2. Let (N,M) be a polarisation of L modulo 2 and assume that d = min(L,Q) =
min(N, 1

2
Q) = min(M, 1

2
Q). Then

d3d
2
e ≤ min(Λ(L,M,N, 3), Q̃) ≤ 2d.

Proof. The lattice Λ := Λ(L,M,N, 3) has the following description

Λ = {(m+ n1,m+ n2,m+ n3) | m ∈M,n1, n2, n3 ∈ N, n1 + n2 + n3 ∈ 2L}.

We write any element of λ of Λ as λ = (a, b, c) and distinguish according to the number
of non-zero components:
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1) One non-zero component: Then λ = (a, 0, 0) with a = 2` ∈ 2L so Q̃(λ) = 1
2
Q(2`) =

2Q(`) ≥ 2d.

2) Two non-zero components: Then λ = (a, b, 0) with a, b ∈ N so Q̃(λ) = 1
2
Q(a) +

1
2
Q(b) ≥ 2d.

3) Three non-zero components: Then Q̃(λ) = 1
2
(Q(a) +Q(b) +Q(c)) ≥ 3

2
d.

�

Examples for p = 2 and n = 3

1) Take (L,Q) = E8 the unique (even) unimodular lattice of dimension 8. Then for
p = 2, the quadratic space L/2L has a unique polarisation L/2L = A⊕A′ up to the
action of the orthogonal group of L. By Lemma 3.2 the lattice Λ(E8, A,A

′, 3) is an
even unimodular lattice of minimum 2, therefore isomorphic to the Leech lattice,
the unique unimodular lattice of dimension 24 with minimum 2. This has been
remarked independently in [16], [9], [13].

2) Take L = Λ24 to be the Leech lattice and take a polarization L = M+N , M∩N = 2L
such that (M, 1

2
Q) ∼= (N, 1

2
Q) ∼= Λ24. Bob Griess [7] remarked that Λ(L,M,N, 3) is a

72-dimensional unimodular lattice of minimum 3 or 4 (this also follows from Lemma
3.2). In [6] the number of sublatticesM ≤ Λ24 such that (M, 1

2
Q) ∼= Λ24 is computed.

There are 5,163,643,468,800,000 such sublattices, about 1/68107 of all maximal
isotropic subspaces. Each maximal isotropic subspace A has 266 complements (the
number of alternating 12 × 12 matrices over F2). Assuming that approximately
1/68107 of these complements correspond to lattices that are similar to the Leech
lattice, the number of pairs (M,N) such that M + N = Λ24, M ∩ N = 2Λ24

and (M, 1
2
Q) ∼= (N, 1

2
Q) ∼= Λ24 is about 5.6 · 1030. Dividing by the order of the

Conway group, Aut(Λ24)/{±1}, one gets a rough estimate of 1012 orbits of such
polarisations of the Leech lattice. Presumably most of these orbits will give rise to
lattices of minimum 3. In [12] I found one lattice Γ := Λ(Λ24,M,N, 3) to be an
extremal unimodular lattice of dimension 72. Here the sublattices M = αΛ24 and
N = (α + 1)Λ24 are obtained using a hermitian structure of the Leech lattice over
the ring of integers Z[α] in the imaginary quadratic number field of discriminant
−7, where α2 +α+2 = 0. The Leech lattice has nine such Hermitian structures and
one of them defines a polarisation giving rise to an extremal unimodular lattice. Γ
can also be constructed as the tensor product of the Leech lattice with the unique
unimodular Z[α]-lattice Pb or dimension 3, Γ = Λ24 ⊗Z[α] Pb. This construction
allows to find the subgroup SL2(25)×PSL2(7) : 2 of the automorphism group of Γ.
For more details on this lattice see my preprint [12].

The extremal 72-dimensional lattice Γ described above is constructed using a polar-
ization (M,N) of Λ24 that is invariant under SL2(25). This group contains an element
g of order 13, acting as a primitive 13th root of unity on L/2L and it is interesting to
investigate all g-invariant polarisations:
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Remark 3.3. Take L := Λ24 to be the Leech lattice and let g ∈ Aut(L) be an element
of order 13 (there is a unique conjugacy class of such elements). Then g acts fixed point
free on L/2L and hence there are 212 + 1 subspaces of dimension 12 that are invariant
under 〈g〉. The preimage M in L of 41 of these invariant subspaces is similar to the Leech
lattice. The normalizer G in Aut(L) of 〈g〉 acts on these lattices with orbits of length
36, 4, and 1. In total we obtain 31 representatives (M,N) of G-orbits on the ordered
polarizations (M,N) of L modulo 2 such that

gN = N, gM = M, (M,
1

2
Q) ∼= (N,

1

2
Q) ∼= (L,Q) ∼= Λ24.

Only one such pair yields a lattice L(M,N, 3) that has minimum 4. This lattice is neces-
sarily isometric to Γ.
I did a similar computation for an element g ∈ Aut(Λ24) acting as a primitive 21st root
of 1. All 71 orbits of the normalizer on the ordered “good” polarisations (M,N) yield
lattices L(M,N, 3) that contain vectors of norm 3.

Example.
In [2] we used the code X ≤ F10

2 from example 2.4 2) to construct two 80-dimensional
extremal unimodular lattices from the E8-lattice.
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