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Abstract: Let L be a lattice of dimension n ≤ 24 such that the minimal

vectors of L form a 6-design and generate L. Then L is similar to either the root

lattice E8, the Barnes-Wall lattice BW16, the Leech lattice Λ24, or n = 23. For

n = 23 we conjecture that the only possibilities for L are the shorter Leech lattice

O23 or its even sublattice Λ23.

1 Introduction.

Spherical designs have been introduced in 1977 by Delsarte, Goethals and
Seidel [11] and soon afterwards studied by Eiichi Bannai in a series of papers
(see [3], [4], [5] to mention only a few of them). A spherical t-design is a finite
subset X of the sphere such that every polynomial on Rn of total degree at
most t has the same average over X as over the entire sphere. The theory of
lattices has been used quite successfully to classify good designs of minimal
possible cardinality (see [6]). In this paper we use the theory of designs to
construct good lattices.

Definition 1.1 A t-design-lattice is a lattice Λ in Euclidean space such that
its minimal vectors

Min(Λ) := {λ ∈ Λ | (λ, λ) = min(Λ)}

form a spherical t-design and generate the lattice Λ.

Clearly any t-design-lattice is also a t′-design-lattice for all t′ ≤ t. Note
that the 4-design-lattices are exactly the strongly perfect lattices defined in
[14] that are generated by their minimal vectors. They are now classified up
to dimension 12 (see [14], [12], [13]). From this classification we see:
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Theorem 1.2 Let t ≥ 4 be even and let Λ be a t-design-lattice of dimension
n ≤ 12. Then one of the following holds:

(a) n = 1 and Λ is similar to Z. Here t is arbitrary since the 0-dimensional
sphere S0 consists only of the two minimal vectors {1,−1} of Z.

(b) n = 2, Λ is similar to the hexagonal lattice A2, and t = 4.

(c) n = 4, Λ is similar to the root lattice D4, and t = 4.

(d) n = 6, Λ is similar to the root lattice E6 or its dual lattice E∗6 , and
t = 4.

(e) n = 7, Λ is similar to the root lattice E7 or its dual lattice E∗7 , and
t = 4.

(f) n = 8, Λ is similar to the root lattice E8, and t ≤ 6.

(g) n = 10, Λ is similar to the lattice K ′
10 or its dual lattice (K ′

10)
∗, and

t = 4.

(h) n = 12, Λ is similar to the Coxeter-Todd lattice K12, and t = 4.

This paper classifies the 6-design-lattices of dimension 23 6= n ≤ 24. We
will show the following theorem

Theorem 1.3 Let t ≥ 6 be even and let Λ be a t-design-lattice of dimension
n ≤ 24. Then one of the following holds:

(a) n = 1 and Λ is similar to Z.

(b) n = 8, Λ is similar to the root lattice E8, and t = 6.

(c) n = 16, Λ is similar to the Barnes-Wall lattice BW16, and t = 6.

(d) n = 23 and t = 6. In this dimension there are at least two 6-design
lattices, namely the shorter Leech lattice O23 and its even sublattice Λ23.

(e) n = 24, Λ is similar to the Leech lattice Λ24, and t ≤ 10.
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In fact all layers of the lattices in Theorem 1.3‘ are spherical t-designs.
This is trivial in case (a) and follows from [2, Corollary 3.1] for the remaining
cases except for case (d). For case (d) note that the automorphism group of
O23 and Λ23 is C2 × Co2 and its first harmonic invariant has degree 8.

We also remark that it is still unknown, whether there are t-design-lattices
for t ≥ 12. The only known 10-design lattices are the known extremal even
unimodular lattices of dimension a multiple of 24, namely the Leech lattice
Λ24 and the three unimodular lattices P48p, P48q and P48n of dimension 48
with minimum 6 (see [10]).

2 Some general remarks on antipodal t-designs.

In the following we assume that n ≥ 2 to avoid trivialities. Let X ⊂ Sn−1 be
a finite subset of the (n− 1)-dimensional unit-sphere such that X ∩−X = ∅.
For any even number t = 2h, the condition that X ∪ −X be a spherical
t-design is equivalent to the existence of some number ct such that for all
α ∈ Rn

(Dt)(α) :
∑

x∈X

(x, α)t = ct|X|(α, α)
h.

The constant ct is then uniquely determined and easily calculated by applying
t times the Laplace operator ∆ with respect to α (see [14]) as

ct =
h
∏

j=1

2j − 1

n+ 2j − 2
(where t = 2h).

Note that
∆(Dt)(α) = (D(t− 2))(α) .

If we apply these equalities to the minimal vectors X
.
∪ −X = Min(Λ) of

a t-design-lattice Λ and some minimal vector α ∈ Min(Λ∗) of the dual lattice
we get lower bounds on the Bergé-Martinet invariant

γ′(Λ)2 := γ(Λ)γ(Λ∗) = min(Λ)min(Λ∗)

of a t-design lattice as follows.
Since (x, α) ∈ Z for all x ∈ X and α ∈ Λ∗ and the product of t − 1

consecutive integers is divisible by (t− 1)! we get that

1

(t− 1)!

h−1
∏

j=0

((x, α)2 − j2) ∈ Z≥0 for all x ∈ X,α ∈ Λ∗.
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Summing over X and applying the equalities (Dt′) for all even 0 ≤ t′ ≤ t we
obtain Qn,t(z) = |X|

z
n
Pn,t(z) for a polynomial Pn,t(z) of degree h−1 = t/2−1

in z := (α, α)min(Λ). Note that

1

(t− 1)!
Qn,t((γ, γ)min(Λ)) ∈ Z≥0

for all γ ∈ Λ∗ in particular Pn,t(z) ≥ 0 for z = min(Λ∗)min(Λ) = γ ′(Λ)2.
For small t, the polynomials Pn,t are as follows:

Pn,2(z) = 1
Pn,4(z) = 3

n+2
z − 1

Pn,6(z) = 3·5
(n+2)(n+4)

z2 − 5 3
n+2

z + 4

Pn,8(z) = 3·5·7
(n+2)(n+4)(n+6)

z3 − 14 3·5
(n+2)(n+4)

z2 + 49 3
n+2

z − 36

Remark 2.1 Let Λ be a 6-design lattice of dimension n > 1. Then min(Λ)min(Λ∗) >
n+2

3
, hence Λ is not a strongly perfect lattice of minimal type in the sense of

[14, Définition 10.5],

Proof. Since Λ is strongly perfect, we have Pn,4(min(Λ)min(Λ∗)) ≥ 0 and
hence min(Λ)min(Λ∗) ≥ n+2

3
(see [14, Théorème 10.4]). Assume that min(Λ)min(Λ∗) =

n+2
3
. Then (α, x) ∈ {0,±1} for all α ∈ Min(Λ∗), x ∈ X since Pn,4((x, x)(α, α)) =

0. Hence n+2
3

is also a zero of Pn,6(t) which implies that 5(n+ 2) = 3(n+ 4)
whence n = 1. ¤

Continuing with an arbitrary antipodal t-design X
.
∪ −X ⊂ Sn−1 where

t = 2h we may evaluate (Dt)(ξα + χβ) for vectors α, β ∈ Rn and arbitrary
ξ, χ ∈ R to find
∑

x∈X

(x, ξα+χβ)t = ct|X|(ξα+χβ, ξα+χβ)
h = ct|X|(ξ

2(α, α)+2χξ(α, β)+χ2(β, β))h.

With the trinomial coefficient
(

h

i, j

)

:=
h!

i!j!(h− i− j)!

and comparing the coefficient at ξ`χt−` we find the equalities

D`,t−`(α, β) :
∑

x∈X

(x, α)`(x, β)t−` =
ct|X|
(

t
`

)

∑

2i+j=`

(

h

i, j

)

2j(α, α)i(α, β)j(β, β)h−i−j.
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In particular if β is orthogonal to α then

D`,t−`(α, β) = 0 if ` is odd and D2`,t−2`(α, β) =
ct|X|
(

2h
2`

)

(

h

`

)

(α, α)`(β, β)h−`.

(1)
Important for the classification of t-design lattices Λ are the sets

Ni(α) := {x ∈ Min(Λ) | (x, α) = i}

for α ∈ Λ∗.

Theorem 2.2 Let t = 2h and Λ be a t-design lattice. Let α ∈ Λ∗ and
d ∈ Z≥0 such that (α, x) ∈ {0,±1, . . . ,±(h − d)} for all x ∈ Min(Λ). If
Nh−d(α) 6= ∅ then the projection of Nh−d(α) to α⊥ is a spherical (2d + 1)-
design in Rn−1.

Proof. Write Min(Λ) = X
.
∪ −X and let

Nh−d(α) := {x := x−
h− d

(α, α)
α | x ∈ Nh−d(α)}

denote the projection of Nh−d(α) to α
⊥. For β ∈ α⊥ and ` ∈ {0, . . . , d} the

polynomial

f`,h−d(β) :=
∑

x∈X

h−d−1
∏

j=0

((x, α)2−j2)(x, β)2` =
∑

x∈Nh−d(α)

(h−d)(2(h−d)−1)!(x, β)2`

Since Min(Λ) is a 2h-design and the degree of f`,h−d is 2(h − d) + 2` ≤ 2h
this sum is a constant multiple of (β, β)`. Using the fact that (x, β) = (x, β)
for β ∈ α⊥ we get for all 0 ≤ ` ≤ d

∑

x∈Nh−d(α)

(x, β)2` = cn−1,`(β, β)
`

and
∑

x∈Nh−d(α)

(x, β)2`+1 = 0

by (1). This shows that Nh−d(α) is a spherical (2d+ 1)-design. ¤
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Corollary 2.3 Let α satisfy the conditions of Theorem 2.2 with d = 0 and
put m := min(Λ).

(a) |Nh(α)| =
1

h·((t−1)!)

∑

x∈X

∏h−1
j=0 ((x, α)

2−j2) = 1
h·((t−1)!)

|X|(α,α)m
n

Pn,t((α, α)m)

and the cardinalities of the other Ni(α) are determined similarly.

(b)
∑

x∈Nh(α) x = |Nh(α)|h
(α,α)

α.

Proof. (a) is clear and (b) follows since the projection of Nh(α) is a 1-design
and hence the sum

∑

x∈Nh(α) x = 0 which is equivalent to
∑

x∈Nh(α) x = cα
for some constant c which is calculated by taking the scalar product with α.

¤

3 6-design-lattices.

General assumption: Throughout the rest of the paper we assume that Λ is
a 6-design-lattice of dimension n, m := min(Λ) and choose X ⊂ Min(Λ) such
that X ∪ −X = Min(Λ) and X ∩ −X = ∅. Put s := |X| and r := min(Λ∗).

Then Λ is a 6-design-lattice if and only if for all α ∈ Rn

(D6)(α) :
∑

x∈X

(x, α)6 =
3 · 5sm3

n(n+ 2)(n+ 4)
(α, α)3.

Applying the Laplace operator to (D6)(α) one obtains

(D4)(α) :
∑

x∈X

(x, α)4 =
3sm2

n(n+ 2)
(α, α)2 and

(D2)(α) :
∑

x∈X

(x, α)2 =
sm

n
(α, α).

Substituting α =
∑6

i=1 ξiαi in (D6) (resp. (D4) and (D2)) we find that
for all α, β ∈ Rn:

(D11)
∑

x∈X(x, α)(x, β) = sm
n
(α, β)

(D13)
∑

x∈X(x, α)(x, β)
3 = 3sm2

n(n+2)
(α, β)(β, β)

(D22)
∑

x∈X(x, α)
2(x, β)2 = sm2

n(n+2)
(2(α, β)2 + (α, α)(β, β))

(D15)
∑

x∈X(x, α)(x, β)
5 = 3·5sm3

n(n+2)(n+4)
(β, β)2(α, β)

(D24)
∑

x∈X(x, α)
2(x, β)4 = 3sm3

n(n+2)(n+4)
((β, β)2(α, α) + 4(α, β)2(β, β))

(D33)
∑

x∈X(x, α)
3(x, β)3 = 3sm3

n(n+2)(n+4)
(2(α, β)3 + 3(α, α)(β, β)(α, β))
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From Theorem 2.2 we find the following corollary.

Corollary 3.1 Let α ∈ Λ∗ such that |(x, α)| ≤ 2 for all x ∈ X. Then

N2(α) := {x := x−
2

(α, α)
α | x ∈ N2(α)} ⊂ α⊥ ∼= Rn−1

is a spherical 3-design. In particular |N2(α)| ≥ 2(n− 1).

There is one special and important case, where equality follows.

Lemma 3.2 Assume that mr = 8. Then any α ∈ Min(Λ∗) satisfies the
conditions of Corollary 3.1,

|N2(α)| = 2(n− 1) and n = dim(Λ) = 16.

Moreover N2(α) = {x1, . . . , xn−1, y1, . . . , yn−1} such that m
2
α = xi+ yi for all

i = 1, . . . , n− 1.

Proof. For x ∈ N2(α) let x := x− 2
(α,α)

α ∈ α⊥. Then for all x, y ∈ N2(α) we
get

(x, y) = (x, y)−
m

2
=

{

m
2

x = y
≤ 0 x 6= y

since x and y are minimal vectors of a lattice. Hence N2(α) is a set of vectors
of length m

2
in an (n − 1)-dimensional space such that distinct vectors have

non-positive inner products. Therefore |N2(α)| ≤ 2(n − 1) (see [13, Lemma
2.10]). Using Corollary 3.1 we get |N2(α)| = 2(n − 1) and again by [13,
Lemma 2.10] there is a partition of N2(α) as claimed.

The only possibilities for n are 8 or 16, since n must be a zero of Pn,6(8) =
5·3

(n+2)(n+4)
82 − 5·3

(n+2)
8 + 4. Since γ8 = 2 the only possibility is that n = 16.

¤

For n ≤ 23 the Hermite constant γn ≤ 3.9 < 4. Therefore

min(Λ)min(Λ∗) ≤ γ2
n < 16

and hence (x, α) ∈ {0,±1,±2,±3} for all α ∈ Min(Λ∗), x ∈ Min(Λ). In
particular we get

|N3(α)| =
smr

360n
(

5 · 3m2r2

(n+ 2)(n+ 4)
−

5 · 3mr

(n+ 2)
+ 4) ∈ Z.
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For n = 24 one knows by [9] that either Λ is the Leech lattice or min(Λ)min(Λ∗) <
16 and hence Corollary 2.3 may also be applied in this situation (keeping in
mind that the Leech lattice Λ24 is a 11-design-lattice).

As in [13, Lemma 2.4] one gets

Lemma 3.3 Let m := min(Λ), choose α ∈ Λ∗ and put a := (α, α). If
am < 18 and |(x, α)| ≤ 3 for all x ∈ Min(Λ), then

|N3(α)| ≤
am

18− am
.

Proof. Let N3(α) = {x1, . . . , xk} and c := 3k
a
. Then

∑

x∈N3(α) x = cα. Also

(xi, xi) = m and (xi, xj) ≤
m
2
because the xi are minimal vectors in Λ. Hence

3c =
9k

a
= (x1, cα) = (x1, x1) +

k
∑

i=2

(x1, xi) ≤ m+
m(k − 1)

2
=
m(k + 1)

2

which yields that k = |N3(α)| ≤
am

18−am
. ¤

Corollary 3.4 If α ∈ Λ∗ with |(x, α)| ≤ 3 for all x ∈ Min(Λ), and |N3(α)| =
1 then m(α, α) = 9.

Proof. Let N3(α) = {x}. Then x = cα with c = 3
(α,α)

. In particular

m = (x, x) =
3

(α, α)
(x, α) =

9

(α, α)
.

¤

4 Exclusion of most cases.

To perform the first computations we rescale the hypothetical 6-design-lattice
Λ such that m = min(Λ) = 1. Since Λ is a perfect lattice, we then get
r = min(Λ∗) ∈ Q is a rational number bounded from above by γ2

n. For
each n ∈ {13, . . . , 24} the known bounds on the maximal kissing number of
n-dimensional lattices as given in [1] yield a finite number of possibilities for
s. The number

a :=
sr

12n
(

3r

n+ 2
− 1) =

1

12

∑

x∈X

(x, α)2((x, α)2 − 1)
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is a positive integer bounded from above by sγ2
n

12n
( 3γ2

n

n+2
− 1).

Going through all possibilities for s and a using the fact that r is a positive
rational solution of sr

12n
( 3r
n+2

− 1)− a = 0 and that

sr

n
,

3sr2

n(n+ 2)
, and

3 · 5sr3

n(n+ 2)(n+ 4)

as well as
sr

360n
(

5 · 3r2

(n+ 2)(n+ 4)
−

5 · 3r

(n+ 2)
+ 4)

are all non-negative integers together with the bounds in [13, Lemma 2.4],
Lemma 3.3, Corollary 3.1, Corollary 3.4 and Lemma 3.2 and also the bounds
on γn given by [8] and the fact that the Leech lattice is the unique 24-
dimensional lattice L with min(L)min(L∗) = 16 we find the following theo-
rem.

Theorem 4.1 Let Λ be a 6-design-lattice of dimension n with 13 ≤ n ≤ 24.
Then

(n, s,mr) = (dim(Λ),
1

2
|Min(Λ)|,min(Λ)min(Λ∗))

are one of the following triples:

(a) (n = 16, s = 2160 = 24335,mr = 8).

(b) (n = 23, s = 2300,mr = 9).

(c) (n = 23, s = 23 · 25 · s1,mr = 12), with 4 ≤ s1 ≤ 96.

(d) (n = 23, s = 23 · s1,mr = 15), with 44 ≤ s1 ≤ 2415.

(e) (n = 24, s = 32760 = 23325 · 7 · 13,mr = 12)

(f) (n = 24, s = 98280 = 23335 · 7 · 13,mr = 16)

In case (f), the lattice Λ is the Leech lattice by [9].

Lemma 4.2 Case (e) of Theorem 4.1 is impossible.
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Proof. Let Λ be a 6-design-lattice of dimension 24 rescaled such that min(Λ) =
2. Assume that Λ satisfies the condition (e) of Theorem 4.1 and let α ∈ Λ∗.
Then (D6) implies that

∑

x∈X

(x, α)6 = 3252(α, α)3

in particular (α, α) ∈ Z. Moreover for α, β ∈ Λ∗ we get

∑

x∈X

(x, α)3(x, β)3 = 325(3(α, α)(β, β)(α, β) + 2(α, β)3)

which shows that Γ := Λ∗ is an integral lattice with minimum min(Γ) = 6
and min(Γ∗) = 2. Fix some α ∈ Min(Γ) and choose X such that (x, α) ≥ 0
for all x ∈ X. Then X = X0∪X1∪X2∪X3 with Xi := {x ∈ X | (x, α) = i}.
By Corollary 2.3 X3 = {x3, y3} with (x3, y3) = 1 and x3 + y3 = α. Equalities
(D2), (D4) and (D6) yield that |X2| = 513 and |X1| = 14310. For all x2 ∈ X2

we have 2 = (x2, α) = (x2, x3) + (x2, y3) and therefore (x2, x3) = (x2, y3) = 1
since both scalar products are ≤ 1. The equalities (D22) and (D24) for x3

and α read as
∑

x∈X(x, x3)
2(x, α)2 = S1 + 4S2 + 9(4 + 1) = 2 · 3 · 5 · 7(2 · 9 + 6 · 2) = 6300

∑

x∈X(x, x3)
2(x, α)4 = S1 + 16S2 + 81(4 + 1) = 325(622 + 4 · 9 · 6) = 12960

where
S1 :=

∑

x∈X1

(x, x3)
2 and S2 :=

∑

x∈X2

(x, x3)
2.

This system has the unique solution

S1 = 4155, S2 = 525

contradicting the fact that S2 = |X2| = 513. ¤

5 Dimension 16

In this section we deal with the first case in Theorem 4.1. We show

Theorem 5.1 Let Λ be a 6-design lattice of dimension 16. Then Λ is similar
to the Barnes-Wall lattice.
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Proof. Rescale Λ such that min(Λ) = 2 and let Γ := Λ∗. Then by Theorem
4.1

s(Λ) = 2160,min(Γ) = 4 .

From Equation (D6) we find that
∑

x∈X

(x, α)6 = 325(α, α)3

hence (α, α) ∈ Z for all α ∈ Γ. Moreover

1

120

∑

x∈X

(x, α)2((x, α)2−1)((x, α)2−4) =
1

120
(D6(α)−5D4(α)+4D2(α)) ∈ Z

for all α ∈ Γ yields

3

8
(α, α)((α, α)− 4)((α, α)− 6) ∈ Z

for all α ∈ Γ, hence Γ is an even lattice.
Now we fix α ∈ Γ with (α, α) = 4. By Lemma 3.2 we find that

L := 〈N2(α), α〉 ∼= D16

is the root lattice D16. Moreover we have L ≤ Λ and Γ = Λ∗ ≤ L∗. Since Γ
is an even lattice, we even get that Γ ≤M , where M is the unique maximal
even sublattice of L∗, M is isometric to the even unimodular lattice D+

16,
We now want to show that 2L ⊆ Γ. Since Λ is generated by X, it suffices

to show that

(x, β) ∈ {0,±
1

2
,±1,±2}

for all x ∈ X and β ∈ N2(α). Fix some β ∈ N2(α). Then α = β + β ′ for
some β′ ∈ N2(α) and (β, x) = 1 for all x ∈ N2(α) − {β, β

′}. Choose X
such that (x, α) ≥ 0 for all x ∈ X and (x, β) ≥ 0 for all x ∈ N0(α). Since
we know the scalar products of β with all elements of N2(α) the equalities
(D11), (D22), (D13), (D24), (D15) applied to α and β yield

S1 :=
∑

x∈N1(α)(x, β) = 480

S2 :=
∑

x∈N1(α)(x, β)
2 = 352

S3 :=
∑

x∈N1(α)(x, β)
3 = 288

S4 :=
∑

x∈N1(α)(x, β)
4 = 256

S5 :=
∑

x∈N1(α)(x, β)
5 = 240

11



Since β and β ′ are shortest vectors of Λ, and (x, β + β ′) = (x, α) = 1 for all
x ∈ N1(α), we get

0 ≤ (x, β) ≤ 1 for all x ∈ N1(α) .

In particular

(x, β)((x, β)−
1

2
)2((x, β)− 1)2 ≥ 0 for all x ∈ N1(α).

Summing over all x ∈ N1(α) we find

S5− 3S4 +
13

4
S3−

3

2
S2 +

1

4
S1 = 0.

Hence (x, β) ∈ {0, 1/2, 1} for all x ∈ N1(α). We also obtain the exact
cardinalities mi := |{x ∈ N1(α) | (x, β) = i}| as

m0 = 224,m1/2 = 512,m1 = 224 .

We now consider the elements in X0 := {x ∈ X | (x, α) = 0}. Explicit
calculations show that Y0 := X0 ∩L contains 210 elements, 28 of which have
scalar product 1 with β, the remaining 182 are perpendicular to β. Let
Z0 := X0−Y0. From equalities (D2), (D4), (D6) applied to β (using the fact
that we know the inner products (β, x) for all x ∈ X − Z0) we obtain

T2 :=
∑

x∈Z0
(x, β)2 = 128

T4 :=
∑

x∈Z0
(x, β)4 = 32

T6 :=
∑

x∈Z0
(x, β)6 = 8

The square (x, β)2((x, β)2 − 1/4)2 is non-negative for all x ∈ Z0. Summing
up we obtain

∑

x∈Z0

(x, β)2((x, β)2 − 1/4)2 = T6−
1

2
T4 +

1

16
T2 = 0

which shows that (x, β) ∈ {0,±1/2} for all x ∈ Z0.
Therefore

2M ⊂ 2L ⊂ Γ ⊂M ∼= D+
16 .

Starting with N0 := M , we now successively calculate the Aut(Ni)-orbits on
the sublattices Ni+1 of index 2 in Ni. In each step there is a unique orbit of
sublattices Ni+1 such that the minimum of the dual lattice is min(N ∗

i+1) ≥ 2
(for 0 ≤ i ≤ 3). The unique lattice with minimum 4 is N4

∼= BW16. ¤
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6 Dimension 23

From the classification of tight 7-designs in [7] we see

Theorem 6.1 Let Λ be a 6-design lattice of dimension 23. Then s(Λ) ≥
2300 and if s(Λ) = 2300 then Λ is similar to O23.

To finish the proof of Theorem 1.3 it remains to show that any 6-design
lattice Λ of dimension 23 is not an 8-design lattice. If Λ satisfies case (b)
of Theorem 4.1, then the minimal vectors of Λ form a tight 7-design and
hence cannot be an 8-design. In the other two cases ((c) and (d) of Theorem
4.1) γ ′(Λ)2 ∈ {12, 15} and hence P23,6(γ

′(Λ)2) = 0 so (x, α) ∈ {0,±1,±2}
for all x ∈ Min(Λ) and α ∈ Min(Λ∗). If Min(Λ) is an 8-design, then also
P23,8(γ

′(Λ)2) = 0. But this polynomial has no rational roots. This finishes
the proof of Theorem 1.3.
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