On lattices whose minimal vectors form a
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ABSTRACT: Let L be a lattice of dimension n < 24 such that the minimal
vectors of L form a 6-design and generate L. Then L is similar to either the root
lattice Fg, the Barnes-Wall lattice BWyg, the Leech lattice Aoy, or n = 23. For
n = 23 we conjecture that the only possibilities for L are the shorter Leech lattice
Oo3 or its even sublattice Aog.

1 Introduction.

Spherical designs have been introduced in 1977 by Delsarte, Goethals and
Seidel [11] and soon afterwards studied by Eiichi Bannai in a series of papers
(see [3], [4], [5] to mention only a few of them). A spherical ¢-design is a finite
subset X of the sphere such that every polynomial on R™ of total degree at
most t has the same average over X as over the entire sphere. The theory of
lattices has been used quite successfully to classify good designs of minimal
possible cardinality (see [6]). In this paper we use the theory of designs to
construct good lattices.

Definition 1.1 A t-design-lattice is a lattice A in Euclidean space such that
its minimal vectors

Min(A) :={A € A| (A\,\) = min(A)}
form a spherical t-design and generate the lattice A.

Clearly any t-design-lattice is also a t’-design-lattice for all ¢ < ¢. Note
that the 4-design-lattices are exactly the strongly perfect lattices defined in
[14] that are generated by their minimal vectors. They are now classified up
to dimension 12 (see [14], [12], [13]). From this classification we see:

*Lehrstuhl D fiir Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Ger-
many, e-mail: nebe@math.rwth-aachen.de

St. Petersburg Branch of the Steklov Mathematical Institute, Fontanaka 27, 191011
St. Petersburg, Russia, e-mail: bbvenkov@yahoo.com




Theorem 1.2 Lett > 4 be even and let A be a t-design-lattice of dimension
n < 12. Then one of the following holds:

(a) n =1 and A is similar to Z. Here t is arbitrary since the 0-dimensional
sphere S° consists only of the two minimal vectors {1,—1} of Z.

(b) n=2, A is similar to the hexagonal lattice Ay, and t = 4.
(c) n=4, A is similar to the root lattice Dy, and t = 4.

(d) n = 6, A is similar to the root lattice Eg or its dual lattice Ef, and
t=4.

(e) n =T, A is similar to the root lattice E; or its dual lattice E%, and
t=4.

(f) n =8, A is similar to the root lattice Eg, and t < 6.

(g) n =10, A is similar to the lattice Ki, or its dual lattice (K1,)*, and
t=4.

(h) n =12, A is similar to the Coxeter-Todd lattice K15, and t = 4.

This paper classifies the 6-design-lattices of dimension 23 # n < 24. We
will show the following theorem

Theorem 1.3 Lett > 6 be even and let A be a t-design-lattice of dimension
n < 24. Then one of the following holds:

(a) n=1 and A is similar to Z.
(b) n =8, A is similar to the root lattice Eg, and t = 6.
(¢) n =16, A is similar to the Barnes-Wall lattice BW1g, and t = 6.

(d) n = 23 and t = 6. In this dimension there are at least two 6-design
lattices, namely the shorter Leech lattice Os3 and its even sublattice Aos.

(e) n =24, A is similar to the Leech lattice Aoy, and t < 10.



In fact all layers of the lattices in Theorem 1.3° are spherical t-designs.
This is trivial in case (a) and follows from [2, Corollary 3.1] for the remaining
cases except for case (d). For case (d) note that the automorphism group of
O3 and As3 is Cy x Clog and its first harmonic invariant has degree 8.

We also remark that it is still unknown, whether there are t-design-lattices
for t > 12. The only known 10-design lattices are the known extremal even
unimodular lattices of dimension a multiple of 24, namely the Leech lattice
Agy and the three unimodular lattices Pjygp, Pigy and Pys, of dimension 48
with minimum 6 (see [10]).

2 Some general remarks on antipodal ¢-designs.

In the following we assume that n > 2 to avoid trivialities. Let X C S™ ! be
a finite subset of the (n — 1)-dimensional unit-sphere such that X N —X = ().
For any even number ¢ = 2h, the condition that X U —X be a spherical
t-design is equivalent to the existence of some number ¢; such that for all

aecR”
(Dt)(a) : Y (x,0)" = | X| (o, )",
zeX
The constant ¢, is then uniquely determined and easily calculated by applying
t times the Laplace operator A with respect to « (see [14]) as

27—1
ct:H]% (where t = 2h).

Note that
A(Dt)(a) = (D(t - 2))(a) .
If we apply these equalities to the minimal vectors X U —X = Min(A) of

a t-design-lattice A and some minimal vector o € Min(A*) of the dual lattice
we get lower bounds on the Bergé-Martinet invariant

7(A)? i= y(A)7(A*) = min(A) min(A%)

of a t-design lattice as follows.
Since (z,a) € Z for all x € X and @ € A* and the product of ¢t — 1
consecutive integers is divisible by (t — 1)! we get that

1
(t— 1)

h—1
1_[((95,04)2 — %) € Zsp forallz € X, a0 € A*.
=0
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Summing over X and applying the equalities (Dt') for all even 0 < ' <t we
obtain Q(z) = | X |2 P, (z) for a polynomial P, ,(z) of degree h—1 = t/2—1
in z := (a, ) min(A). Note that

1
(-1

for all v € A* in particular P, ;(z) > 0 for z = min(A*) min(A) = ~/(A)2.
For small ¢, the polynomials P, ; are as follows:

T @ne((7,7) min(A)) € Zxo

Poa(z) =1

Poa(z) =252-1

P,s(z) = m 5n122 +4

P.s(2) = mrmirhmrs? — Wamiamn s + 495257 — 36

Remark 2.1 Let A be a 6-design lattice of dimensionn > 1. Then min(A) min(A*) >
”T“, hence A is not a strongly perfect lattice of minimal type in the sense of

[14, Définition 10.5],

Proof. Since A is strongly perfect, we have P, 4(min(A)min(A*)) > 0 and

hence min(A) min(A*) > 2 (see [14, Théoréme 10.4]). Assume that min(A) min(A*) =
222 Then (o, z) € {0, %1} for all @ € Min(A*), z € X since P, 4((z, z) (v, ) =

0 Hence %2 is also a zero of P, ¢(t) which implies that 5(n +2) = 3(n +4)

whence n = 1. O]

Continuing with an arbitrary antipodal t-design X U —X C S™~! where
t = 2h we may evaluate (Dt)({a + x ) for vectors «, § € R™ and arbitrary
&, x € R to find

D (@, ta+xB)" = al X[(EatxB, EatxB)" = il X|(€% (@, @) +2xE (o, B)+X* (B, B)".

rzeX

With the trinomial coefficient

A h!
i,j) " iljl(h—i— j)!

and comparing the coefficient at £y~ we find the equalities

Dy e0,8) : 3w, 0)f (@, ) = % > ()2 ear@syes

1
zeX 0} 2itj=r J

4



In particular if § is orthogonal to a then

e . ce| X
Dys—o(ar, 8) = 0if £ is odd and Dygy_o(c, 3) = E'Qh>|
20

Important for the classification of ¢-design lattices A are the sets

()t
)

Ni(a) :={z € Min(A) | (z, ) =i}
for a € A*.

Theorem 2.2 Let t = 2h and A be a t-design lattice. Let o € A* and
d € Z>o such that (a,x) € {0,£1,...,+(h — d)} for all x € Min(A). If
Ni_q(a) # O then the projection of Ny_4(a) to at is a spherical (2d + 1)-
design in R

Proof. Write Min(A) = X U —X and let

Nh,d(@) = {f =T —

(a,a)& |z € Np_g(a)}

denote the projection of N,_4(a) to at. For f € at and £ € {0,...,d} the
polynomial

h 1

fon-a(B) =) ﬁ (@) =)@, 0)* = Y (h=d)(2(h—d)=1)!(x, 5)*

zeX J=0 TENp _g(a)

Since Min(A) is a 2h-design and the degree of fy;_q is 2(h — d) + 20 < 2h
this sum is a constant multiple of (3, 3)*. Using the fact that (z, 3) = (7, )
for B € at we get forall 0 < ¢ < d

Y @B = e, 8)

TENp_q(a)
and
> @ptt=o
ZEN_q(a)
by (1). This shows that Nj_4(«) is a spherical (2d + 1)-design. O



Corollary 2.3 Let « satisfy the conditions of Theorem 2.2 with d = 0 and
put m := min(A).

(0) [Nn(@)| = 5755 Svex [0 (2 0)? =) = 5y S Py (o, ) m)
and the cardinalities of the other N;(«) are determined similarly.

Np(a)|h
(b) ZmGNh(a)x = | (’(lx(,a))‘ a.

Proof. (a) is clear and (b) follows since the projection of Ny («) is a 1-design
and hence the sum )~ (@) T = 0 which is equivalent to }_ .y, )T = ca
for some constant ¢ which is calculated by taking the scalar product with a.

O

3 6-design-lattices.

General assumption: Throughout the rest of the paper we assume that A is

a 6-design-lattice of dimension n, m := min(A) and choose X C Min(A) such

that X U—X = Min(A) and X N —X = (. Put s := |X| and r := min(A*).
Then A is a 6-design-lattice if and only if for all & € R”

6 3-bsm’ 5
(D6)(av) : ;(x, ) = T mrn >

Applying the Laplace operator to (D6)(«) one obtains
2

(D4)(a) : Z(x,a)4 = %(a,a}z and
(D2)(a): > (w,0)* = %(a,a).

Substituting a = 320 &a; in (D6) (resp. (D4) and (D2)) we find that
for all o, 8 € R™:

(D11) Y,ex(.a)(@,8) = 2(a,f)

(D13) Lyex(@a)(@,8)° = e2s(a, 8)(5, 0)

(D22) Yex(w,@)*(@,8)° = 55i5(2(a, B)° + (a,0)(8, 5)

(D15) Lyex(@0)@,0)° = 55t (8,8)° (e 6)

(D24) 3,cx(w,0)X(x, 8)* = 2 ((8, 8)% (@, @) + 4(a, B)2(8, 8))
(D33) 3 ,cx(@,0)(2,0)° = 2 (2(a, 8)° + 3(e, @) (8, B) (@, B))
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From Theorem 2.2 we find the following corollary.

Corollary 3.1 Let o € A* such that |(z,a)| <2 for all x € X. Then

2
(o, q)

No(a) :={T =2 — a|z € Ny(a)} cat =R™!

is a spherical 3-design. In particular |No(a)| > 2(n —1).
There is one special and important case, where equality follows.

Lemma 3.2 Assume that mr = 8. Then any o € Min(A*) satisfies the
conditions of Corollary 3.1,

|Na(a)] =2(n — 1) and n = dim(A) = 16.

Moreover Ny(a) = {x1, ..., Tpn_1,Y1,-- ., Yn—1} such that Fa = x;+y; for all
i=1,....n—1.

Proof. For z € Na(a) let 7 := 2 — 2~ € a*. Then for all z,y € Ny(a) we

(o)
get
_ m m xr = y
= _—— = 2
(.9) = (2.9) — 3 {SOx#y

since  and y are minimal vectors of a lattice. Hence Ny(«) is a set of vectors
of length % in an (n — 1)-dimensional space such that distinct vectors have

non-positive inner products. Therefore |Ny(a)| < 2(n — 1) (see [13, Lemma
2.10]). Using Corollary 3.1 we get |Ny(«)| = 2(n — 1) and again by [13,
Lemma 2.10] there is a partition of No(a) as claimed.

The only possibilities for n are 8 or 16, since n must be a zero of P, 4(8) =

(n+25)'(3n+4) 82 — (;’f2)8 + 4. Since vg = 2 the only possibility is that n = 1%

For n < 23 the Hermite constant ~, < 3.9 < 4. Therefore
min(A) min(A*) <12 < 16

and hence (z,a) € {0,£1,£2,£3} for all @ € Min(A*), x € Min(A). In
particular we get

smr 5-3m?r? 5-3mr
— — 4 7.
360n" +4) €

[Ns(e)l i)t d) (nt2)
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For n = 24 one knows by [9] that either A is the Leech lattice or min(A) min(A*) <
16 and hence Corollary 2.3 may also be applied in this situation (keeping in
mind that the Leech lattice Ayy is a 11-design-lattice).

As in [13, Lemma 2.4] one gets

Lemma 3.3 Let m := min(A), choose o € A* and put a = (o,«). If
am < 18 and |(z, )| < 3 for all x € Min(A), then

INy(a)] < ——"

18 —am’

Proof. Let N3(a) = {z1,..., 2} and ¢ := 25, Then D zeNg(a) T = ca. Also
(24, 7;) = m and (7, z;) < F because the z; are minimal vectors in A. Hence

k
k k—1 k+1
30:%:(xlaca):(%,l’l)‘i‘;_2(1‘17%') Sm—i-m( 5 ) = m 2+ )
which yields that k = |Nj(a)| < 2. O

Corollary 3.4 Ifa € A* with |(z,«)| < 3 for allz € Min(A), and |N3(«)| =
1 then m(a, ) = 9.

Proof. Let N3(a) = {z}. Then x = ca with ¢ = ﬁ In particular

4 Exclusion of most cases.

To perform the first computations we rescale the hypothetical 6-design-lattice
A such that m = min(A) = 1. Since A is a perfect lattice, we then get
r = min(A*) € Q is a rational number bounded from above by ~2. For
each n € {13,...,24} the known bounds on the maximal kissing number of
n-dimensional lattices as given in [1] yield a finite number of possibilities for
5. The number

dim (1) = 3 (e a) - )

zeX




is a positive integer bounded from above by %(% —1).

Going through all possibilities for s and a using the fact that r is a positive
rational solution of £-(-25 — 1) —a = 0 and that

n+2
sr 3sr? 3 5srd
—, ———, and
n’ n(n+2) n(n+2)(n+4)
as well as
ST 5-3r2 5-3r

( - +4)

360n"(n+2)(n+4) (n+2)

are all non-negative integers together with the bounds in [13, Lemma 2.4],
Lemma 3.3, Corollary 3.1, Corollary 3.4 and Lemma 3.2 and also the bounds
on v, given by [8] and the fact that the Leech lattice is the unique 24-
dimensional lattice L with min(L) min(L*) = 16 we find the following theo-
rem.

Theorem 4.1 Let A be a 6-design-lattice of dimension n with 13 < n < 24.
Then

(n,s,mr) = (dim(A), %| Min(A)|, min(A) min(A*))

are one of the following triples:

In case (f), the lattice A is the Leech lattice by [9].

Lemma 4.2 Case (e) of Theorem 4.1 is impossible.



Proof. Let A be a 6-design-lattice of dimension 24 rescaled such that min(A) =
2. Assume that A satisfies the condition (e) of Theorem 4.1 and let a € A*.
Then (D6) implies that

Z(m,a)G = 3°5%*(a, a)?

zeX

in particular (o, ) € Z. Moreover for a, 3 € A* we get

> (@, 0)*(x, 8)° = 3%5(3(cv, ) (B, B) (v, B) + 2(ev, B)°)

zeX

which shows that I' := A* is an integral lattice with minimum min(I") = 6
and min(I™) = 2. Fix some a € Min(I") and choose X such that (z,a) > 0
forall z € X. Then X = XoUX;UXoUX; with X; :={zx € X | (z,a) =i}.
By Corollary 2.3 X3 = {x3,y3} with (x3,y3) = 1 and z3 + y3 = o. Equalities
(D2), (D4) and (D6) yield that | X| = 513 and | X, | = 14310. For all 25 € X,
we have 2 = (22, @) = (22, x3) + (22,y3) and therefore (2, z3) = (22,y3) =1
since both scalar products are < 1. The equalities (D22) and (D24) for z;
and « read as

Yovex (@ x3)?(z,0)? =S +45 +9(4+1) =2-3-5-7(2-9+6-2) = 6300
S (232 (z,0)' =S+ 16, +81(4+ 1) =325(622+4-9 - 6) = 12960

where

Sy = Z (z,23)* and Sy := Z (z,x3)°.

zeX1 z€Xo

This system has the unique solution
S1 = 4155, Sy =525

contradicting the fact that Sy = | X,| = 513. O

5 Dimension 16
In this section we deal with the first case in Theorem 4.1. We show

Theorem 5.1 Let A be a 6-design lattice of dimension 16. Then A is similar
to the Barnes-Wall lattice.
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Proof. Rescale A such that min(A) = 2 and let I' := A*. Then by Theorem
4.1
s(A) = 2160, min(I") =4 .

From Equation (D6) we find that
Z(a:, a)® = 3%5(a, a)?
zeX

hence (o, ) € Z for all « € I'. Moreover

1
120

zeX

(z,0)*((z,a)*~1)((z,a)*—4) = Elo(DG(oz)—5D4(oz)+4D2(oz)) €z

for all a € I' yields

g(a,a)((a,a) —4H((a,) —6) €Z

for all o € I, hence I' is an even lattice.
Now we fix a € I with (o, @) = 4. By Lemma 3.2 we find that

L := (Ny(), ) = Dy

is the root lattice Di5. Moreover we have L < A and I' = A* < L*. Since I
is an even lattice, we even get that I' < M, where M is the unique maximal
even sublattice of L*, M is isometric to the even unimodular lattice D,

We now want to show that 2L C I'. Since A is generated by X, it suffices
to show that

(2, 8) € {o,i%,ﬂ,ﬂ}

for all z € X and § € Ny(«). Fix some § € Ny(«w). Then a = g+ 3 for
some 3 € Ny(a) and (B,z) = 1 for all x € Ny(a) — {3,5'}. Choose X
such that (z,«) > 0 for all z € X and (z,0) > 0 for all z € Ny(a). Since
we know the scalar products of 5 with all elements of Ny(«) the equalities
(D11),(D22),(D13),(D24), (D15) applied to « and [ yield

ST =3 en (@ 8) =480
S2 = ZIGNl(a)(x,ﬁ)Q = 352
S3 = ZreNl(a)(x,ﬁ)g = 288
S4 = erNl(a)(x,ﬁ)‘L = 256
S5 = Y sen (@ B)° =240



Since 3 and [’ are shortest vectors of A, and (z,8+ ') = (z,a) =1 for all
x € Ni(a), we get

0<(z,0) <1forall z € Niy(a) .

In particular

(2, 8)((, B) — %)2((3:,5) “1)2 >0 for all 2 € Ny(a).

Summing over all z € N;(«) we find

13 3 1
S5 —354+ —53—=52+-S51=0.
+7 25 + 45 0
Hence (z,5) € {0,1/2,1} for all x € Ni(a). We also obtain the exact
cardinalities m; := [{x € Ni(a) | (z, ) =i}| as

mo = 224, myp = 512,my = 224 .

We now consider the elements in X, := {z € X | (z,a) = 0}. Explicit
calculations show that Yy := Xy N L contains 210 elements, 28 of which have
scalar product 1 with (3, the remaining 182 are perpendicular to 3. Let
Zy = Xy — Y. From equalities (D2), (D4), (D6) applied to § (using the fact
that we know the inner products (3, z) for all x € X — Z;;) we obtain

12 erZo( B)? =128
T4 erzo(x gt = 32
T6 ZxGZo( )

The square (z,8)*((x, 3)* — 1/4)? is non-negative for all z € Z;. Summing
up we obtain

1 1
> (@, 8) (@ B = 1/4) = T6 = T4+ T2 =0
xEZy
which shows that (x, 3) € {0,£1/2} for all x € Z,,.
Therefore

2M c2LcT C M= Dfy.

Starting with Ny := M, we now successively calculate the Aut(N;)-orbits on
the sublattices N, of index 2 in IV;. In each step there is a unique orbit of
sublattices N;;1 such that the minimum of the dual lattice is min(N/, ;) > 2
(for 0 < ¢ < 3). The unique lattice with minimum 4 is Ny = BWg. O
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6 Dimension 23
From the classification of tight 7-designs in [7] we see

Theorem 6.1 Let A be a 6-design lattice of dimension 23. Then s(A) >
2300 and if s(A) = 2300 then A is similar to Oag.

To finish the proof of Theorem 1.3 it remains to show that any 6-design
lattice A of dimension 23 is not an 8-design lattice. If A satisfies case (b)
of Theorem 4.1, then the minimal vectors of A form a tight 7-design and
hence cannot be an 8-design. In the other two cases ((c) and (d) of Theorem
4.1) v'(A)?* € {12,15} and hence Py34(7'(A)?) = 0 so (z,a) € {0,+1,£2}
for all x € Min(A) and o € Min(A*). If Min(A) is an 8-design, then also
Py35(7/(A)?) = 0. But this polynomial has no rational roots. This finishes
the proof of Theorem 1.3.
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