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Block Squares
By CrAuUDIA GOHLISCH of Berlin, HELMUT KOCH of Berlin, and GABRIELE NEBE of Ulm

(Received xxx; revised version yyy; accepted zzz)

Abstract. A block square is a certain 1-block design. We show that there are exactly two block
squares in which each block consists of 5 elements and each element is contained in 6 blocks.

1. Introduction

The notion of block squares arose in connection of a better understanding of a
mathematical structure which was called combinatorial magic square in [1]. This
structure had its origin in a study of extremal codes of length 48, see [1] for details.

A Dblock square is a finite geometrical structure whose points are the blocks of a
1-block design. (See e.g. [1, p. 88] for the notion of 1-design.) At least for small pa-
rameters block squares are rare phenomena. Let A be the number of blocks containing
a fixed element of the base set S. From our axioms in Section 2 follows A = 0 (mod
2) and A > 4. For A = 4 block squares exist if and only if the cardinality k¥ of the
blocks is of the form k = 28 — 1, 4 = 2,3,... and for given i such block squares are
unique up to equivalence (Section 3). If A = 6 then k must be greater or equal to 5.
The magic squares of [1] appear for A = 6 and k = 5. The main result of the paper at
hand consists in showing that up to equivalence there are exactly two block squares
with A = 6 and k = 5 (see Table 2 and Table 3). A block square with A =6 and k=5
consists of 36 blocks which are arranged in 6 rows of 6 blocks. They are the subject
of conditions described in Definition 2.3. We study block squares by considering first
pairs of lines. One finds that there are up to equivalence 41 pairs of lines. Then we
use a computer program to show that only 5 of these pairs lead to block squares.
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2. Block Squares

2.1. Block Lines

Definition 2.1. A 1-block design £ with base set R is called a block line if the
following two conditions are satisfied:

a) |AN B| =1 for any pair A, B € £ with A # B.

b) Any a € R is contained in two and only two blocks of L.

The following proposition is an immediate consequence of the definition above.

Proposition 2.2. Let k be the cardinality of the blocks of a block line L. Then L
consists of k + 1 blocks and |R| = (1/2)(k + 1)k. The block line L is up to equivalence
uniquely determined by k. There exists a block line for any k > 1.

We call £+ 1 the size of the line £. Now, let M be any finite set. A line of size k+1
in M is a block line (£,S) with S C M and |£| =k + 1.

2.2. Definition of Block Squares
Let D be a 1-block design with base set S. A block line in D is a subsystem £ of D

with base set R C S such that £ is a block line in the sense of Definition 2.1.

Definition 2.3. A 1-block design D is called a block square if the following condi-
tions are satisfied:

a) |AnB| € {0,1,2} for any pair A, B € D with A # B.

b) For any pair A, B € D with |A N B| = 1 there is one and only one block line £
in D with A, B € L. The block line containing A and B will be denoted by AB.

c¢) For any A € D there are three and only three block lines containing A.

d) Let £ be a block line of D and A € D — L. Then there are two and only two
blocks B,C in £ such that [ANB|=|ANC| = 1.

Proposition 2.4. Let £ be a block line of D and A € D — L. Then there is one
and only one block line L' such that A€ L' and LN L' = ).

Proof. By d) and b) we have block lines AB and AC with B,C € £ which are
different since otherwise by b) AB = AC = BC = L. Hence by c) there is one and
only one further block line £’ through A, and £’ has no block in common with £. O

We call £ the parallel line to £ through A.

Proposition 2.5. Let L1, Ly be block lines with £1 N Ly = {A}.
Let B,C € L1 — {A}, B # C and let Lp resp. Lo be the parallel to Lo through B
resp. C. Then Lp N L = ().
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Proof. Assume that Lg N Lo is not empty and D € Lg N Le. Then L = Lo
by Proposition 2.4. This implies Lp = Lo = BC = L, in contradiction to the
assumptions of Proposition 2.5. O

Proposition 2.6. Let £ be a block line and let {L;|i € I} be the system of all block

lines parallel to L (including L£). Then |J L; =D and |I| = |L].
i€l

Proof. |J £; = D follows immediately from Proposition 2.4. Let £’ be an arbitrary

iel
block line which is not parallel to £. Then £’ is not parallel to any £; by Proposition
2.5. Hence £'NL; = {A,}, L= {Az|7, € I}. O

The set of all block lines of D splits in three classes R, Rs, R3 of parallel lines. We
fix R;, 8; with ¢ # j. Then any A € D lies in one and only one line of £; and of &;.
This explains the name block square.

Let a be a fixed element in the base set S of D. If a appears in a block line £ of D
then a appears exactly in two blocks of £. This implies that the number A of blocks
of D containing a is even and greater or equal to 4.

2.3. The Connection with Binary Codes

Let (S, D) be a block square, let T be the set of lines of (S,D) and let &1, Ra, K3
be the three classes of parallel lines.

We consider the disjoint union of S and T as the set of places of a binary code
C(D) c F5°T with generating code words which are defined as follows:

We consider the words of C(D) as subsets of SUT. To w € F5“T corresponds the
subset of places a of SUT with w(a) = 1.

Define

1:=SUT, w;; =K UK, for {i,j}C{1,2,3},i#J.

For any B € D we have a wp € C(D):

wp = BUR; — {£1 U L2 U L3},

where £; is the line in &; through B.

Then C(D) is generated by 1, w;;, (i # j € {1,2,3}) and wg(B € D).

In the case A = 6, k = 5 one has |SUT| = 48. The two nonequivalent block squares
(S, D) of Table 2 and 3 lead to self-dual doubly even codes C(D) of minimal weight 8.
Note that an extremal self-dual doubly even code of length 48 has minimal weight 12.

2.4. The Case A\ =4

In this section we consider first the case A = 4.

Let Ay, Ay, Az, A4 be the four blocks containing a fixed element a of S. Then axiom
c) implies |[A; N A;| = 1for ¢,j € {1,2,3,4}, 4 # j. It follows |A N B| € {0,1} for all
A, BeD, A#B.
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Proposition 2.7. A block square with A = 4 exists if and only if the cardinality k
of the blocks has the form k =2' — 1,4 =2,3,4,..., and the block square for given k
of this form is unique up to equivalence.

Proof. We construct block squares D; with k¥ = 2! — 1 with a fixed order of the
classes R1;, Rai, R3; of parallel lines of D; by induction over 4.
We begin with ¢ = ]., Sl = {6}, AOO = A01 = A10 = A11 = {6},

Dy = {Aoo,Ao1, Ar0,A11},
A1 = {Aoodor, AoAur},
fo1 = {AooAio, Ao1 A},
R = {AooAi1, Ao1 Ao}

We consider Agg, Ag1, A10, A11 as four distinct points which are identical as sets. Dy
is of course not a block square, but it serves as first step of our induction procedure.

Now assume that D; is already constructed for a certain 7 and has base set S;.

The blocks of D;;1 will be denoted by (A)eo, (A)o1, (A)10, (A)11 for A € D;. The
base set S;11 of D;41 is the union of two disjoint sets

{(@)vula € Si,v,p € {0,1}}
and
{aaB|A,B€D;,|ANB| =1,AB € Rs;} U{aa4|A € D;}.

The sets (A),, are defined as follows:

(A)oo {(a)oo|la € A} U {aap|B € D;, AB € R3;} U{aaa},
(A)or = {(a)oi|la € A} U {acp|CA € R1;, DA € Ra;} U{aaa},
(A)1o = {(a)wo]la € A} U{acp|CA € Ra;, DA € R1;} U {aana},
(A1 = {(a)urla € A}U{apa|B € D;, AB € f3;} U{aaa}

With this definition it is easy to see that D;;, is a block square. The order of & ;1,
R2,i+1, R3,i+1 is defined as the order corresponding to £i 4, R2,i, K3,i-

The block square D looks as follows:

(€)oo
QAo Ago> BAgo A1

(€)oo
QAp1 A1) QA1 Arg

(e)o

QAo Agor BAg1 Asg

(e)or

QAp1Ag1y) AAgo A1

(€)oo
AA10A10) @A10A0L

(€)oo
QA11A119 QA1 Ago

(e)ot

QA10A105 @A11 Ago

(e)or

QA11A1179QA10A01

()10

QAgoAge) @A10A01

(e)10

QAg1Ag1)QA11 Ago

(€)1

QAgoAgor @A11 Ago

(e)11

QAp1Agry) AA19A0L

(e)10
AA19A10) CAgo AL

(e)10

aAllAll J aAOl AlO

(e)11

AA19A105 @Ag1 A1o

(e)11

aAllAll 2 aAOOAll

Table 1
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The uniqueness and non-existence statement of Proposition 2.7 can be proved by
induction, too. If 28 — 1 < k < 2¢t! — 1 and D is a block square with base set S,
r = 4 and block cardinality k, one finds in D a subsquare D'; C D such that the
elements of S which appear in D’; in four blocks are the base set S}’ for a block square
D";:={ANS"|A € D';}. Then D"; is equivalent to D; by induction. Furthermore,
D"; can be continued to D only if k£ = 2t —1 and in a unique way up to equivalence.
O

2.5. The Case A =6

Let D be a block square with A = 6. Since A divides k(k + 1)? the smallest possible
values for k are k = 2,3,5. It is easily to be seen that the case k = 2 is impossible. In
Section 3.6 we show that k = 3 is impossible as well.

Our main result concerns the case k = 5. We prove the following

Theorem 2.8. Up to equivalence there are exactly two block squares with A = 6
and k = 5. With the base set S = {1,2,...,30} these block squares have the following
form

1,3, 2,5 2,3, 48, 14, 6,10,
6,7,8 7,9,10 11,12,13 | 9,11,14 | 5,12,15 | 13,14,15
14, 2,3, 3,6, 2.4, 5,18, 1,6,
16,17,18 | 16,19,20 | 17,21,22 | 5,21,23 | 19,22,24 | 20,23,24
4.6, 9,16, 6,13, 1421, | 4,13, 10,19,
9,10,21 | 25,26,27 | 20,25,28 | 26,28,29 | 14,16,19 | 20,27,29
710, 10,15, | 2,17, 2,7, 14,15 11,14,
18,22,29 | 20,25,30 | 18,20,23 | 11,25,26 | 17,22,26 | 23,29,30
3,16, 3,7, 12,21, 7,8, 1,16, 1,8,
21,2729 | 12,1526 | 23,28,30 | 23,24,29 | 24,26,28 | 15,27,30
8,9, 5,12, 11,18, | 5,9, 12,13, | 8,11
17,22,27 | 19,27,30 | 22,25,30 | 24,25,28 | 17,18,28 | 13,19,24
Table 2
1,3, 1,2, 2,3, 4,7, 5,8, 6,9,
45,6 7,8,9 10,11,12 | 10,13,14 | 11,13,15 | 12,14,15
1,2, 2,3, 1,3, 4.6, 45, 5.6,
16,17,18 | 19,20,21 | 22,2324 | 16,19,22 | 17,20,23 | 18,21,24
2,3, 1,3, 1,2, 13,22, | 15,22 14,23,
25,26,27 | 13,14,15 | 28,29,30 | 24,2528 | 23,26,29 | 24,27.30
4,7, 9,15, 10,17 7,19, 4,10, 11,15,
9,17,26 | 21,28,29 | 18,24,28 | 21,24,27 | 11,19,29 | 18,26,27
5,7, 7,14, 11,16 12,14, 8,19, 5,11
8,18,27 | 19,29,30 | 18,22,29 | 16,25,27 | 20,22,25 | 12,20,30
6,8, 8,13, 12,16, 6,10, 10,13, 9,20

9,16,25 | 20,28,30 | 17,23,30 | 12,21,28 | 17,25,26 | 21,23,26

Table 3
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The classification has been accomplished by the following method which led us to
the block squares of Table 2 and 3: One fixes two classes K;, K2 of parallels. The lines
of R; are called rows and the lines of K, are called columns. We consider two rows
L1, Ls. The blocks of the rows in the same column have one element in common. For
the six columns we get six elements a;,...,as. Each a1,...,as appears a second time
in £ and L. The blocks of £; and of £, have no other element of S in common.
Hence the lines £1, L5 are given up to equivalence by a two-coloured directed graph T’
with 6 vertices aq,...,as and 6 edges for both colours. By definition there is an edge
from a; to a; if a; stands in the block given by a; of £1 resp. L». The axioms for
block squares imply several conditions restricting the possibilities for T'.

Starting from £y, L, given by some I one tries to complete the two lines to a block
square.

In the next chapter we describe the procedure leading from two parallel lines to
two-coloured directed graphs in detail. In Chapter 4 we give the classification of
these graphs and in Chapter 5 we describe the computer program which has the block
squares of Table 2 and 3 as its result.

3. Two Parallel Lines

In this section we investigate pairs of parallel lines in a block square with A = 6.
We formulate conditions which such pairs have to satisfy and call two parallels which
satisfy those conditions admissible. We then give the full classification of admissible
parallel lines in the case k = 5.

3.1. Admissible Pairs of Lines in Block Squares

Let £, and £, be two parallel lines of the block square (M, B). Furthermore, let
R be the system of parallels belonging to £, and let £; and K2 be the other systems
(Section 2.2).

If £ € R, then LN L, = {B,}, and one has a one-to-one mapping of £ onto L,
given by £ — B,. Correspondingly £LN L, = {B,} determines a one-to-one mapping
of &1 onto £,. Furthermore,

B, NBy ={a}, a€ M.

We call a = a(L) the characteristic element of (£, L,y) with respect to L.

Proposition 3.1. The map o from K into M given by L — a(L) is injective.

Proof . Suppose L1,Ls € Ry, L1 # L2, and a = a(L1) = a(L2). This contradicts
the distribution of the blocks B of B with a € B. In fact, beside the four such blocks
in the rows £, and £, we have two further blocks B, B containing a. Since B; and
B, belong to a parallel line of £,., it follows that in the line of £ through B; there is
no other block containing a in contradiction to the axioms of block squares. O
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Let C be the image of a. Proposition 3.1 shows that we have one-to-one maps «,
and a4 from £, and £, onto C given by

LNL, =0 (L), LNLy = ayg(L).
In the following we put

B :=a:'(a), B! :=a '(a) for a € C.

Proposition 3.2.
BinNBj CcC for a,beC.

Proof . Suppose s € BL N By with s € M — C. Then s appears twice in blocks of
L, and of £,. This contradicts the distribution of blocks B with s € B. The situation
is illustrated in the following example with k = 5 and C' = {1,2,3,4,5,6}. We write
the blocks of £, as boxes in a first row and the blocks of £, as boxes in a second row
such that the boxes belonging to the same a € C form the columns of the rectangle:

1,s[2,5]3 |4 [5]6
1 |2 [3s|4s|5]|6

O

Proposition 3.3. There are permutations © and € of C such that w(c) # ¢ for
ceC and

(3.1) BN Bfr(c) = {g(c)} for c€ C.

If ¢,d are such elements of C that d & {c,n(c)}, then BL N BY has cardinality 0 or 2.
Proof. m(c) is given by the line £ in K2 containing B?:

(3.2) {BS ) =LNL,.

By Definition 2.1 we have ¢ # n(c) and |(B; N B} )| = 1. Proposition 3.2 shows
that the unique element in B, N BY () 18I0 C. Now considering Proposition 3.1 for R,
instead of K we see that £ defined by equation 3.1 as well as 7 is a permutation of C'.

O
If we make the construction above for K, instead of K we get mappings of £, resp.
L, onto C, which we denote by 3, resp. fq.
We put
Dy = f;'(a), D§:=p;"(a).

For £ € R, with LN L, = {Bl} we have LN L, = {Bfr(c)}. Hence equation 3.1 shows
that

ﬂ,.(BZ) = E(C), /Bg(B;qr(c)) = E(C)a



10 Math. Nachr. xxx (2001)

therefore

(33) Dg = B(:‘-_l(a)’ D‘q = Bg

a we—1(a)"

Example. We use the notation of the example in the proof of Proposition 3.2:

1,345 1216324 5 |6
1 2 3 | 4,16 | 5462235

(3.4)

We put in the boxes only the elements which are common in £, and £, i.e. the
elements of C'. To get the full blocks of £, and £, one has to add 9 elements in £,
and in £,. We denote them by 7,8,...,15; 16,17,...,24. Then we get

1,3,4,5,7 2,1,6,8,9 3,2,10,11,12 | 4,8,10,13,14 | 5,9,11,13,15 | 6,7,12,14,15
1 2 3 41,6 5,4 6,2,3,5
16,17,18,19 | 16,20,21,22 | 17,20,23,24 | 21,23 18,22,24 19

[1,2,3,4,5,6 (1,2,3,4,5,6
T=\3,1,2,5,6,4)7 °7\3,1,2,4,5,6

3.2. Definition of Admissible Pairs of Lines

One finds easily

Now we consider pairs of parallel lines (£,, £,) in a more abstract manner.

Let M be a finite set and C a subset of M of cardinality I. Let (£,,S,) and (£, Sy)
be lines in M of size | with C C S,, C' C S,.

Then a pair of lines L, L, associated to C is a pair of one-to-one mappings

o Lr = C, ay: Ly = C.

The block corresponding to ¢ € C in L, resp. £, will be denoted by B resp. BY.
Such a pair (C(L,, L)) is called admissible if the following conditions are fulfilled:

a) BiNBY ={c} for ce C.

b) There are permutations 7 and € of C such that w(c) # ¢ for ¢ € C and B N
Bfr(c) = {e(c)} for c € C.

¢) Let ¢,d € C such that d ¢ {c,7(c)}, then BL N BY is contained in C and its
cardinality is 0 or 2.

Two pairs (ar, ag) and (a;,, ay) for the same basis set M are called equivalent if there
is a permutation ¢ of M such that C' = ¢(C), L', = ¢(L;), L3 = ©(Ly), pa, = alp.

Since the blocks of £, and £, have no elements in common beside elements of C
the pairs (a;,ay) and (a;., ) are equivalent if and only if the intersections with C'
are mapped by ¢ onto the intersections with C'. Therefore we have to consider only
these intersections and we will do this in the following.
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Proposition 3.4. Let £, and L, be two parallel lines of a block square, let C be
the set of characteristic elements of (L., L,) with respect to R, and let o,y be the
maps introduced after Proposition 3.2. Then (a,,ay) is an admissible pair of lines
associated to C.

Proof . This follows from Proposition 3.3. |

Let ¢ = (a,,ay) be an admissible pair of lines associated to C' with lines £, and £,.
We associate to ¢ the reciprocal pair ¢, and the dual pair ¢*.

¢« is the pair (o, ) associated to C' with maps a4 and .. Hence, in the reciprocal
pair, only the roles of £y, £, are interchanged.

¢* is the pair (3,,3,) associated to C' with the maps f,, 3, given by

B.(BL) = (c), By(BY) = (o).

It follows immediately from the axioms of pairs that ¢* is admissible.

Proposition 3.5. Let ¢ be an admissible pair of lines L, Ly associated to C. Then
(9)™ = (¢7)s

Proof . This follows from the fact that in the definition of ¢* the lines £, and L,
play a reciprocal role. O

If we consider a set of two parallel lines in a block square, then we associate to it
three admissible pairs ¢, ¢, and ¢* on equal rights.

3.3. The Graph Associated to Admissible Pairs

Let (o, ag) be an admissible pair of lines £, £, associated to C' as defined in Section
3.2. We are going to express such pairs by a doubly coloured directed graph I'. The
advantage is that one can see of two such graphs easily whether they are equivalent
or not.

The vertices of I are the elements of C. From every point € C there goes one red

resp. one green edge to a point " resp. 9 of C, both 2" and x¢ are distinct from z
and they are defined as follows:
By the definition of lines there is beside Bj, exactly one second block B in £, resp. £,
such that z € B. Then 2" is the uniquely determined element of C such that B = B_..
The red edge from x then goes to " and will be denoted by zz”. The green edge from
z is defined correspondingly starting with BZ and it determines the second block of
L, containing .

From this definition and from what was said with respect to the equivalence of
admissible pairs it is immediately clear that the graph I' determines the admissible
pair and that equivalence of graphs corresponds to the equivalence of admissible pairs.

As an example we give the graph of the pair (3.4) in the example in Section 3.2. We
write the red edges as solid arrows and the green edges as dashed arrows. For technical
reasons, the appearance of the dashed arrows that are not straight lines differs from
the one of the other dashed arrows. The reader should note, that all the curved arrows
that occur in this paper are dashed (i.e. green) ones.
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3.4. The Local Structure of the Graph

In this section we study the structure of the graph of an admissible pair at a vertex x
and at neighbouring vertices with respect to outgoing and incoming edges. We denote
the number of red resp. green edges going to = with i,(x) resp. i,(z).

Proposition 3.6. If y" =z, then y? # x and x" # y.

Proof. Let y" = z. Hence BL D {z,y}. Then y9 = z means BJ D {x,y} and
z" = y means By D {z,y}. Both are impossible by the definition of admissible pairs
of lines. m|

Proposition 3.7. If i,(z) = 0, then iz(x) > 0.

Proof. i,(z) = 0 and i,(z) = 0 means
BINC ={z}, BINC = {z}.
It follows
ByN B}, ={z}, Biu NB;={z},
hence

z = ¢g(z) = e(n(x)), contradiction.

Proposition 3.8. Let i,.(x) =0. Then i,(z") > 2.

Proof. We have B, N B? ) = {z} hence w(z) = 29. Furthermore z € B, N BY,

w(z

x € Bl. N Bi(m), and z # " implies
|B;- N BY| >2, |ByNBL,l>2

But z” can not be in BN BY (z)- Hence beside z and z” there must be a third element
of C in BZ,. O

Proposition 3.9. Let i"(x) =1 and y" = x. Then 29 =y, w(x) =y?, e(x) =y
oraf =y?, w(x) =¢e(x) =y
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(3.5) Y= ©

Proof. By NC = {z,y} by assumption. If z € By, then 7(z) # y and = ¢ B?
hence B? N BY

w(x)
n@) =y =¢(z). lf o ¢ Bf, then By N Bj = {y}. Hence y = m(x)
g(z) and |BL N

BJ,| > 2. This implies y € BY,. O
Proposition 3.10. Let i"(z) = 2 and let y,z be the vertices with y™ = 2" = x.
Then one has the following possibilities:

a) 29 =y, y! =2, 29 =n(x), e(x) ==z,

(3.7) F=0<—=0

Q) a8 =y0 # 2, 29 =y, (x) =

Ve
s

7

- ‘|‘
|

e |

(3.8) @L@@

Proof. B;NC = {z,y,2} by assumption. If 29 =y, then B D {z,y} hence
m(z) #y. fn(x) =z, then BINBY = {2}, y ¢ BY. Hence y? ¢ {z,y, z}. Furthermore
y € B, N By, implies |B; N By,| = 2, hence z € Bj,. We are in the situation of b).

If 7(z) # 2, then |BL N BY| = 2, therefore y € BY and B, N Bfr(w) = {z}. We are in
the situation of a).
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Since the case 9 = z is the same as 29 = y by symmetry it remains the case that
z9 ¢ {y,z}. Then z & B), z ¢ B, but |B; N BJ| > 1, |B; N Bf| > 1. Without loss of
generality, let | By N BY| = 2. then z € BJ and By N BY = {z}, hence z = 7(z) = £(z).
Furthermore, |B. N BY,| = 2 and therefore y € BY,. We are in the situation of ¢). O

3.5. Omne-Coloured Graphs

In this section we consider admissible one-coloured graphs, i.e. the graphs I',. with
vertices « and edges za”,x € C, associated to a pair (o, o). Beside Proposition 3.8
we have the following restriction for the structure of such graphs:

Proposition 3.11. Let z,y,z € C with z = 2" = y", ir(z) = ir(y) = 0. Then
in(2) > 3.

Proof. Suppose B, NC = {z,y,z}. Then

BiNBY, ={z},B;nBY  ={y}, BinBY, = {z}.

Hence 7(z) ¢ {z,y} and therefore
|B;NBy| =2, |B;NBj|=2.
Since z € BY, z € Bfr(z), one has z ¢ BY, z ¢ By and therefore
y € B, x € By, BJNBJ D {z,y}

in contradiction to the definition of L,. O

The restrictions to one-coloured graphs given by Propositions 3.8 and 3.11 lead for
small k£ to a small number of possibilities which we list in the following:

We call a directed graph to be of type A™, if it consists of an m-gon and simple
ends: If z1,...,z,, are the vertices of the m-gon, then a simple end is an z € C with
x#xzi,i=1,...,m, and ¢.(z) = 0.

For the two smallest possible values of k, i.e. k =3, kK = 5 all connected admissible
one-coloured graphs are of type A™, m = 3,4,...,k+ 1.

For k = 6 one has one exception:

O

o()a o<§

3.6 The Case k=3

In this section we prove the non-existence of block squares with £ = 3 and A = 6.
In this case we have two possibilities for I'":
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and

Corresponding to the rules in Section 3.4, A% can be completed to a two-coloured
graph as follows:

The edge from 2 has to go to 1 because by Proposition 3.7 there is an edge going to
1, and if there is an edge from 3 or 4 to 1 then there is also an edge from 2 to 1 by
Proposition 3.6.

The remaining possibilities are as follows:

(3.10)

(3.11)

By symmetry of I'" and T'Y we have for the completion of I'" of type A* only to look
for T'9 of type A*. Hence there is only one two-coloured graph

(3.12)
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Now we show that the four two-coloured graphs do not lead to block squares. We
denote the elements of the basis set by {1,2,...,8} and the block in the i-th row and
j-th column by B;;. To (3.9) correspond the lines

156 | 214 | 325 | 436
127 | 238 | 314 | 478

Without loss of generality we assume that 1 is in the third line, i.e. 1 € B3z, 1 € Bzss.
Then 4 has to be in the fourth line, i.e. 4 € Byy,4 € B43.-We cannot have 8 €
B33 N B,z because we have also an 8 in the second column. This implies 8 € B3 N By;.
Correspondingly 5 € B34 N Byy.

Now we consider the case 8 € Bsa. Our block square looks as follows:

156 | 214 | 325 | 436
127 | 238 | 314 | 478
8 18 |1 )
8 4 4 )

It follows 8 € B44, 3 € B42, 3 € 334, 6 € B44, 6 € B31, 7€ B34, 7 € By;.

Now we see that 5 or 6 has to be in By;. this is impossible because of Byy = {5, 6, 8}.
The case 8 € B4y can be treated in the same manner.

To (3.10) correspond the lines

156 | 214 | 325 | 436
127 | 238 | 347 | 418

We may assume 1 € B3y N B3y, then 3 € Bys N Byy, 4 € Byy, 4 € B3z, 7 € Bys,
7€ B31,2€ By1,2€ B33, 5€ Bys, 5€ B31,6 € By1, 6 € B3y, 8 € Byy, 8 € Bas.

156 | 214 | 325 | 436
127 | 238 | 347 | 418
75| 18| 42| 16
26 | 34| 75| 38

5 cannot be placed in the fourth columns because in that case we would have By; =
B3y, hence 5 € B3y N Byo. It follows 7 € B3y N By4, 6 € B3z N B3y, 8 € B3y N Byy.

156 | 214 | 325 | 436
127 | 238 | 347 | 418
758 | 185 | 426 | 167
268 | 345 | 756 | 387

Comparing the first and third line, we see that our square does not satisfy the rules
of a block square

To (3.11) correspond the lines
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156 | 214 | 325 | 436
123 | 278 | 347 | 418
17 4 1
84 7 8

Now, we consider the case 2 € B3;. Then 2 € B4z, 3 € B4y, 3 € B3y, 6 € Byy,
6 € Bs1, 5 € By, 5 € B33. We get the square

156 | 214 | 325 | 436
123 | 278 | 347 | 418
26 | 17| 45| 13
35| 84| 72| 86

5 cannot be in the second column because then we would have 7 in the fourth column
and |BlgﬂB24| = |BlgﬂB44| = 1. Hence 5 € B34ﬂB44, 6 € BgzﬂB42, 7 € B3 ﬂB41,
8 € B33 n B43.

156 | 214 | 325 | 436
123 | 278 | 347 | 418
267 | 176 | 458 | 135
357 | 846 | 728 | 865

This is not a block square because of |Bis N B3| = |Bia N Bss| = 1. In the case
2 € By we get

156 | 214 | 325 | 436
123 | 278 | 347 | 418
358 | 175 | 426 | 167
268 | 845 | 756 | 837

This is not a block square because of |Byj2 N Byy| = |B1z N Ba2| = 1.
It remains the case (3.12). The corresponding two lines are

145 | 216 | 325 | 436
127 | 238 | 347 | 418

We may assume 1 € B3y N By, then 3 € Bys N Byy, 8 € B3a N Byy, 6 € By N Bay.

The permutation (13)(24) permutes the corresponding columns. Therefore, we may
assume without loss of generality 8 € B3y N By, 6 € B33 N Bsg. Our square looks now
as follows

145 | 216 | 325 | 436
127 | 238 | 347 | 418
8| 18 6| 16
8| 63 6| 8

The permutation (13)(68)(57) permute the first and third column but leaves the
second and fourth line unchanged. It permutes the first row with the second and the
third row with the fourth. Hence we may put 5 € B3y N B4, 7 € B3y N Bys.
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Now there is only one possibility to complete the third and fourth row.

145 | 216 | 325 | 436
127 | 238 | 347 | 418
825 | 187 | 672 | 165
874 | 637 | 645 | 835

But this is not a block square since we have through B, the fourth line By; B3 B2 Bas.
Hence we have proved the following

Proposition 3.12. There is no block square with parameters k = 3 and \ = 6.

Still the square which we get by permuting the second and third columns could
be considered as a combinatorial magic square since all rows and columns and both
diagonals are lines:

145 | 325 | 216 | 436
127 | 347 | 238 | 418
825 | 627 | 178 | 165
847 | 645 | 637 | 835

(3.13)

For the understanding of the rather easy combinatorial structure of the design (15)
we notice that the blocks contain all pairs of elements in {1,2,...,8} beside the pairs

(3.14) {1,3}, {2,4}, {5,7}, {6,8}

and that the Boolean algebra generated by the blocks of (15) contain four one element
sets: {2}, {3}, {5}, {8}. Now we see that (15) consists of all subsets of cardinality 3 of
{2,3,5,8} and of the triples which contain one element a of {2,3,5,8} and a pair of
elements in {1, 4,6, 7} which does not contain the element which form a pair of (16)
with a.

Hence the permutation 7 = (1684532) transforms our design (M, B) in (M, 7B) with
blocks being either the subsets of {1,2,3,4} of cardinality 3 or the sets {a, b, c} with
a€{1,2,3,4} and b,c € {5,6,7,8} but a+ 4 & {b, c}.

3.6. Characterization of Block Squares by Means of Pairs of Parallel, Ad-
missible Lines

Let (M, B) be a 1-block design with parameters k, A = 6 with the following proper-
ties:

a) There are three systems £;, R2, &3 of parallel lines such that for all pairs {i, j} C
{1,2,3} the intersection of two lines £; € K; and L; € K; consists of one block
B and deliver a parametrization of all blocks of B by pairs of lines (£;, £;).

b) For any i € {1,2,3} two lines in &; are admissible in the sense of Section 3.2.
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Proposition 3.13. Let (M, B) be a I-block design with parameters k > 3, = 6,
which satisfies the conditions a) and b). Then (M, B) is a block square.

Proof . We have to show that there are no other lines beside the lines in £, K2, f3.
Assume that A is a block of B and A € £, where L is a line of B not in £, Rs or
Rs. Let L4, L5 resp. L3 be the uniquely determined lines through A in K, R resp.
R3. Then L consists of blocks B in £; U L5 U L3 because only these blocks have the
property |AN B| = 1. Without loss of generality assume that £ contains a second
block By resp. Bs in L1 resp. L2 beside A. Then there is no further block of £
and Ly in £ because |B; N C2| # 1 for Cy € L3 — {A, B2} and |Bo N Cy| # 1 for
Cy € L1 — {A,B1}. The same is true for (£1,L3). It follows that the line £ has at
most 4 blocks but the case k = 3 was excluded. This proves the proposition. O

The example in Section 3.1 shows that Proposition 3.13 is not true for k = 3.

4. Two-Coloured Graphs in the Case £k =5, A =6

In this chapter we consider the case k = 5, A = 6.

4.1. One-Coloured Graphs

First we list all possible one-coloured graphs according to Section 3.5. We will see
that they all can be completed to two-coloured graphs of admissible pairs. There are
ten such one-coloured graphs which we list below starting with type Ag and ending
with type As: The vertices will be denoted by 1,...,6.

©)
@ @—=0
®
\© ®—-=
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Let ¢ be an admissible pair of parallel lines. In Section 3.2 we have defined the
reciprocal pair ¢* and the dual pair ¢,. In ¢* the roles of the colours are interchanged.
Since it is sufficient to consider one of the two pairs ¢, ¢* we list in the following only
the graphs of pairs ¢ such that the number a of the red-coloured graph is smaller or
equal to the number b of the green-coloured graph. We denote such a graph by Ta.b
and if there are several such graphs we distinguish them by adding the first letters of
the Latin alphabet.

4.2. T1

We begin with (I'1). To find the possible two-coloured graphs one has only to take
into account Proposition 3.9 which shows that there are two possibilities for the green
edge starting from a vertex x: Either it goes to the neighbouring vertex or it goes to a
different vertex, then all vertices in between have edges that go to that vertex as well.
Starting with the vertex 1, we get the following two-coloured graphs:
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One checks that the pairs of lines corresponding to (I'1.1) — (I'1.9) are admissible.
All these graphs are self-dual.

4.3. T2

In this section we consider the type (I'2). We have the following

Proposition 4.1. If the red-coloured graph has the form
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then the corresponding two-coloured graph has the edge 16.

Proof . By Proposition 3.7 there is a green edge going to 6. If it starts at a with
2 < a < 5, then, by Proposition 3.9, there is an edge from any b with 1 < b < a to 6.
O

With respect to & = 1 we are in Proposition 3.10 in the situation (3.6) or (3.7). (I'2)
can be completed to a two-coloured graph of type (I'2a), a = 2, 3, as follows.

One has (I'2.2z), = (I'2.2z) for z € {a,b,c,d,e}. With respect to dual graphs one
finds

(T'2.20)* = (I'2.2¢),
(T'2.2b)* = (I'2.2d),
(I2.2¢)* = (I'2.2¢).
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(T2.5a)* = ('2.5b)

(I'2.55)

23
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([2.9)* = ('2.9).

This finishes the consideration of the types with red-coloured graphs of type 2.
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4.4. T3

We come to the case of a red-coloured graph of type 3:

O—=®

Here we have the following rule:

Proposition 4.2. In (I'3) there is an edge from 1 to 5 or 6 in the green-coloured
graph. If 15, then 56. Furthermore, 4 cannot go to 5 or 6.

Proof . Since there is a green edge to 5 and 6 by Proposition 3.7 we can assume that
1,2,3 or 4 goes to 5. But then 15 and 56. If 45, then 35, 25, 15. Hence B} D {1,4,5,6},
Bf 2{1,2,3,4,5}, contradiction. O
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(I'3.5)* = (I'3.5)

AN

AN
N
N
N\

(I3.7)

(I'3.7)* = (T'3.8)

4.5. T4

Now we consider red-coloured graphs of type I'4:

]
@—=D~—0=<—0
(T4)

Proposition 4.3. In the green-coloured graph belonging to a red-coloured graph of
type I'4 one has edges 16 and 45.

Proof . First we prove 16: There is an edge going to 6. a) If 26 or 36, then 16
by Proposition 3.10. b) If 46, we are in the situation (3.8) with respect to z = 4.
Hence 36 or 56. Since 36 leads to 16 we may assume 56. Then 35 which implies 25
and 15. Now follows 45 from (3.8) with respect to z = 1. Hence Bf D {1,2,3,4,5},
B} D {3,4,5}. This is a contradiction. c¢) If 56 and (3.6) with respect to = 4, then
35 and 43. This implies 25 and 15. But this contradicts (3.8) with respect to z = 1.
d) If 56 and (3.7) with respect to 4, then 36 hence 16. e) If 56 and (3.8) with respect
to 4, then 46 and we are in the case b).

Now we prove 45. Since we know already that we have 16, the edge going to 5 can
only be 45 or 65. Assume 65. Then we are in the situation (3.7) with respect to z =1
and this implies 45. m|

(3.7) with respect to x = 1 implies 64 or 65. We first consider 64 and then 65.
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4.6. T'5

In the case of a red-coloured graph of type
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QO—=3<—"0
S
(I'5)

Proposition 4.4. In the green-coloured graphs belonging to a red-coloured graph of
type T'5 one has edges 35 and 16.

we have the following

Proof. By symmetry it is sufficient to prove 35. Since there is an edge going to 5
we consider the possible cases:

a) 15 implies that we have (3.8) with respect to = 1, hence 45 or 65. Since 45
implies 35 we assume 65 and therefore 46, which implies 36. Now (3.8) with
respect to x = 3 implies 26 and 52. But 26 implies 16, contradiction.

b) 25 implies 15.
c¢) 45 implies 35.

d) 65 and (3.6) with respect to z = 1 implies 46 and 16. But then B D {1,4,6},
B > {1,4,6}.

e) 65 and (3.7) with respect to = 1 implies 45 hence 35.
f) 65 and (3.8) with respect to x = 1 implies 15.

We have the following cases:

All these graphs are self reciprocal and we have

(T5.5a)* = (T5.50),
T5.7) = (I5.8).
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4.7. T6

In the case

one has BY D {13456}. It follows that i9(z) > 2 only for two vertices z and that
i9(x) > 3 for no vertex z. Hence we have to consider only the case (I'6.10).

In case (I'6.10) Proposition 3.9 implies 21g and 32g, hence 13g. It follows up to
equivalence 45g, 56g, 64g:

4.8. I'r

In the case

we use in addition to our previous methods the following

Proposition 4.5. Let (T'a.b) be a two-coloured graph with 7 < a < b. Then the
green edges xy, yz, zw imply wy.

Proof . Otherwise the green-coloured graph of (I'a,b) would contain no triangle in
contradiction to the assumption 7 < a < b. O
By means of this proposition and using Proposition 3.7 with respect to x = 4 we

derive that there are only two possibilities for two-coloured graphs with red-coloured
graph (I'7):
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4.9. T8
The case (T'8) is dual to (I'7) in the following sense:

Proposition 4.6. Let I’ be a graph whose red-coloured graph is of type (I'T). Then
the red-coloured graph of T* is of type (I'S).

Proof. To (I'7) corresponds the line

[1,345[216 [32][4]5]6]

It follows from Propositions 3.9 and 3.10 that the characteristic numbers in and

have to change if we go over to the dual graph. Since 4,5,6 remain characteristic
numbers, we see that the corresponding red line of I'* is

[1,26 [ 2331454 |56 |

which is of type (T'8). O
Now we get following graphs:
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4.10. T9

In the case

we have the following

Proposition 4.7. Let T be a graph with red-coloured graph of type (T'9). Then the
green-coloured graph of T' has no edge in the triangle.

Proof. Assume 29 = 1 and consider local conditions in x = 3 (Proposition 3.10).
Only (3.6) or (3.7) are possible.

a) (3.6): Then 39 = 6 and 69 = 2. Now applying Proposition 3.10 to x = 1 we see
that 1 and 4 go to 3 and 6. Hence there is no green edge to 5 in contradiction
to Proposition 3.7.

b) (3.7): Then 69 =1 and 3¢9 € {2.6} and Proposition 3.10 applied to z = 1 again
shows that there is no green edge to 5.

O

Now one can see by using Proposition 3.10 that the assumption of 19 = 4 leads to
the following type (I'9.9a); the assumption 19 = 5 leads to the type (I'9.9b) and 19 = 6
leads to a contradiction

Both graphs are self reciprocal and self dual.

4.11. T'10

It remains the case (I'10.10). It is immediately clear from Proposition 3.9 that there
is only one such graph:
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5. Completing the block squares

To prove Theorem 2.8 it remains to go through all the 41 representatives of { *, )
orbits on the two-coloured graphs, construct the corresponding first two rows, and try
to complete them in all possible ways to block squares with the computer.

A block square contains 3 different systems of parallel lines: the rows, the columns
and a third system where the lines are indicated by the letters a,b,.. .,f, which we also
call types.

Note that an admissible two-coloured graph determines the first two rows of a possi-
ble block square up to equivalence as follows: We may assume that the first two rows
start as follows:

a,l|b,2|c,3|d4|eb5]|f16
1 2 3 4 5 6

The positions of the other entries in C' := {1,...,6} are then given by the two-
coloured graphs, which also determine the types of the blocks in the second row.
Then these two rows can be completed to an admissible pair of lines by filling in the
numbers {7,...,15} resp. {16,...,24}. Up to equivalence this completion is unique.

Let s € S = {1,...,30}. Since we are in the case A = 6, there are in each system
of parallel lines, exactly 3 lines £ that contain a block that contains s. In this case
there are exactly 2 blocks in £ that contain s. So the distribution of the blocks that
contain s is equivalent to:

Therefore each number s in C' occurs in three columns ¢y, ¢z, c3 and in three different
types t1,t2,t3 which are already determined by the first two rows. There is one dis-
tinguished column (resp. type), say c; resp. 1, where it occurs twice in the first two
rows. The two other blocks that contain s are in one row in column ¢; and c¢3 and
of type to resp. t3. This gives restrictions on the possibilities where to insert those
numbers s during the completion of the block square.

We illustrate this by discussing the case (I'2.4b) and showing that (I'2.7a) is impos-
sible:

For the first two rows of (I'2.4b) one finds:
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a, 1,5, ] b21] ¢32] 4H4s3, e, 5,4, 16,11,
6,7,8 | 9,10,11 | 7,12,13 | 8,9,14 | 10,12, 15 | 13, 14, 15
41,2, | 218, | a3,4,| e 4,16, £5,6, | D61,

3,16, 17 | 19,20, 21 | 5, 18, 22 | 19, 23, 24 | 17, 20, 23 | 21, 22, 24

Therefore the numbers 2, 3, 5, 6 are missing in the first column, where the type of
the block that contains 2 is either b or d, for 3 one finds a or c, etc. Since the first
column already contains blocks of type a and d, one concludes that the new block
in the first column that contains 2 is of type b and for 3 one finds ¢. This can be
visualized as follows:

2)had 1Ja'ad 27b:d 3,@,C 4:@ad 1Jaad
3,a,¢c 4,a,d 6,a, b

5,e, f 5, e, f

67a‘7b

It is now easy to see that the third, fourth and fifth row can be assumed to contain

b, 2, 6
c, 3

d, 2,4 a, 4,6

a, 3
1 1

Using this starting information, the computer tries to complete the blocks row by
row using a backtrack algorithm. After about 11 sec. the computer stops without
having found a new block square.

To see that (I'2.7a) is impossible, note that the first two rows are

a, 1,5, b2 1, 3,2, | d4,S3, e, 5,4, | f, 6,11,
6,7,89,10,11 | 7,12,13 | 8,9,14 | 10,12, 15 | 13, 14, 15

b, 1,16, | a, 2,3, | d,3,17, | e, 4,18, £5, 6, c, 6,1,
17,18,19 | 4,5,16 | 20, 21,22 | 20, 23,24 | 19, 21,23 | 2,22, 24

Therefore the second column contains a block of type ¢ with entries 1 and 3. In
particular, 1 and 3 are in the same row. But 3 has to be also in column 4 with type
a and 1 has to be in the last column with type a, which is impossible, since each row
contains a unique block of type a.

Analogously one treats the other graphs. The most difficult graph is (I'1.1), where
the computer needs 1 hour to exclude this case. Only the cases (I'2.4a), (I'2.4c),
(I'6.10), (I'7.7), and (I'9.9a) (and their ( *, ) orbits) can be completed to block
squares. The computer constructs nearly 300 different block squares. With MAGMA
[3] one checks that these fall into two isomorphism classes yielding the two non iso-
morphic block squares of Theorem 2.8.
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