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Abstract

We describe an algorithm, meant to be very general, to compute a presentation of the
group of units of an order in a (semi)simple algebra over Q. Our method is based on a gen-
eralisation of Voronoï’s algorithm for computing perfect forms, combined with Bass-Serre
theory. It differs essentially from previously known methods to deal with such questions,
e.g. for units in quaternion algebras. We illustrate this new algorithm by a series of exam-
ples where the computations are carried out completely.
KEYWORDS: unit groups of orders; generators; presentation; word problem; lattices; Voronoï’s
algorithm;

1 Introduction

Let Λ be an order in a (semi-)simple finite dimensional algebra A over Q. By definition, this
means thatΛ is a subring of A and that, additively, it is a free abelian group generated by a basis
of A over Q. Its unit group Λ×, that is the set of elements of Λ that have a multiplicative inverse
in Λ, is the most basic example of an arithmetic group. However, a large variety of arithmetic
groups can be obtained in this way (for instance, units of group rings over Z belong to this
category). The study of such groups is consequently of major interest .

The easiest and most classical case, where A = K a number field, is fully understood due
to Dirichlet’s unit theorem: in that case, Λ× is, up to its torsion part, a finitely generated free
abelian group, and efficient algorithms exist to compute a set of its generators. In the non-
commutative case, the determination ofΛ× is a very difficult task, both from the theoretical and
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computational point of view, and many questions remain open, as regards structural results and
algorithms. We refer the reader to Ernst Kleinert’s survey [Kle94] for more details.

In this paper we propose a method, meant to be very general, to compute a presentation of
Λ×. This method is based on a combination of Voronoï theory of perfect quadratic forms and
Bass-Serre theory of graphs of groups. The latter is well-known to provide a very versatile tool
for computing a presentation of a group Γ acting on a connected graph X . In such a situation, a
good knowledge of the quotient graph Γ\X yields virtually all the information on Γ. To be more
precise, one has the following fundamental exact sequence ([Bas93, Theorem 3.6])

1 −→π1(X ) −→π1(Γ\\X ) −→ Γ−→ 1 (1)

where π1(X ) (resp. π1(Γ\\X )) denotes the fundamental group of the graph X (resp. of the
quotient graph of groups Γ\\X ), see loc. cit. for precise definitions. From this exact sequence,
one can derive, at least in principle, a presentation of the group Γ. Of course, to be of any practi-
cal interest, the exact sequence (1) must be applied in a context where the fundamental groups
π1(X ) and π1(Γ\\X ) are computable as easily as possible, without too much prior knowledge of
the structure of Γ. The idea of using Bass-Serre theory in this context dates back to Swan’s fun-
damental paper [Swa71], where he develops an algorithm to compute generators and relations
for Bianchi groups using the action on binary Hermitian forms. From a more computational
point of view a similar method has been implemented by Riley [Ril83] in Fortran to obtain pre-
sentations of 30 Bianchi groups.

The graph on which we will let Γ=Λ× act is built as a neighbouring graph of "perfect forms",
where we use a suitable refinement of the original notion of perfect forms in [Vor07]. The action
on perfect forms was first applied by Soulé in [Sou78] to derive the explicit structure of SL3(Z)
as an amalgamated product of small finite groups. Later, Opgenorth [Opg01] applied the same
kind of ideas to compute the integral normalizer Γ of a finite unimodular group, where he only
used the surjectivity of the map π1(Γ\\X ) −→ Γ, which already allows for the computation of a
generating set of Γ. Opgenorth’s methods have been applied in [Brü98] to compute generators
for unit groups Γ = ZG× of integral group rings for small groups G . Yasaki [Yas10] used similar
ideas, combined with Macbeath theorem [Mac64] to obtain a presentation of some Bianchi
groups. Here, we propose to use the full strength of (1) to actually get a presentation of Γ. From
the exact sequence (1), we see that this amounts essentially to computing the fundamental
group of the neighbouring graph of perfect forms, which is non-trivial in general (the graph
is not a tree). There are several ways to do this. We choose to view the neighboring relation
on perfect forms not only as a graph but as the 1-skeleton of a CW-complex (the well-rounded
retract W , see Section 3). For groups acting on such complexes, there is a slightly refined version
of Bass-Serre theory, due to K.-S. Brown (see [Bro84]), which allows one to obtain a presentation
of the group which involves only the 2-skeleton of W . Beside the geometry of this complex, our
algorithm only involves the computation of the stabilizers of some vertices or edges as well as
"side-pairing" transformations. All these computations essentially reduce to isometry testing
of lattices and do not require any a priori knowledge of Λ×. Most of them are performed using
the Plesken-Souvignier algorithm [PS97] implemented in MAGMA [BCP97].

For sake of simplicity, we chose to develop the theory for simple algebras over Q. The case
of semisimple algebras requires only slight modifications.
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In some special cases, e.g. Bianchi groups or units of quaternion algebras, there are well-
known methods based on an action of the relevant group on some hyperbolic space (see e.g.
[CJLdR04]) for computing presentations. Our method applies in these cases too, and should
be compared to the aforementioned ones, from which they differ essentially in that we use an
action on a Euclidean space. The action on hyperbolic space has the advantage that the group
respects the metric and hence the volume of a fundamental domain is well defined. Experi-
ments show that our method seems to be faster and therefore allows the computation of more
complicated examples. More important: our method applies to more general finite dimen-
sional rational algebras, such as division algebras of degree 3, where no methods to compute
Λ∗ have been known before ([Kle00, Chapter 7]).

The paper is structured as follows: in Sections 2 and 3, we define a certain space of "quadratic
forms" acted on by the unit groupΓ=Λ× we want to study, and review some rather classical ma-
terial about Voronoï’s algorithm and the "well-rounded retract" in this context. In Section 4 we
explain how to use Bass-Serre theory to obtain a presentation of Γ. We also show in Section 5
how the previous idea can be used to solve the word problem in Γ. In Section 6, a selection of
examples of applications of our method is presented. The final section provides an outline of
the implementation of the algorithm.

2 Preliminaries

2.1 Lattices

Let A = Mn(K ) be a finitely generated simple algebra overQ, where K is a skew field with center
k and Mn(K ) denotes the set of n ×n-matrices. Let V = K n be the simple left A-module. Then
K = EndA(V ) and we view V as a right K -module.

Let Λ be an order in A, and Λ× its group of units. We fix some left Λ-lattice L in V and let
O := EndΛ(L). Then O is an order in K and L is a right O-lattice. Put

M := EndO (L) = {M ∈ Mn(K ) | ML ⊂ L} .

If O is a maximal order, then also M is maximal, but for arbitrary orders Λ in division algebras
A = K , one may always choose L =Λ to achieve O =Λ and Λ=M= EndΛ(Λ). In general Λ⊆M

is of finite index and also its unit group

Λ× = StabM×Λ= {a ∈M× | aΛ=Λ}.

has finite index in
M× = GL(L) = {a ∈ Mn(K ) | aL = L} .

As the Voronoï algorithm is designed to work with endomorphism rings of lattices, it is more
efficient to compute M× first and retrieveΛ× by orbit stabiliser routines. Nevertheless we try to
develop the theory, as much as possible, without the assumption that Λ is the endomorphism
ring of a lattice.
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2.2 Forms

As explained in the introduction, we want to let the group Λ× act on a space of "forms" associ-
ated to the algebra A. To that end, we first extend the scalars to R, and obtain a semi-simple real
algebra

AR := A⊗QR= Mn(KR).

Let d denote the degree of K , so d 2 = dimk (K ), and let

ι1, . . . , ιs be the real places of k that ramify in K ,
σ1, . . . ,σr the real places of k that do not ramify in K
τ1, . . . ,τt the complex places of k.

Then

KR := K ⊗QR∼=
s⊕

i=1
Md/2(H)⊕

r⊕
i=1

Md (R)⊕
t⊕

i=1
Md (C)

and

AR ∼=
s⊕

i=1
Mnd/2(H)⊕

r⊕
i=1

Mnd (R)⊕
t⊕

i=1
Mnd (C). (2)

Note that d is even whenever s > 0. The case of Bianchi groups corresponds to d = 1, n = 2,
s = r = 0 and t = 1, so K = k is an imaginary quadratic field and A = M2(K ). The “canonical” in-
volution ∗ (depending on the choice of this isomorphism) is defined on any simple summand
of KR to be transposition for Md (R), transposition and complex (respectively quaternionic) con-
jugation for Md (C) and Md/2(H). The resulting involution on KR is again denoted by ∗. As usual
it defines a mapping † : Mm,n(KR) → Mn,m(KR) by applying ∗ to the entries and then transpos-
ing the m ×n-matrices. In particular this defines an involution † on AR = Mn(KR). Though in
certain cases (e.g. for Bianchi groups or certain quaternion algebras over totally complex fields)
we may choose † such that A† = A, this will not be the case in general.

Definition 2.1. Σ := Sym(AR) := {
F ∈ AR | F † = F

}
is the R-linear subspace of symmetric ele-

ments of AR. It supports the positive definite inner product

〈F1,F2〉 := tr(F1F2)

where tr = trAR/R is the reduced trace of the semi-simple R-algebra AR. Each element of Σ can
be identified, via (2), with a tuple (q1, . . . , qs , f1, . . . , fr ,h1, . . . ,ht ) of symmetric (resp hermitian)
matrices. Then, one can define the open real cone P of positive elements in Σ as

P = Sym(AR)>0 := {
(q1, . . . , qs , f1, . . . , fr ,h1, . . . ,ht ) ∈Σ | qi , f j ,hk pos. def.

}
.

The closure of P in Σ is denoted by P .
Recall that V = K n is the simple left A-module. Any F ∈Σ defines a quadratic form on VR by

F [x] := 〈F, xx†〉 ∈R for all x ∈VR.
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This quadratic form is positive definite (resp. positive semidefinite) if and only if F ∈ P (resp.
F ∈P ).

The group GLn(K ) acts on Σ by
(F, g ) 7→ g †F g (3)

where we embed A into AR to define the multiplication. This action preserves the cone P .

2.3 Minimal vectors and Voronoï domains

As before we choose a left Λ-lattice L in the simple A-module V = K n and put M := EndO (L)
(where O := EndΛ(L)). Then M is an order in A that contains Λ of finite index.

The L-minimum of a form F ∈P is defined as

minL(F ) := min
`∈L−{0}

F [`]

and the set of L-minimal vectors of F as

SL(F ) := {` ∈ L | F [`] = minL(F )} .

The L-Voronoï domain of F (or simply Voronoï domain of F , if there is no ambiguity on the
underlying lattice L) is defined as

DF :=
{ ∑

x∈SL(F )
λx xx† ,λx ≥ 0

}
⊂P ,

the closed convex hull of the rays R≥0xx† as x ranges over SL(F ).
The Voronoï polyhedronΩ is defined as the closed convex hull of the raysR≥0xx† as x ranges

over V .

Definition 2.2. A form F ∈ P is L-perfect (or simply perfect if there is no ambiguity on the
underlying lattice) if one the following equivalent conditions holds

1. The forms xx†, where x ranges over SL(F ), span the whole space Σ.

2. The L-Voronoï domain of F has non-empty interior.

The Voronoï domain DF of a perfect form F ∈P is thus an N -dimensional polyhedral cone

in the Euclidean space Σ, where N = nd

2
(nd [k :Q]+ r − s) is the dimension of Σ. It has finitely

many facets, i.e. codimension 1 faces. To each facet F one associates a direction H , that is a
normal facet vector, pointing towards the interior of DF . In other words, 0 6= H ∈Σ is a direction
of DF if :

• 〈H , xx†〉 ≥ 0 for all x ∈ SL(F ),

• the forms xx†, as x ranges over the set of minimal vectors of L such that 〈H , xx†〉 = 0,
generate a hyperplane of Σ .
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The following lemma is at the core of Voronoï theory :

Lemma 2.3. Let F be a perfect form F ∈P , and H a direction of its Voronoï domain. Then there
exists a well-defined positive real number λ such that F +λH is perfect, and the Voronoï domains
of F and F +λH share a common facet.

Proof. This follows from [Opg01, Proposition 1.8] and its proof. In particular, the real number
λ can be defined as

λ= sup{θ ∈R>0 | F +θH ∈P and minL(F +θH) = minL(F )} . (4)

The only thing to check is that λ < +∞, which amounts to proving that H ∉ P (see [Mar03,
Proposition 13.1.8] or the discussion following [Opg01, Proposition 1.8]). Assume by way of
contradiction that H is positive. Then its kernel (the set of x ∈ VR such that H x = 0) coincides
with its radical (the set of x ∈ VR such that H [x] = 0), and contains the set S(F ) of minimal
vectors x ∈ L whose image xx† in Σ generate the facet F corresponding to H . So these vectors
span a K -subspace of dimension at most n −1 of K n , since otherwise H would be zero, which
means that there exists 0 6= y ∈ K n such that

y†x = 0 for all x ∈ S(F ). (5)

This implies, in particular, that n is at least 2 (there is at least one element in the set of mini-
mal vectors belonging to this facet). Finally, the matrices xx†, x ∈ S(F ), generate a subset of
dimension at most N −n of Σ : indeed each of the n columns of

xx† =


x1x∗

1 x1x∗
2 · · · x1x∗

n
x2x∗

1 x2x∗
2 · · · x2x∗

n
...

...
...

xn x∗
1 xn x∗

2 · · · xn x∗
n


lies in the hyperplane determined by (5). This yields a contradiction since N −n < N −1.

With the notation above, the form F +λH is called the neighbour of F in the direction H .

2.4 Voronoï algorithm

Roughly speaking, Voronoï theory, or its variants, says that the Voronoï polyhedron Ω may be
tiled by the cones DF as F ranges over the set of perfect forms (see below for a more precise
statement). There is also a dual formulation, in terms of minimal classes, which will provide
the graph on which to apply Bass-Serre theory.

Theorem 2.4. The L-Voronoï domains of perfect forms constitute a locally finite exact tessellation
of P , that is :

1. P ⊂⋃
F perfect DF ,
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2. for any two perfect forms F and F ′ one has D̊F ∩DF ′ 6= ; if and only if F = λF ′ for some
λ ∈R>0,

3. each facet of the Voronoï domain DF of a perfect form F is a common facet of exactly two
Voronoï domains DF and DF ′ of perfect forms F and F ′,

4. the Voronoï domain of a perfect form F intersects only finitely many Voronoï domains of
perfect forms.

Moreover this tessellation is finite up to the action of Λ×, in the following sense:

5. There are finitely many Λ×-inequivalent perfect forms of minimum 1.

Proof. The proof of the first four assertions is a direct application of [Opg01, Theorem 1.9] (with
the terminology used there, one has to check that the image of L in VR is a discrete admissi-
ble set, which is straightforward). The assertion regarding finiteness can be established using
Mahler’s compactness theorem and standard arguments from reduction theory. A quick alter-
native proof can be derived from results of Ash ([Ash84]) as follows: First, since [GL(L) :Λ×] is
finite, it is enough to prove that there are finitely many GL(L)-inequivalent forms. Now the set
V of L-perfect forms of minimum 1 is clearly a discrete and closed subset of P . Moreover, it is
contained in the set of well-rounded forms (see next section), whose quotient modulo GL(L) is
compact (see [Ash84] main theorem, section 2). The conclusion follows.

The radical Rad(F ) of a form F ∈ P is the set of x ∈ VR such that F [x] = 0. We say that the
radical of F is defined over K if there exists a K -subspace W of V such that Rad(F ) = W ⊗Q R.

The rational closure P
K

of P is the set of forms in P , the radical of which is defined over K .
The following corollary is a straightforward generalization of [WYH13, Proposition 36] which
was obtained under the restriction d = 1. Our proof is slightly shorter, since the most difficult
part (the fact that P is contained in Ω) is now a simple consequence of Theorem 2.4.

Corollary 2.5. The Voronoï polyhedron Ω coincides with the rational closure of P . The Voronoï
tessellation takes the final form

P ⊂ ⋃
F perfect

DF =Ω=P
K ⊂P . (6)

Proof. The inclusions
P ⊂ ⋃

F perfect
DF ⊂Ω

are clear (the first inclusion is a consequence of the previous theorem and the second is obvious
from the definitions of Ω and DF ).

It is also easy to see that Ω⊂ P
K

: Indeed, for any nonzero F ∈Ω, there exist vectors x1, . . . ,
xm in V and a family of positive real numbers λ1, . . . , λm such that F =∑m

i=1λi xi x†
i . The radical

of such an F is the set of y ∈VR such that

0 =
m∑

i=1
λi 〈xi x†

i , y y†〉 =
m∑

i=1
λi tr

(
x†

i y y†xi

)
=

m∑
i=1

λi trKR/R

((
x†

i y
)(

x†
i y

)∗)
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which means that x†
i y = 0 for all i , since theλi s are positive, and trKR/R (aa∗) > 0 for any nonzero

a ∈ KR. In other words, Rad(F ) is the intersection of t hyperplanes in VR which are clearly de-
fined over K since the xi are in V .

The reverse inclusion P
K ⊂ Ω can be established using the same argument as [WYH13,

Proposition 36]. Consider a form F ∈P
K

. Assuming that A = Mn(K ), there exists a K -subspace
W of V = K n of dimension m ≤ n such that Rad(F ) = W ⊗Q R. Consequently, F is GLn(K )-
equivalent to a form of the shape (

0 0
0 FW

)
with FW in PW = Sym(BR)>0, where B = Mm(K ) ∼= EndK (W ). As already seen, this cone PW is
contained in the corresponding Voronoï cone, which means that there exists vectors y1, . . . , y`
in K m and a family of positive real numbers λ1, . . . , λ` such that FW = ∑`

i=1λi yi y†
i . But then F

is GLn(K )-equivalent to (
0 0
0 FW

)
= ∑̀

i=1
λi

(
0
yi

)(
0
yi

)†

∈Ω,

whence the conclusion.
The final step to prove (6) is to show thatΩ⊂⋃

F perfect DF . Let Q =∑m
i=1λi xi x†

i be a nonzero
element in Ω. We may assume, without loss of generality, that all λi s are > 0 and that the xi are
in L \ {0}. Let F0 be a perfect form with L-minimum 1. If Q ∉ DF0 , then there exists a direction H
of DF0 such that 〈H ,Q〉 < 0. Consequently, if F1 = F0+λH is the neighbour of F0 in the direction
H , then

〈Q,F1〉 = 〈Q,F0〉+λ〈H ,Q〉 < 〈Q,F0〉. (7)

We can pursue this process as long as Q is not found to belong to the Voronoï domain of a
perfect form, and build a sequence (Fn)n∈N of perfect forms in V , the set of perfect forms with
L-minimum 1, such that the sequence (〈Q,Fn〉)n∈N is strictly decreasing. On the other hand, the
sequence (〈Q,Fn〉)n∈N is easily seen to assume only finitely many values. Indeed, we have

〈Q,F0〉 ≥ 〈Q,Fn〉 =
∑̀
i=1

λi Fn[xi ] (8)

and we know that for every positive definite form F and positive θ, the set F [θ] = {F [x], x ∈ L}∩
[0,θ] is finite and depends on F only up to GL(L)-conjugacy. Since V /GL(L) is finite, the right-
hand side of (8) can thus take only finitely many values. This shows that the process must ter-
minate, and Q belongs to the Voronoï domain of a perfect form.

3 A CW -complex

The Voronoï tessellation of Theorem 2.4 yields a cellular decomposition of P . Dual to it, one
has a natural CW -complex, acted on by Γ = Λ×, carried by the set of well-rounded forms (see
definition below). This cell-complex has been studied by many authors, especially Avner Ash in
[Ash84], to which we refer in what follows.
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Definition 3.1. A form F ∈ P is well-rounded if its set of minimal vectors SL(F ) contains a K -
basis of V .

The cell structure on P is induced by the decomposition into minimal classes, which are
defined as follows :

Definition 3.2. Two elements F1 and F2 ∈ P are called minimally equivalent with respect to
L, if SL(F1) = SL(F2). We denote by C `L(F ) := {H ∈P | SL(H) = SL(F )} the minimal class of F .
If C = C `L(F ) is a minimal class then we define SL(C ) = SL(F ) the associated set of minimal
vectors. A minimal class C =C `L(F ) is called well rounded if the form F is.

One has the following equivalent characterizations of well-rounded forms (resp. classes):

Lemma 3.3. Let D̊F denote the relative interior of the Voronoï domain of a form F (i.e. DF de-
prived of its proper faces). Then, the following assertions are equivalent

1. F ∈P is well-rounded,

2. D̊F ∩P 6= ;,

3. DF 6⊂ ∂P .

Proof. Assume that F is well-rounded, and consider the form H = ∑
x∈SL(F ) xx† ∈ D̊F . For any

y ∈ Rad(H) one has

0 = H
[

y
]= ∑

x∈SL(F )
〈xx†, y y†〉 = ∑

x∈SL(F )
tr

(
x† y y†x

)
= ∑

x∈SL(F )
trKR/R

((
x† y

)(
x† y

)∗)
whence x† y = 0 for all x ∈ SL(F ), hence y = 0 since SL(F ) spans K n . Thus H ∈ D̊F ∩P which
shows that (1) ⇒ (2). The implication (2) ⇒ (3) is obvious. As for (3) ⇒ (1), we note that if F
is not well-rounded, then one can find a non zero y ∈ K n such that y†x = 0 for all x ∈ SL(F ),
whence we deduce that xx†

[
y
]= 0 for all x ∈ SL(F ), which implies that y belongs to the radical

of every H ∈ DF . Thus DF ⊂ ∂P .

The action (3) of GLn(K ) on Σ, restricted to its subgroups Λ× ⊂ M× = GL(L), induces an
action on the set of minimal classes.

Clearly, because of positive definiteness, the stabilizer StabΛ×(F ) := {
g ∈Λ× | g †F g = F

}
is

always a finite subgroup of Λ×. We can define similarly the stabilizer of a minimal class as

StabΛ×(C ) = {
g ∈Λ× | g SL(C ) = SL(C )

}
.

Lemma 3.4. The stabilizer StabΛ×(C ) of a well-rounded class is finite.

Proof. It follows from [CN14, Lemma 5.3] that StabΛ×(C ) = StabΛ×(T −1
C ) where TC :=∑

x∈SL(C ) xx† ∈
P is the canonical form associated to C . So StabΛ×(C ) is the stabilizer of some positive form and
therefore a finite group.
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Positive real homotheties preserve minimal equivalence and the set of well-rounded forms.
The quotient W̃ of W by these homotheties inherits a well-defined CW -complex structure with
the following properties.

Theorem 3.5 ([Ash84]). Let W be the set of well-rounded forms in P , and W̃ =R>0\W . Then the
correspondence

C `L(F ) ←→ D̊F ∩P

is an inclusion-reversing bijection between the set of cells of W̃ , i.e. minimal classes, and the
set of open Voronoï domains not contained in the boundary of P . In particular, 0-cells of W̃
correspond to perfect forms in this bijection. The group Λ× acts cellularly on W̃ , and the cells
have finite stabilizers.

Proof. If Λ is a maximal order, this is the main theorem of [Ash84]. The general case follows
easily, sinceΛ× is a finite index subgroup of the unit group of any of its maximal overorders. See
also P. Gunnells’ appendix to the book [Ste07] for a nice explanation of the duality between the
Voronoï complex and the well-rounded retract, together with their cell decompositions.

Remark 3.6. Scaling invariance allows to work within the set P̃ = R>0\P , which we can iden-
tify with the set {F ∈P | minL(F ) = 1}. Using a classical terminology, P̃ can thus be viewed as
the boundary of a Ryshkov polyhedron ([Ryš70]), which is locally finite (see [Sch09b, Sch09a]).
In particular, P̃ is a piecewise linear hypersurface, whose faces are the minimal classes. The
bounded faces correspond to well-rounded classes and actually are polytopes.

4 Bass-Serre theory

In this section, we describe the theory underlying our algorithm for computing Γ=Λ×. Almost
all the material here is borrowed, with hardly any change, from Brown’s paper [Bro84].

Let W̃ be equipped with its cell structure, as in the previous section. We denote by W̃i its
i -skeleton. We can see G := W̃1 as a graph in the sense of [Ser77], with vertex set V := W̃0 and
edge set E consisting of 1-cells together with an orientation. Each edge e has an origin o(e)
and a terminus t (e), corresponding to its orientation. For each such e, we define e as the same
1-cell, together with the reversed orientation (o(e) = t (e) and t (e) = o(e)).

If there exists g ∈ Γ such that g (e) = e, one says that the edge e is inverted under the action
of Γ. One technical difficulty when applying Bass-Serre theory in its original form is precisely
that the definition of a graph adopted either in [Ser77] or in [Bas93] forbids action of groups
reversing the orientation of edges, a condition which is not necessarily satisfied in practice.
One can easily get around this problem e.g. using barycentric subdivision. Brown’s paper deals
with this in a slightly different way, although essentially equivalently, which we summarize in
the following steps:

1. Choose an orientation on 1-cells, in such a way that the orientation of those that are not
inverted by the action of Γ is preserved by this action.
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2. Split the set of edges E into a disjoint union E = E+tE−, where E+ denotes the set of edges
which are not inverted under the action of Γ, and E− its complement. For e ∈ E let Γ{e,e}
be the stabilizer of the set

{
e,e

}
and Γe the stabilizer of e (together with its orientation).

Clearly, Γe is a subgroup of Γ{e,e}, one has Γe = Γo(e) ∩Γt (e) and

(
Γ{e,e} : Γe

)
=

{
1 if e ∈ E+

2 if e ∈ E−.

3. Fix a tree T of representatives of W̃1 mod Γ, that is a sub-tree such that the set VT of its
vertices is a set of representatives of W̃0 mod Γ, with the further assumption that all its
edges are in E+. This implies in particular that its edges are pairwise inequivalent mod Γ.

4. Choose a set E+ of representatives of E+ mod Γ such that o(e) ∈VT for all e ∈ E+, and a set
E− of representatives of E− mod Γ such that o(e) ∈VT for all e ∈ E−.

5. For every e ∈ E+, choose ge ∈ Γ such that g−1
e (t (e)) ∈ VT , with the convention that ge = 1

whenever e is an edge of T .

6. For every e ∈ E−, choose ge ∈ Γ{e,e} \Γe .

7. Choose a set F of representatives of the 2-cells of W̃ mod Γ, and attach to every 2-cell τ in
F a combinatorial path α, i.e. a sequence (e1,e2, . . . ,em) of edges such that:

• ∂τ=∪iσi , where σi denotes the 1-cell underlying ei ,

• v0 := o(e1) is in VT ,

• t (ei ) = o(ei+1) for 1 ≤ i ≤ m −1 and t (em) = o(e1),

• ei+1 6= ei for 1 ≤ i ≤ m −1 and e1 6= em .

To each edge of this path, one attaches (non-canonically) an element gi of the subgroup
generated by the various isotropy groups Γv (v ∈VT ), Γ{e,e} (e ∈ E) and the ge (e ∈ E+) cho-
sen in step 5, such that the successive vertices belong to VT , g1VT , g1g2VT , . . . , g1g2 · · ·gmVT

(see [Bro84, Section 1] for a precise description of gi ). In particular, one has g1g2 · · ·gm ∈
Γv0 . We call the sequence

(
g1, · · · , gm

)
the cycle associated to τ, and occasionally identify a

cycle with the corresponding cell, when no confusion can ensue.

Altogether, the previous data lead to the following presentation of Γ=Λ×:

Theorem 4.1 ([Bro84] Theorem 1). LetΓ=Λ× be the unit group of an order in a finitely generated
simple algebra over Q. Let W be the set of well-rounded forms in P , and T , E = E+∪E−, F be
chosen as above. Then Γ has the following structure:

Γ=
(

∗
v∈VT

Γv

)
∗

(
∗

e∈E−Γ{e,e}

)
∗F (E+)/R (9)

where ∗ stands for the free product, F (E+) denotes the free product on the set
{

ge ,e ∈ E+}
and R

is the normal subgroup generated by:
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• ge , e ∈ T ,

• g−1
e · g · ge

(
g−1

e g ge
)−1

, e ∈ E+, g ∈ Γe ⊂ Γo(e),

• g1 · g2 · · · · · gm−1 · gm
(
g1 · · ·gm

)−1,
(
g1, · · · , gm

) ∈ F

In other words, Γ is generated by the subgroups Γv (v ∈VT ) and the elements ge (e ∈ E+∪E−),
subject to the following relations:

0. The multiplication table of Γv (v ∈VT ).

1. ge = 1 if e is an edge of T .

2. g−1
e · g · ge = g−1

e g ge ∈ Γw(e), for e ∈ E+ and g ∈ Γe ⊂ Γo(e).

3. ge · g = ge g and g · ge = g ge ∈ Γo(e), for e ∈ E− and g ∈ Γe ⊂ Γo(e).

4. g1 · g2 . . . gm−1 · gm = g1 · · ·gm for any cycle
(
g1, · · · , gm

)
associated to a 2-cell τ.

Proof. The description of Γ in the first part of the theorem is [Bro84, theorem 1’], applied to W̃
(which is contractible, hence simply connected). More precisely, the free product(

∗
v∈VT

Γv

)
∗

(
∗

e∈E−Γ{e,e}

)
∗F (E+)

modulo the normal subgroup generated by

ge ,e ∈ T

and
g−1

e · g · ge
(
g−1

e g ge
)−1

,e ∈ E+, g ∈ Γe

is precisely the fundamental group of the barycentric subdivision G ′ of W̃1 acted on by Γ (see
the discussion preceding [Bro84, theorem 1’]). Finally, one has to mod out by the fundamental
group of G ′, which is the normal closure of the cycles associated to the 2-cells in F . The second
part of the theorem is just a rephrasing in terms of generators and relations.

Remark 4.2. Let Ẽ := {e ∈ E : o(e) ∈ VT , t (e) 6∈ VT } be the set of edges coming out of T . For any
e ∈ Ẽ there is some element f ∈ E with o( f ) = o(e). Choose some h ∈ Γo(e) such that h( f ) = e
(with the convention that h = 1 if e = f ). The element ge = hg f ∈ Γ then satisfies g−1

e (t (e)) ∈VT .
and is called the side-transformation corresponding to e.

Remark 4.3. In practical applications one usually does not fix an orientation on the edges of
the graph X . The additional relations that we then need correspond to the so called “side-
pairings” from the Poincaré-algorithm. Let e ∈ E and ge be as above, so that g−1

e (t (e)) = o( f ) ∈
VT . We then call the edges e and g−1

e (e) = f paired. Then ge (t ( f )) = o(e) ∈VT because Γ acts on
the graph and hence preserves edges. Also g−1

f (t ( f )) ∈ VT so these two vertices are in VT and

equivalent under Γ, which implies that g−1
f (t ( f )) = o(e) ∈ VT and g−1

e g f ∈ Γv . So if we do not
choose an orientation and so do not restrict to those transformations ge with o(e) ∈VT we need
to add these additional relations.
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5 Solving the word problem

To solve the word problem we return to the tessellation by Voronoï domains DF of the perfect
forms. According to Corollary 2.5 this yields a locally finite exact tessellation of the Voronoï
polyhedron Ω that contains the open cone P . Recall that P is a cone in the Euclidean space Σ
from Definition 2.1. Instead of working in projective space we take an affine section of P ,

P ′ := {F ∈P | tr(F ) = 1}.

Lemma 5.1. For x, y ∈ P ′ let G := {x + s(x − y) | s ∈ [0,1]} ⊂ P ′ the Euclidean geodesic joining x
and y. Then the set of all Voronoï domains of perfect forms that meet G ,

V (x, y) := {DF | DF ∩G 6= ;},

is finite. We call d(x, y) := |V (x, y)| the perfect-distance between x and y. Note that this distance
is Γ-invariant, d(x, y) = d(g (x), g (y)) for all g ∈ Γ.

Proof. This is a general compactness argument: For any z ∈ G we may choose an open neigh-
borhood Uz of z which intersects only finitely many Voronoï domains DF , because of the local
finiteness of the tessellation. As G ⊂∪z∈GUz is an open covering of the compact set G there is a
finite subset Z ⊆G such that

G ⊂ ⋃
z∈Z

Uz ⊂
⋃

z∈Z

⋃
DF∩Uz 6=;

DF .

Theorem 5.2. There is an algorithm to express a given g ∈Λ× as a word in the generators given
in Theorem 4.1.

Proof. For the proof we give an algorithm to find such a word in the set of all side-transformations
as defined in Remark 4.2 followed by some element in ∪v∈VTΓv .

Let
FT := ⋃

v∈VT

Dv ∩P ′

be the union of all Voronoï domains of the perfect forms corresponding to the vertices of the
tree T chosen in Section 4. Choose some inner point x ∈ Dv ⊂ FT and let y := g (x) be its image
under g and G be the geodesic between x and y . If y ∈ Dw for some w ∈ VT then w = v and
g ∈ Γv . Otherwise G meets the boundary of FT in some point p ∈P ′. Let

M := {DF : F ∈ V \VT , p ∈ DF }.

By Lemma 5.1 the set M is finite. If p is in the relative interior of some codimension 1 facet
(which will be almost always the case) then M = {t (e)} for some e ∈ Ẽ . Note that the perfect-
distance d(z, g (x)) between any inner point z of D t (e) which lies on G and y is strictly smaller
than d(x, g (x)). Let ge be the corresponding side-transformation defined in Remark 4.2 Then
g−1

e (t (e)) = w ∈VT and g−1
e (z) ∈ Dw with

d(g−1
e (z), g−1

e (g (x))) = d(z, g (x)) < d(x, g (x)).
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Replace g by g−1
e g , x by g−1

e (z) and y by g−1
e (y) and continue.

In the unlikely event that M contains more than one element (i.e. G meets the intersection
of at least two distinct facets containing p) one chooses a different starting point x ′ in a small
neighborhood of x which is still contained in Dv while keeping the endpoint y of G fixed. Since
the intersection of two distinct facets is of codimension at least 2 it is (from a measure theoretic
point of view) highly unlikely that G again meets more than one facet of the fundamental do-
main. Hence after a small number of modifications of x and G we are in the situation described
above.

6 Examples

In this section we list a few examples to illustrate the algorithm. Many more examples can be
found in a database for unit groups of orders linked to the authors’ homepages, where one will
also find MAGMA implementations of the algorithms.

6.1 The rational quaternion algebra ramified at 2 and 3

To illustrate the theory of the previous sections we comment on a very easy example. Take the
rational quaternion algebra ramified at 2 and 3,

Q2,3 =
(

2,3

Q

)
= 〈i , j | i 2 = 2, j 2 = 3, i j =− j i 〉 = 〈diag(

p
2,−p2),

(
0 1
3 0

)
〉.

Then a maximal order is Λ = 〈1, i , 1
2 (1+ i + i j ), 1

2 ( j + i j )〉. So here V = A = Q2,3, AR = M2(R),

L = Λ. If we embed A into AR using the maximal subfield Q[
p

2] we find three perfect forms
representing the Λ×-orbits on the set of all perfect forms:

F1 =
(

1 2−p
2

2−p
2 1

)
, F2 =

(
6−3

p
2 2

2 2+p
2

)
, F3 = diag(−3

p
2+9,3

p
2+5)

with stabilizers

StabΛ×(F1) = 〈−1〉,StabΛ×(F2) = 〈β〉 ∼=C4,StabΛ×(F3) = 〈α〉 ∼=C6.

The tessellation for Q2,3 ,→ M2(Q[
p

2]) and the relevant part of the resulting graph (dual to the
tessellation) is visualised in the following pictures.

14



So V = {1,2,3} is represented by the double circled vertices, and E = E+ = {x, y, z}. We have
Γ1 = 1, Γ2 = 〈b〉 ∼=C2 and Γ3 = 〈a〉 ∼=C3 and put gz =: t . Then

Γ=Λ×/〈±1〉 = 〈a,b, t | a3,b2, atbt〉.
Note that all cycle relations are conjugate as there is just oneΛ×-orbit on the minimal classes of
perfection corank 2.

To illustrate that the resulting tessellation depends on the chosen maximal subfield we redo
the computations for the maximal subfieldQ[

p
3] instead ofQ[

p
2].

The tessellation for Q2,3 ,→ M2(Q[
p

3]) is as follows.
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So here we obtain only 2 perfect forms, f1 and f2, say, with StabΛ×( f1) = 〈−1〉, StabΛ×( f2) =
〈α〉 ∼=C6.

6.2 The rational quaternion algebra ramified at 19 and 37

This example illustrates the power of Voronoï’s algorithm. Let Λ be a maximal order in the

quaternion algebra
(

19,37
Q

)
, the rational quaternion algebra ramified at 19 and 37. The Fuchsian

Group package in MAGMA does not return a presentation of the unit group Λ× in a reasonable
time. Our algorithm takes about 5 minutes to compute Λ×/〈±1〉 = 〈H1, . . . , H56〉 with the single
relator

H21H−1
10 H−1

44 H−1
49 H−1

14 H 2
55H4H42H−1

15 H46H−1
19 H−1

52 H20H−1
17 H9H54H39H−1

16 H48H−1
3 H−1

44 H38

H2H−1
26 H−1

35 H18H12H 2
56H1H20H25H24H23H5H50H−1

8 H41H−1
35 H2H15H−1

28 H5H43H−1
53

H−1
1 H−1

34 H52H−1
49 H48H−1

8 H−1
33 H14H3H27H−1

36 H−1
40 H47H−1

9 H22H−1
13 H−1

53 H39H27H−1
51 H13H46

H−1
47 H−1

43 H−1
17 H−1

37 H−1
40 H21H30H6H−1

12 H32H−1
54 H−1

28 H36H22H−1
29 H−1

7 H−1
45 H−1

26 H−1
50 H−1

32 H−1
11

H−1
51 H30H18H29H−1

16 H33H34H41H11H7H−1
37 H−1

42 H−1
10 H−1

23 H6H−1
31 H−1

45 H−1
19 H4H25H31H38H24.

Remark 6.1. One might want to compare this result with the well known formula for the genus
g of the associated Shimura curve (see e.g. [Shi65]). Note that 2g = dim(Hom(Γ,C)) where
Γ= {g ∈Λ× | nred(g ) = 1}/〈−1〉. From our presentation we obtain that Γ/Γ′ ∼= Z110, from which
we get 110 = 2g = (19−1)(37−1)/6+2 as predicted.

6.3 Quaternion algebras over imaginary quadratic fields

The number of perfect forms and hence the performance of our algorithm depends on the
choice of the involution † on AR. For certain quaternion algebras A, there is a canonical way to
choose such an involution † that preserves A:

Remark 6.2. Let k be a CM-field with complex conjugation and let Q be a definite rational
quaternion algebra with canonical involution . Then

† : Q⊗k →Q⊗k; a ⊗k 7→ a ⊗k

defines a positive involution on A =Q⊗k.

Using this involution we computed a few examples for imaginary quadratic fields k:

We first fix the quaternion algebra Q =
(−1,−1

Q

)
and vary the imaginary quadratic field k =

Q(
p−d), with −d ≡ 1 (mod 8):
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d Number of Runtime Runtime Number of
perfect forms Voronoï Presentation generators

7 1 1.24s 0.42s 2
31 8 6.16s 0.50s 3
55 21 14.69s 1.01s 5
79 40 28.74s 1.78s 5
95 69 53.78s 2.57s 7
103 53 38.39s 2.52s 6
111 83 66.16s 3.02s 6
255 302 323.93s 17.54s 16

In the next example we fix the imaginary quadratic field k to beQ(
p−7) and vary the rational

quaternion algebra Q to obtain A =
(

a,b
Q(

p−7)

)
:

a,b Norm of Number of Runtime Runtime Number of
discriminant perfect forms Voronoï Presentation generators

−1,−1 4 1 1.24s 0.42s 2
−1,−11 121 20 21.61s 4.13s 6
−11,−14 484 58 51.46s 5.11s 10
−1,−23 529 184 179.23s 89.34s 16

6.4 A division algebra of index 3

Letϑ= ζ9+ζ−1
9 be a real root of x3−3x+1 ∈Q[x]. Let A be the rational division algebra generated

(as an algebra over Q) by Z := diag(ϑ,σ(ϑ),σ2(ϑ)) and Π :=
 0 1 0

0 0 1
2 0 0

 where σ generates the

Galois group of Q[ϑ] over Q. As the minimal polynomial of ϑ (and hence of Z ) is congruent
modulo 2 to the minimal polynomial overQ2 of a seventh root of unity,Π3 = 2 andΠZΠ−1−Z 2 =
2, we see that the Hasse invariant of A is 1

3 at the prime 2. We use [NeS09] to compute a maximal
order Λ in A and its discriminant 2636. So the only other ramified prime in A is 3 and its Hasse
invariant is 2

3 . Let Γ := SL(Λ) := {g ∈Λ× | nred(g ) = 1}, L =Λ, A ,→ AR via one of the embeddings
of Q[ϑ] ,→ R. Then Γ has 431 orbits on the set of L-perfect forms in P . After reducing the
presentation obtained by the algorithm above with standard MAGMA programs we obtain that
Γ= 〈a,b〉 where

a := 1

3

 −ϑ2 −3ϑ+1 ϑ2 +2 −ϑ2 +1
2ϑ2 +2ϑ−6 −2ϑ2 +ϑ+3 −ϑ2 −ϑ+6

2ϑ+8 −2ϑ−2 3ϑ2 +2ϑ−7

 ,

b := 1

3

 ϑ2 −2ϑ−3 −2ϑ+1 −ϑ2 +1
2ϑ2 +2ϑ−6 −3ϑ2 −ϑ+5 −2ϑ2 +5
4ϑ2 +4ϑ−6 −2ϑ−2 2ϑ2 +3ϑ−5
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with defining relators

b2a2(b−1a−1)2,
b−2(a−1b−1)2ab−2a2b−3,
ab2a−1b3a−2bab3,
a2bab−2ab−1(a−2b)2,
a−1b2a−1b−1a−5b−2a−3,
b−2a−2b−1a−1b−1a−2b−1a−1b−2(a−1b−1)3.

Remark 6.3. Note that Aop = ATr has Hasse invariant 2
3 at 2 and 1

3 at 3. As maximal orders of A
and Aop correspond to each other by transposing matrices, also their unit groups are isomor-
phic (via g 7→ g−Tr). Computing the Voronoï-tessellation for the transposed matrices, however,
we find 410 perfect forms instead of 431, which shows that there is no direct correspondence
on the level of perfect forms.

6.5 A matrix ring over a quaternion algebra

Consider the rational quaternion algebra K =
(−1,−3

Q

)
, ramified at 3 and the infinite place. Let O

be the maximal order with Z-basis
{
1, i , 1

2 (i +k), 1
2 (1+ j )

}
and let A = M2(K ), Λ = M2(O ). The

algebra A is of interest as a direct summand of the rational group algebra of SL2(5).
Our algorithm finds one perfect form with automorphism group of order 720 (isomorphic

to SL2(9)) and a presentation of Λ× on the two generators

1

2

(
2 0

−1+ i + j −k −i −k

)
,

1

2

(
i +k −1+ j
−2i 2− i +k

)
,

which have orders 4 and 6, respectively. These two generators satisfy a set of 64 relations, which
is too large to be printed here. The commutator factor group Λ×/(Λ×)′ is cyclic of order 4.

7 Implementation

While many things in the implementation of our algorithms are straightforward, there are some
tasks which do not have an obvious solution. We present these here.

7.1 Minimal vectors

Let F ∈P be a form. In order to compute SL(F ), the set of L-minimal vectors of F , we associate
to F a Z-lattice LF and compute the minimal vectors of that lattice, e.g. using MAGMA [BCP97].

Let B be a Z-basis of L. We associate to the form F the following bilinear form bF on VR:

bF : VR×VR→R, (x, y) 7→ 1

2

(
F [x + y]−F [x]−F [y]

)
.

Clearly, bF is positive definite since F ∈ P . Now let LF be the Z-lattice which has as its Gram
matrix the Gram matrix of bF with respect to the basis B. Then, since F [`] = bF (`,`) for all
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` ∈ L, the minimal vectors of LF are the coordinates of the minimal vectors of F with respect to
the basis B.

7.2 Isometry testing and automorphism groups

We want to decide algorithmically if two forms are in the same orbit under the action

Λ××P →P , (λ,F ) 7→λ†Fλ

of the unit group Λ×.
First, consider the case where A = K is a division algebra. Then we choose L =Λ. In partic-

ular, the minimal vectors of our forms are elements of the order Λ.

Lemma 7.1. Let F1,F2 ∈P , ` ∈ SL(F1). There is a λ ∈Λ× satisfying λ†F2λ= F1 if and only if there
is some `2 ∈ SL(F2) such that (`2`

−1)†F2`2`
−1 = F1 and `2`

−1 ∈Λ×.
Also, we have

StabΛ×(F1) = {`1`
−1 | (`1`

−1)†F1`1`
−1 = F1, `1`

−1 ∈Λ×, `1 ∈ SL(F1)}.

Proof. If we have λ†F2λ= F1, then λ−1SL(F2) = SL(F1), which is easily verified. This proves both
claims.

This lemma allows us to check for isometry and to compute automorphism groups of forms
using only our knowledge of the finite sets of minimal vectors and without any a-priori knowl-
edge of Λ×. The membership λ ∈ Λ× is tested by checking that both λ and λ−1 are in the free
abelian group Λ.

We now turn to the general case, where A is a simple algebra and M = EndO (L) for some
Λ-lattice L in V . We will only describe the computation of the automorphism group of a form
F ∈P . Isometry testing is completely analogous. We use the notation from 7.1.

Consider the Q-linear representation of A induced by the action of A on V with respect
to the basis B. If we compute the automorphism group of the Z-lattice LF with the Plesken-
Souvignier algorithm [PS97], the result of this is a finite group of |B|×|B|-matrices isomorphic
to AutZ(LF ). However, in general not all of these matrices will be contained in the image of A ,→
Q|B|×|B|. In order to compute only those automorphisms which satisfy this additional condition
we make use of the fact that the Plesken-Souvignier algorithm may be given an additional input,
namely a list of matrices which is to be fixed by the resulting lattice automorphisms.

Lemma 7.2. Let {b1, ...,bδ} be a basis of the centralizer of the image A ,→Q|B|×|B|. The matrices
X ∈ GL|B|(Z) stabilizing LF and fixing Gram(LF ) ·b1, ...,Gram(LF ) ·bδ are contained in the image
of A.

Proof. Let G := Gram(LF ) and consider X ∈ GL|B|(Z) as in the statement. Then we have X tr G X =
G and consequently, for all 1 ≤ i ≤ δ, X tr Gbi X =Gbi = X tr G X bi . This implies bi X = X bi for all
i . It now follows from the double-centralizer theorem [Rei75, (7.11)] that X is contained in the
image of the representation of A.
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Since M= EndO (L), the matrices X from the previous lemma are actually contained in the
image of M under the representation we considered. Therefore, using this lemma, we can
compute the stabilizer StabM×(F ) and its intersection StabΛ∗(F ) = StabM×(F )∩Λ without prior
knowledge of Λ×.

7.3 Outline of an implementation

A detailed exposition of Voronoï’s algorithm is beyond the scope of this paper, so we refer the
reader to [Mar03, Opg01] for details on the theory of the algorithm. The purpose of this section
is to provide an overview of the steps necessary to implement our algorithms.

First of all, it should be noted that one cannot carry out precise computations in AR = A⊗QR.
However in order to carry out the computations it is only necessary to embed A into a semisim-
ple algebra A with positive involution. If, for example, A is a quaternion algebra with positive
involution, we compute in A itself rather than in AR, which means that the computations of
the polyhedral tessellation are exactly performed in MAGMA. Here we could also use polymake
[GaJ00], allowing even exact computations with quadratic irrationalities. In the case of the ex-
ample in Section 6.4 we use an embedding of A into A = M3(Q[ϑ]), the involution in that case
being transposition. Then all perfect forms already lie in A and the number of perfect forms
depends on the choice of this algebra A . To compute the facets of the Voronoï domains we
just determine all subsets of the vertices that define a codimension 1 subspace, which can be
checked by computations in the rationals. To decide whether such a hyperplane is a facet, we
only need to check whether the chosen real embeddings of the inner products of the corre-
sponding direction (perpendicular to the facet) with all other vertices have the same sign.

Assuming the reader has a suitable version of Voronoï’s algorithm at his disposal, we now
move on to the computation of a presentation of Λ×. As a by-product of the algorithm, we al-
ready have the facets of the Voronoï domains. The codimension-2-faces are easily computed as
intersections of facets. These codimension-2-faces (to which we will refer as "ridges" in what
follows) correspond to the 2-cells of the CW-complex described in section 3 and for computa-
tional simplicity we perform our calculations using the faces.

Notice that the side transformations (cf. Remark 4.2) obtained by Voronoï’s algorithm to-
gether with the stabilizers of the perfect forms generate Λ×. This is the set of generators we use
in our implementation. However, this set of generators does not coincide with the generators
described in Section 4.

Let V be a set of representatives of perfect forms obtained from Voronoï’s algorithm. In
order to compute the cycle relation corresponding to an ridge e contained in the boundary of
the Voronoï domain DP of a perfect form P = P0 ∈ V one should proceed as follows. Note that
there is a finite sequence of perfect forms Pi ∈ P , 0 ≤ i ≤ `, such that DPi and DPi+1 meet
precisely in a facet, e ⊂ DPi for all i and P0 = P`. We now proceed iteratively: In the i th step
we construct an element g ∈Λ× as a product of side-transformation (i.e. generators ofΛ×) such
that g †Pi g ∈ V . So in the `th step we will have g †P`g ∈ V , which means g ∈ StabΛ×(P ), yielding a
relation. Start this calculation by identifying a facet f of DP containing e, set P1 to be the perfect
form contiguous to P through the facet f, g1 the corresponding side transformation and g := g1.
In the i th step, identify the facet f of the Voronoï domain of Pi−1 containing e and satisfying
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f∩DPi−2 6= f (this can be done by computing in the Voronoï domain of g †Pi−1g ∈ V ), and let
Pi be the perfect neighbour of Pi−1 through f, gi the side transformation corresponding to the
facet g−1fg−† of Dg †Pi−1g and replace by g by g gi .

The remaining relations described in Section 4 are easily computed. Finally it is useful to
employ a computer algebra system capable of handling finitely presented groups in order to
simplify the presentation.

The implementation of the algorithm to solve the word problem is straightforward since it
merely amounts to computing the intersection of an affine line with an affine polytope.
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